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Abstract 
 
Asian populations are currently underrepresented in human genetics research. Here we present 
whole-genome sequencing data of 4,810 Singaporeans from three diverse ethnic groups: 2,780 
Chinese, 903 Malays, and 1,127 Indians. Despite a medium depth of 13.7×, we achieved 
essentially perfect (>99.8%) sensitivity and accuracy for detecting common variants and good 
sensitivity (>89%) for detecting extremely rare variants with <0.1% allele frequency. We found 
89.2 million single-nucleotide polymorphisms (SNPs) and 9.1 million small insertions and 
deletions (INDELs), more than half of which have not been cataloged in dbSNP. In particular, we 
found 126 common deleterious mutations (MAF>0.01) that were absent in the existing public 
databases, highlighting the importance of local population reference for genetic diagnosis. We 
describe fine-scale genetic structure of Singapore populations and their relationship to worldwide 
populations from the 1000 Genomes Project. In addition to revealing noticeable amounts of 
admixture among three Singapore populations and a Malay-related novel ancestry component that 
has not been captured by the 1000 Genomes Project, our analysis also identified some fine-scale 
features of genetic structure consistent with two waves of prehistoric migration from south China 
to Southeast Asia. Finally, we demonstrate that our data can substantially improve genotype 
imputation not only for Singapore populations, but also for populations across Asia and Oceania. 
These results highlight the genetic diversity in Singapore and the potential impacts of our data as a 
resource to empower human genetics discovery in a broad geographic region. 
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Introduction 
 
We have learned profound insights into the demographic history of humans and the genetic basis 
of phenotype diversity and disease etiology by mining the variation of human genomes.1-4 While 
earlier efforts were mostly based on array genotyping of common variants, large-scale whole-
genome sequencing (WGS) has become a powerful approach for disease gene mapping by 
surveying the genome in an unbiased and completed fashion. A remarkable milestone is the 
completion of the 1000 Genomes Project (Phase 3, 1KG3), which sequenced >2,500 genomes 
from 26 populations globally at ~7.4× and cataloged over 88 million variants segregated in the 
sample.5 The resource provided by 1KG3 has empowered numerous genetic studies through 
imputation of large numbers of samples genotyped in genome-wide association studies (GWAS), 
allowing for detection of genetic association at low frequency variants (minor allele frequency, 
MAF<0.05) and thus enabling a deeper understanding of the genetic architecture of complex 
diseases.6,7 The direct assessment of causal variants enabled by sequencing technologies has led to 
the convergence of population and clinical genetics.8,9 Population genetic information has become 
the cornerstone of precision medicine, with wide applications in the diagnosis of Mendelian 
diseases,10,11 optimization of therapeutic treatments,12 drug development,13 and disease risk 
prediction and stratification.14  
 
Comparing across populations globally, the majority of single-nucleotide variants are rare 
(MAF<0.005) and population-specific, highlighting the importance of population diversity in 
human genomics research.5,11,15 To implement precision medicine for local populations, many 
countries have initiated population-based WGS studies.16-19 Nevertheless, current public WGS 
resources are predominantly based on Europeans. Though Asia is the largest continent with over 
four billion inhabitants from diverse populations,4 Asian genomes are underrepresented in public 
databases. For example, the Haplotype Reference Consortium (HRC) has brought together WGS 
data of 32,488 samples from 20 different studies to construct a large reference panel for accurate 
imputation.20 This HRC panel, however, is only appropriate for imputing European subjects. 
Moreover, in the genome Aggregation Database (gnomAD), only ~5% of its 15,496 genomes are 
from East Asians and none are from South Asians. Furthermore, in the Trans-Omics for Precision 
Medicine (TOPMed) Program, one of the largest ongoing WGS efforts supported by the United 
States National Heart, Lung, and Blood Institute (NHLBI), only ~7% of its >72,000 samples 
(Phases 1 and 2) are of Asian ethnicity (ASHG 2016, presentation by Gonçalo Abecasis). 
 
Despite its small geographic size, Singapore has a diverse population-genetic composition due to 
its migratory history.21-23 Singaporeans are broadly classified into four ethnic groups, namely 
Chinese, Malay, Indian and other (CMIO). Each ethnic group further harbors substantial fine-scale 
genetic diversity. According to the Singapore Department of Statistics (latest update on 2017), 
Chinese account for 74.3% of the four million Singapore residents. Most Chinese are descendants 
of several dialect groups from south China and a minority are from north China. Malays, 
representing 13.4% of the Singapore population, include descendants of diverse Austronesian-
speaking groups in Southeast Asia, primarily from Singapore, Malaysia, and Indonesia. About 
9.1% of the population are Indians descending from the Indian migrants during the period of 
British colonization. The majority of Indians are Telugas and Tamils from southeastern India and 
a minority are Sikhs and Pathans from north India.21 The remaining 3.2% of the population are 
mainly Eurasians from Europe and Middle East. Taken together, the three major ethnicity groups 
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in Singapore provide a unique snapshot of the genetic diversity across East Asia, Southeast Asia, 
and South Asia. Therefore, WGS analysis of Singaporeans have the potential to benefit a large 
number of Asian populations. 
 
We have therefore initiated the SG10K project to whole-genome sequence 10,000 healthy 
individuals, as well as patients from several ongoing disease studies in Singapore. Our main 
objectives are to (1) comprehensively characterize genetic variation in Singapore populations; (2) 
create a WGS reference panel for accurate genotype imputation in Asian populations; and (3) 
generate a common control dataset to empower disease association studies. We chose a medium 
coverage design of ~15× to maximize the statistical power for rare variant association studies 
given a fixed sequencing budget.24,25 In this article, we describe the Phase 1 data of SG10K and 
initial findings based on 4,810 whole genomes, including 2,706 healthy samples without major 
diseases and 2,104 patient samples with heart failure, Parkinson’s disease, and obesity. We 
characterize genetic mutations segregating in the population and in personal genomes and discuss 
the implications of our findings for precision medicine. Furthermore, we investigate the genetic 
diversity and fine-scale population structure in Singapore, by comparing to worldwide populations 
from the 1KG3 dataset.5 Lastly, we illustrate the potential impacts of the SG10K data in 
improving imputation accuracy for both Singapore populations and worldwide populations from 
the Human Genome Diversity Project (HGDP).26  
 
Results 
 
Dataset overview. Phase 1 of the SG10K Project includes 4,810 samples successfully sequenced 
at a mean depth of 13.7×. These samples were contributed by eight cohorts in Singapore, 
including five healthy cohorts free of major diseases and three patient cohorts of heart failure, 
Parkinson disease, and obesity (Supplementary Table 1). Before genotype calling, we inferred 
ethnicity, sex, and contamination rate for each individual directly from sequence reads (Materials 
and Methods, Supplementary Figures 1-4, Supplementary Tables 2-3).27-29 We obtained 
concordance rates of 96.7% between inferred and self-reported ethnicity, and 99.2% between 
inferred and self-reported sex. This lower ethnicity concordance rate was mostly due to admixture 
between different ethnic groups. Based on the inferred ethnicity or sex, we classified 4,810 
samples into 2,780 Chinese, 903 Malays, and 1,127 Indians, as well as 2,462 females and 2,348 
males. We performed linkage-disequilibrium (LD) based joint calling for all SG10K samples, 
followed by a series of quality controls to filter low-quality variants (Supplementary Figure 1).30 
Notably, we inferred 494 pairs of close relatives (third degree or closer), including 93 duplicates 
(or monozygotic twins), 17 trios, and 32 parents-offspring duos (Supplementary Figure 5, 
Supplementary Table 4).31,32 Sixteen out of the 17 trios were from the Platinum Asian Genomes 
Project, which recruited 46 individuals from 14 trios and one quartet family (two siblings and their 
parents). Seventy-two out of 93 duplicates were subsequently confirmed to be heart failure 
patients recruited by different studies at different time points. The majority of the remainder 
exhibited previously unknown cryptic relatedness, including 123 cross-cohort pairs. By removing 
close relatives up to the third degree, we obtained a maximum unrelated subset consisting of 4,446 
individuals, 2,535 of which were healthy individuals. We utilized the duplicates, trios, and duos to 
further filter out low-quality variants with more than two duplicate or Mendelian discordance 
instances. Lastly, we applied a population-based phasing algorithm to phase genotypes to 
haplotypes for all samples including close relatives.33 The final dataset consisted of haplotypes 
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from 4,810 samples, including 89,160,286 SNPs and 9,113,420 INDELs from 22 autosomes and 
the X chromosome. We detected slightly more SNPs and many more INDELs compared to those 
reported by the 1KG3 (84.7 million SNPs and 3.6 million INDELs),5 which is likely attributed to 
our larger sample size and higher sequencing depth than 1KG3.  
 
Quality evaluation. We estimated a transition to transversion ratio (Ts/Tv) of 2.07 across 84.7 
million bi-allelic autosomal SNPs in our final dataset, which is consistent with values reported by 
previous studies.5,17 We further evaluated the quality of our call set based on 1,263 individuals 
previously genotyped by the Illumina Quad610 array.34 Treating the array data as gold standard, 
we achieved a 0.9997 non-reference sensitivity and a 0.9992 heterozygote concordance rate for 
variants with MAF>0.01, despite the medium coverage design (Table 1). For low-frequency 
variants with MAF between 0.01 and 0.05, both the sensitivity and heterozygote concordance rate 
dropped slightly to 0.9991 and 0.9973, respectively. These statistics indicate high quality of our 
call set, especially due to the proper use of shared LD among a large number of samples. In 
particular, before LD-based refinement, the discordance rate of each sample highly depended on 
the sequencing depth and was as high as ~0.075 at ~7× (Figure 1A). However, after LD-based 
refinement, the discordance rate was reduced dramatically by 25-fold to ~0.003 for samples 
sequenced at ~7×, and by 10-fold from ~0.01 to ~0.001 for the majority of samples sequenced at a 
medium depth of ~13.7× (Figure 1A). 
 A primary issue of sequencing at a medium depth is the sensitivity to detect rare variants, 
which cannot be evaluated by comparing to GWAS array data. We thus designed an approach to 
estimate sensitivity without external data for comparison. For each sample, we counted the 
number of non-reference variants at extremely low frequency (MAF<0.001). Within each 
population, we observed that samples sequenced at lower depths carried fewer rare variants 
(Pearson’s r>0.2, p<10-8, Student’s t test), indicating lower sensitivity at detecting rare variants 
(Figure 1B). In contrast, the mutation burden did not have an obvious trend with sequencing depth 
for variants with MAF>0.001 (Pearson’s r<0.07, Figure 1B). Both simulation studies24 and our 
empirical data (Supplementary Figure 6) suggested the power to detect extremely rare variants 
plateaus at ~25×. By assuming a linear model and a 0.99 non-reference sensitivity at 25× 
sequencing depth, we estimated 0.9329, 0.9225, and 0.8887 non-reference sensitivities at detecting 
variants with MAF<0.001 in our data for Chinese, Malays, and Indians, respectively (Table 2). 
For variants with MAF>0.001, assuming 25× sequencing depth has perfect power, we estimated 
non-reference sensitivities to be 0.9963, 0.9989, and 0.9968 for Chinese, Malays and Indians in 
our call set, respectively, which is slightly lower than the non-reference sensitivity estimated by 
direct comparison with GWAS data for variants at a higher frequency of MAF>0.01 (Table 1). 
Compared to Chinese and Malays, the lower sensitivity at detecting rare variants in Indians might 
be attributed to their higher genetic diversity, consistent with the greater number of non-reference 
variants per Indian genome (Figure 1B). 
 
Novel variants and implications for genetic diagnosis. In our final dataset, 45.6 million SNPs 
(51%) and 6.3 million INDELs (70%) were novel variants not included in dbSNP (version 150). 
This higher proportion of novel INDELs might be partially attributed to multiple representations 
and ambiguous positions of the same INDELs in previous studies, and here we used the 
parsimonious left-aligned representation to normalize INDELs.35 We also found that chromosome 
X has higher proportion of novel variants than the autosomes consistently across different variant 
types (Supplementary Table 5), suggesting that chromosome X has been less studied than 
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autosomes. Unsurprisingly, the majority of our novel variants are extremely rare (Supplementary 
Figure 7A), consistent with previous studies.5 Specifically, singletons and doubletons accounted 
for 69.6% and 14.4% of the novel SNPs, respectively, which are much higher than those of the 
known SNPs. Moreover, only ~0.5% of the novel variants reached MAF>0.01 (equivalent to 
minor allele counts MAC>90).   

Among the common (MAF>0.01) novel variants, we identified 126 “deleterious” 
mutations annotated by Polyphen or SIFT.36-38 These variants were mapped to 113 genes, 
including 99 genes reportedly harboring at least one pathogenic or likely pathogenic variants 
according to ClinVar (Supplementary Figure 7B).39 However, the high frequencies of these 
variants in local populations suggest that they are likely benign or have very low penetrance.40 
Comparing across Chinese, Malays and Indians, none of the 126 “deleterious” mutations were 
population-specific, whereas 35 reached MAF>0.05 in all populations (Supplementary Figure 
6C), indicating a high risk of genetic misdiagnoses if Singaporean patient genomes were 
compared to existing public databases where these variants are currently absent.11 
 
Variants in a personal genome. To compare typical genomes between different ethnic groups, 
we focused on 2,535 individuals free of major diseases (Supplementary Table 6). We found an 
average healthy individual carries autosomal variants at ~3,330,000 SNPs, ~105,000 insertions, 
and 160,000 deletions (Table 3). Across putatively functional categories, we observed that a 
genome harbors ~11,600 missense variants,  ~54,000 variants overlapping with untranslated 
regions (UTRs), ~5,000 variants at transcription factor binding sites (TFBS), ~2,000 deleterious 
variants predicted by SIFT or Polyphen, and ~31 pathogenic variants as annotated by ClinVar. 
Moreover, Indian genomes possessed the highest number of variants on average, followed by 
Malays and Chinese. In addition, the heterozygote to non-reference homozygote ratio (Het/Hom) 
was also higher in Indian (1.73) than in Chinese (1.43) and Malays (1.51), reflecting a higher level 
of genetic diversity among Indians. Though Malays have a lower level of genetic diversity than 
Indians,21 sequencing a Malay genome leads to a discovery of ~30.2 thousand novel SNPs, which 
is close to ~30.3 thousand for an Indian and higher than ~27.6 thousand for a Chinese, which 
reflects the more severe underrepresentation of Southeast Asians in current genetic studies. We 
note that the Het/Hom ratio was high for novel variants (~13 for SNPs and ~25 for INDELs) 
because the majority of the novel variants are rare and often present as heterozygotes. Furthermore, 
except for novel variants, the highest Het/Hom ratio was among variants annotated as deleterious 
or pathogenic, which is consistent with negative selection against these variants to reach high 
frequencies. 
 The ClinVar pathogenic variants are interpreted for Mendelian disorders and might cause 
adverse clinical outcome if present as homozygous, especially for recessive disorders. We found 
that even without any known major diseases, each individual carried 3.9±2.0 (mean±s.d.), 4.3±2.1, 
and 4.9±2.2 pathogenic homozygotes in Chinese, Malays, and Indians, respectively. Moreover, 
individuals with higher inbreeding coefficients tended to have a greater number of pathogenic 
homozygotes (Supplementary Figure 8), although such a trend might be underestimated because 
our analysis was restricted to healthy individuals and we did not recruit patients with Mendelian 
disorders. In this analysis, we also noticed that Indians had a long tail distribution of inbreeding 
coefficients, which is consistent with a high level of consanguinity in Dravidian south India and 
Pakistan.41 We estimated the prevalence of consanguineous mating between second cousins or 
closer relatives (inbreeding coefficient >0.0156) to be 29.1% (237/814) in Indians, followed by 
10.8% (50/464) in Malays, and 2.6% (33/1267) in Chinese. These results are important, as 
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consanguineous mating can lead to an excess of infant/childhood mortality and extended 
morbidity.41 
 
Population structure and genetic diversity. We analyzed Singapore populations together with 
26 worldwide populations from the 1KG3 dataset using principal components analysis (PCA). To 
avoid undesirable effects on PCA due to uneven sample sizes,42 we randomly downsampled each 
Singapore population to 100 unrelated individuals in the joint analysis with the 1KG3 populations, 
and subsequently projected the remaining SG10K samples into the PCA space.28,29 We found that 
SG Indians and SG Chinese overlapped largely with South and East Asians, respectively, whereas 
SG Malays formed a cluster distinct from any 1KG3 population (Figure 2A, Supplementary 
Figure 9). When restricting PCA to East/Southeast Asians, the majority of SG Chinese overlapped 
with CHS from south China and the rest with CHB from north China (Supplementary Figure 
10). Similarly, we observed that the majority of SG Indians overlapped with STU, ITU, and BEB 
from the south of the Indian subcontinent, with a small proportion overlapping with GIH from 
west India and PJH from Pakistan (Supplementary Figure 11). Given the clear north-south 
pattern on both PCA of East Asians and South Asians, we estimated that 96% and 4% of the SG 
Chinese samples are from south and north China respectively, and that 81% and 19% of the SG 
Indian samples are from south and north India subcontinent respectively (Materials and 
Methods). In addition, neither SG Chinese nor Malays overlapped with CDX and KHV from the 
mainland Southeast Asia. These PCA results are consistent with the genetic distances between 
pairwise populations (Supplementary Figure 12), in which the SG Malay is relatively distant 
from the other populations with the closest being KHV (FST=0.007) and CDX (FST=0.009). 
Finally, we applied PCA on only the SG10K samples and found that three distinct clusters 
consisting of Chinese, Malays, and Indians emerged, with a noticeable number of likely admixed 
individuals forming clines between clusters (Supplementary Figure 13).  

We further investigated population structure using ADMIXTURE, a maximum likelihood 
method that models each genome as a mixture of K hypothetical ancestral components.43 The 
value of K was chosen based on five-fold cross validation to optimize prediction of genotypes. 
When applying ADMIXTURE to the full 1KG3 dataset and 300 SG individuals, we inferred the 
optimal number of ancestral components to be K=10 (Supplementary Figure 14). SG Malays 
contributed a new component (colored by dark orange in Figure 2B), which was also present at 
moderate levels in KHV and CDX. It is worth noting that this Malay component appeared at low 
levels in all Han Chinese populations but was significantly higher in SG Chinese (0.148±0.006, 
mean±s.d.) than in CHB (0.034±0.005; p<10-16, Wilcoxon rank-sum test) and CHS (0.112±0.005; 
p<10-5, Wilcoxon rank-sum test), suggesting recent gene flow from Malays to Chinese in 
Singapore. When we applied ADMIXTURE to the set of 4,446 unrelated SG10K samples, K=3 
effectively distinguished the three major ethnic groups with admixed samples apparent in each 
group (Figure 2C). However, we inferred the optimal number of components to be K=7, 
indicating fine-scale population structure within major ethnic groups (Supplementary Figure 15). 
Interestingly, a component colored by blue showed up in about half of the Chinese samples and 
half of the Malay samples from K=6 (Supplementary Figure 15). Given that most SG Chinese 
trace their origin to the Fujian and Guangdong provinces in south China, we first speculated that 
this blue component might distinguish different Chinese origins at the province level. However, 
we excluded this possibility after examining 103 samples with detailed records of origin, because 
no difference was found in the levels of the blue component between samples from different 
provinces (Supplementary Figure 16). Furthermore, we also excluded the possibility of artifacts 
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caused by batch effects or health status, as these 103 samples were from the same healthy cohort, 
and were processed and sequenced using the same protocol and platform.  

We next combined the SG10K samples with those from other Asian populations in the 
1KG3 to investigate the geographic distribution of inferred ancestral components. We set K=9 in 
this combined analysis, which mimics the result of K=7 in the analysis of SG10K alone, with two 
additional components introduced by Gujarati and Japanese (Figure 2D). We numerically labeled 
these nine ancestral components as shown in Figure 2E. We applied hierarchical clustering based 
on FST relating these nine components and observed three major clusters, representing South Asian 
ancestry (components 1, 2 and 3), East Asian ancestry (components 4, 5, 6 and 7), and Southeast 
Asian ancestry (components 8 and 9, Supplementary Figure 17). The presence of multiple 
ancestral components within the same ancestry group is suggestive of fine-scale population 
structure. Specifically, the SG Indians were predominated by components 1 and 2, which together 
reflected a clear south-north cline among SG Indians (Figure 2D-E). We found that component 3 
introduced by the Gujarati Indians of 1KG3 contributed little to the SG Indians. Interestingly, we 
observed that the mysterious blue component described previously, which is now component 4, is 
prevalent across East and Southeast Asian populations—however, the origin of this component 
remained unexplained. We also noticed that component 4 was closely related to component 5 
(FST=0.007), which was mostly found in CDX in southwestern China and gradually declined 
toward both the north and the south. In contrast, we saw that components 6 and 7, which were 
mostly found in northern Chinese and Japanese respectively, had little contribution to SG Malays. 
Instead, the two major components in SG Malays were components 8 and 9, both reflecting 
indigenous Southeast Asian ancestry. In particular, component 8 was also present at moderate 
levels in mainland Southeast Asians (KHV and CDX) whereas component 9 was specific to SG 
Malays. In addition to the complex population structure, SG Malays have the highest 
heterozygosity among East and Southeast Asian populations, further confirming their population-
genetic diversity (Figure 2E). 
 
Imputation in worldwide populations. Given the genetic diversity represented by the three 
major ethnic groups in Singapore, we expect our SG10K data (Phase 1) to be a valuable resource 
for imputation in Asian populations. To assess the effectiveness of our dataset for imputation, we 
obtained array genotyping data for 53 worldwide populations from the HGDP26 and three 
Singapore populations from the Singapore Genome Diversity Project (SGVP)21 and performed 
imputation experiments using 1KG3, SG10K, and two combined reference panels (Materials and 
Methods). We masked 10% of the Illumina 650K array genotyped SNPs on chromosome 2 for 
direct assessment of imputation error rate. When imputing these masked SNPs, we found that the 
SG10K panel outperformed the 1KG3 panel in all East Asian populations except for Japanese 
(Figures 3A and 3D), which is not surprising given that the Japanese ancestry component was 
barely found in Singapore populations (Figure 2). Compared to 1KG3, imputation with SG10K 
reduced the error rates by 50% when imputing SG Malay and SG Chinese, and by 10% when 
imputing SG Indian (Supplementary Table 7). Beyond Asia, we found that the SG10K panel also 
improved imputation in Melanesian and Papuan from Oceania, which is likely due to their shared 
haplotypes with SG Malay. Nevertheless, as expected, SG10K imputation performed worse than 
1KG3 imputation in other continental groups, especially in African populations. Surprisingly 
however, SG10K also performed worse in most Central and South Asian populations. We note 
that Central and South Asian populations in HGDP are mainly from Pakistan, which historically 
received substantial gene flow from Central Asia and western Eurasia.44,45 These results reflect the 
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limitation of the SG10K panel in capturing the vast population-genetic diversity in Central Asia. 
For Singapore populations, we further evaluated imputation quality based on the Rsq statistic.46 
We observed that the SG10K panel substantially improved rare variant imputation, exemplified by 
a more than two-fold increase in the number of high-quality imputed rare variants (Rsq>0.8, 
MAF<0.01; Figure 4). Compared to SG Chinese and SG Malay, we found that the improvement 
in SG Indian was smaller. In addition, we noticed that SG10K imputation had higher median Rsq 
than 1KG3 imputation across all MAF bins, but had a smaller number of high-quality imputed 
common variants (Rsq>0.8, MAF>0.2) because by sequencing diverse worldwide populations, the 
1KG3 panel catalogs a larger number of common variants.  
 To maximize imputation quality, we sought to create a combined reference panel using 
SG10K and 1KG3 datasets. This task, however, was not straightforward because ~2/3 of the 
variants are unique to either SG10K or 1KG3. As a consequence, taking the intersection of these 
two datasets would lead to a substantial loss of variants. We instead first explored the reciprocal 
imputation strategy to merge two reference panels to their union set of variants. This strategy used 
two panels to impute each other reciprocally before merging and was previously proposed to 
combine the 1KG3 and UK10K datasets for imputation in Europeans.47 By adding the SG10K 
haplotypes, the combined panel (denoted as Combined-A) improved imputation accuracy over the 
1KG3 panel in all Asian and Oceanian populations except for a minor decrease in Makrani and 
Balochi, highlighting the potential broad regional impacts of SG10K (Figures 3B and 3E). We 
found that the imputation error rate for SG Indians is now reduced by 22% compared to when 
using the 1KG3 panel. For Singapore populations, we observed that the Combined-A panel can 
impute many more high-quality variants (Rsq>0.8) across all MAF bins than when using either the 
1KG3 or SG10K panels alone (Figure 4). Nevertheless, we noticed that the Combined-A panel 
performed much worse than the 1KG3 panel in African populations and Mozabite, even though 
the 1KG3 haplotypes had been integrated into the panel. This result is because imputing diverse 
1KG3 populations with the SG10K as a reference panel might introduce numerous errors in 
populations distant to the Singapore populations (Figure 3A). Furthermore, we found that even for 
sites that were originally genotyped in 1KG3, LD-based imputation with the SG10K reference 
panel could mistakenly change the original genotypes of samples from distant populations, such as 
those from Africa (Supplementary Figure 18). We therefore explored an alternative approach to 
merge the SG10K and 1KG3 panels by imputing sites absent from one dataset as reference 
homozygotes. This naïve imputation strategy did not change the sites originally genotyped. As 
expected, we found that the new panel (denoted Combined-B) achieved imputation accuracy 
comparable to the 1KG3 panel in populations distant to Singapore populations (Figures 3C and 
3F). However, due to the low accuracy inherent to the naïve imputation approach, the Combined-
B panel performed worse than the Combined-A panel for imputing Singapore populations as well 
as a number of Asian populations (Figures 3 and 4, Supplementary Table 7). In summary, our 
extensive evaluation of the efficacy of different imputation strategies demonstrated the value of 
SG10K for imputing diverse Asian and Oceanian populations, and highlighted the challenges and 
potential issues associated with merging two imputation reference panels. 
 
Discussion 
 
In this article, we have presented a comprehensive WGS-based characterization of genetic 
variation segregating in 4,810 Singaporeans. In contrast to WGS projects in many countries, 
which often consist of primarily homogeneous populations, Singapore has diverse populations due 
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to its recent migratory history. Chinese and Indian, the major immigrant populations in Singapore, 
represent the two largest populations in the world. The population diversity and large sample size 
together contributed to our discovery of 52 million novel variants. Although 99.5% of the novel 
variants are rare (MAF<0.01), we identified 126 “deleterious” mutations that are common in 
Singapore populations but absent from existing public databases. We expect to find many more 
such variants if we relax the criteria from “absent” to “present at low frequency” in existing public 
databases. Filtering candidate variants by population allele frequencies is an essential step to 
pinpoint causal mutations in the diagnosis of Mendelian diseases.48 Our findings reiterate the 
importance of population-specific reference data for reducing genetic misdiagnoses,11 and support 
our key objective to set up a reference database for a long-term national precision medicine 
program in Singapore. 
 
Using this dataset, we gained novel insights into the geographic and genetic structure of Asian 
populations. Malay represents indigenous people in Southeast Asia and contributes a novel 
ancestry component that was not captured by the 1000 Genomes Project.5,22 We observed a clear 
north-south clinal pattern of genetic variation in both South Asia and East/Southeast Asia, except 
for two recent migrant populations--the SG Chinese and SG Indian, which is consistent with 
previous studies that suggest a strong role of geography in producing human population 
structure.49,50 Moreover, we found noticeable amounts of admixture among the three major 
populations in Singapore. In addition, we identified two closely related ancestral components 
(components 4 and 5 in Figure 2E) that are prevalent in East and Southeast Asian populations, 
suggestive of their ancient origins. Based on the geographic distributions of these two 
components, we speculate that they might reflect two waves of prehistoric migration from south 
China to Southeast Asia through a mainland route (component 5) and an island route (component 
4). This hypothesis is consistent with a complex peopling history of Southeast Asia depicted by a 
recent ancient DNA study.51 The study suggested that an expansion from East Asia into mainland 
Southeast Asia occurred about 4,000 years ago during the Neolithic transition to farming, and that 
an island route migration corresponding to the Austronesian expansion into Philippines and 
Indonesia took place about 2,000 years ago. However, we were unable to test this hypothesis 
directly using our data due to lack of samples from other countries in the island Southeast Asia. 
Future investigation will likely yield a clearer picture as more WGS or dense genotyping data 
from indigenous populations along the route of the Austronesian expansion become available.4,52 
 
In addition to insights about population structure, due to the genetic diversity of Singapore, our 
project has yielded a key advantage over others in terms of improving genotype imputation in 
diverse Asian and Oceanian populations. Such improvement is evident when using the combined 
reference panel of our SG10K data and the 1KG3 data. We note that although it has become a 
common practice to merge multiple reference panels for better imputation, researchers need to be 
cautious with using the combined panels.20,47 In our case, though the combined panel consisted of 
worldwide populations from 1KG3, it was not suitable for imputing samples from Africa, Middle 
East, Europe, and America. As we have demonstrated, this unexpected result was due to errors 
introduced by the reciprocal imputation procedure to merge two reference panels. The same issue 
applies to many other studies that attempt to combine population-specific reference panels with 
global reference panels such as the 1KG3 dataset. We therefore believe that an important future 
research topic is to study how to optimally combine all published WGS data to generate a mega 
reference panel that can be applied universally to impute worldwide populations. This endeavor is 
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particularly important for medical genetics, in which reduction of imputation errors can be 
translated into substantial gain of statistical power in association tests.53 Coupled with a 
substantially improved coverage of rare variants and the rapid accumulation of Asian GWAS data, 
we expect our SG10K data to be a valuable resource to advance genetic studies of heritable traits 
and complex diseases in Asian populations, and to mitigate the population disparity in current 
human genetics research.  
 
Materials and Methods 
 
Sample collection. We collected whole blood DNA samples of 5,424 individuals from nine 
cohorts in Singapore, including 3303 healthy individuals (no major diseases) contributed by the 
Singapore Eye Research Institute (SERI, N=1,536),  Tan Tock Seng Hospital (TTSH, N=971), 
GUSTO/S-PRESTO birth cohort (GUSTO/S-PRESTO, N=571), SingHealth Duke-NUS Institute 
of Precision Medicine (PRISM, N=100), the Peranakan Genomes Project (Peranakan, N=79), and 
the Platinum Asian Genomes Project (Platinum, N=46, consisting of 14 trios and 1 quartet). The 
remaining 2,121 individuals are patients from three disease studies: heart failure (HF, N=1540), 
Parkinson disease (PD, N=355), and obese patients undergone bariatric surgery (Bariatric, 
N=266). These studies were approved by the Institutional Review Board of the National 
University of Singapore (Approvals: N-17-030E and H-17-049), SingHealth Centralized 
Institutional Review Board (Approvals: 2006/612/A, 2014/160/A, 2010/196/C, 2009/280/D, 
2014/692/D, 2002/008g/A, 2013/605/C, and 2015/2308), National Health Group Domain Specific 
Review Board (Approvals: 2007/00167, TTSH/2014-00040, 2016/00269, 2018/00301 and 
2009/00021). All participants provided written informed consent. However, 571 samples from the 
GUSTO/S-PRESTO birth cohort were excluded from further analyses after joint genotype calling 
and phasing due to no consent for data release. Demographic information of samples from the 
other eight cohorts was summarized in Supplementary Table 1. We also obtained province-level 
ancestry information for 118 Chinese samples from the SERI cohort, whose parents were both 
from the same province in China. These samples include 35 from Fujian, 54 from Guangdong, 14 
from Hainan, and n<3 samples from any other provinces. 
 
Whole genome sequencing. Genomic DNA was either extracted at the Genome Institute of 
Singapore (GIS) using QIAamp DNA Blood Midi Kit (Qiagen) or extracted by each contributing 
study prior to delivery to GIS. DNA quantification was performed by Qubit (Promega) 
fluorometer with Quant HS dsDNA Assay Kit, High Sensitivity (Invitrogen) followed by 1% 
GelRed (biotium) stained Hyagarose (Hydrogene) agarose gel electrophoresis run at 100-120 volts 
for 60 minutes to interrogate DNA integrity using Qubit dsDNA HS Standard #2 DNA 
(Invitrogen) and 1kb DNA ladder (NEB). Library preparation was undertaken as per protocol 
using either the Illumina TruSeq Nano DNA, TruSeq DNA PCR-Free or NEBNext Ultra II DNA 
Library Prep Kit for Illumina (NEB).  Paired-end 151bp whole-genome sequencing with an insert 
size of 350bp was performed using Illumina HiSeq 4000 and X5 platforms. The target depth was 
15× for all samples except for 571 samples from the GUSTO/S-PRESTO birth cohort, which were 
sequenced at 30×. Four samples failed to be sequenced. For the remaining samples, we aligned 
read pairs to human reference genome GRCh37 using BWA-MEM (v 0.7.12; -M).54 PCR 
duplicates were removed with samblaster (v 0.1.22).55 We sorted and merged aligned read pairs 
from different sequencing lanes using SAMtools (version 1.3),56 followed by base quality 
recalibration using BamUtil recab (v 1.0.13; --maxBaseQual 40). Finally, BAM files were 
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converted to CRAM files with 8 bins of base quality by BamUtil (v 1.0.14; --binQualS 
0:2,3:3,4:4,5:5,6:6,7:10,13:20,23:30). After excluding unmapped reads and PCR duplicates, the 
mean sequencing depth is 13.7× across 4,849 samples targeted at 15×.  
 
Quality controls before genotype calling. We inferred ancestry, sex, and contamination rate for 
each sample based on sequencing reads. Ancestry estimation was based on the LASER 
software,28,29 with reference panels from the HGDP dataset26  and the SGVP dataset.21 The HGDP 
dataset consists of genotypes across 632,958 autosomal SNPs (Illumina 650K array) for 938 
individuals from 53 diverse populations worldwide. The SGVP dataset consists of genotypes 
across 1,285,226 autosomal SNPs (Illumina 1M and Affymetrix 6.0 arrays) for 96 SG Chinese, 89 
SG Malays, and 83 SG Indians. Both datasets were filtered by MAF>0.01. 

We first projected our samples into a worldwide ancestry space generated by the top four 
PCs of the HGDP data (Supplementary Figure 2A-B). Three outliers were found: two clustering 
with Europeans and one close to the Africans. We excluded these outliers and further projected the 
other samples on a Singapore ancestry map based on the SGVP data (Supplementary Figure 2C-
D). Given the missing data and potential errors in self-reported ethnicity, we re-assigned ethnicity 
to each sample using the ancestry coordinates on the SGVP map. As shown on Supplementary 
Figure 2C, the mean PC1 and PC2 coordinates of SGVP Chinese, Malays and Indians form a 
triangle with individuals from each ethnicity group cluster around one vertex. We divided the map 
into three sectors by the medians of the triangle, and assigned ethnicity labels to our study samples 
based on the sectors they were projected to (Supplementary Figure 2D). After removing 36 
highly contaminated samples, we labeled 2,780 Chinese, 903 Malays, and 1,127 Indians. The 
overall concordance rate between our inferred ethnicity and self-reported ethnicity is 96.7% 
(Supplementary Table 2). 

We inferred sex of each sample based on the ratio of sequencing depths between 
chromosome X and autosomes, denoted as X/A ratio. Males are expected to have X/A ratio equal 
to 0.5 and females are expected to have X/A ratio equal to 1. For each sample, we computed the 
sequencing depth per chromosome using SAMtools,56 discarding reads with mapping quality <20 
or base quality <20. Samples with a X/A ratio smaller than 0.75 were inferred as males, while the 
rest were inferred as females (Supplementary Figure 3). In total, we inferred 2462 females 
(51.2%) and 2,348 males (48.8%). The mismatch rate in comparison to self-reported sex is 0.76% 
(Supplementary Table 3). 

We used VerifyBamID (v 1.1.2; --precise –maxDepth 100 –minMapQ 20 –minQ 20 –
maxQ 100) to assess the level of DNA contamination for each sample by comparing sequence 
reads to the allele frequencies of the inferred ethnicity group (Chinese, Malay, or Indian), which 
were computed using the SGVP data.27 36 samples with an estimated contamination rate α>0.05 
were removed (Supplementary Figure 4A).  
 
Genotype calling, phasing, and annotation. We performed variant detection and joint genotype 
calling using the GotCloud pipeline.30 We used the version that was used to produce the freeze 3 
variant call set for the TOPMed Program (see URLs), adjusting for sample contamination rates. 
The initial call set consists of 107,293,300 single nucleotide polymorphisms (SNPs) and 
15,518,308 insertions and deletions (INDELs) on autosomes, and 4,568,579 SNPs and 686,037 
INDELs on X chromosome. Multi-allelic variants were coded as multiple bi-allelic variants. A 
support vector machine (SVM) classifier was used to filter low-quality variants. We trained the 
SVM model for autosomes using variants on chromosome 1. Positive labels were defined as 
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known variants genotyped by the 1000 Genomes Project on Illumina Omni2.5M array and 
negative labels were defined as variants that failed in >2 of the six hard filters on variant features 
(ABE>0.7, |STZ|>5, IBC<-0.1, IOR>2, CYZ<-5, QUAL<5). Definition of the variant features can 
be found on the TOPMed pipeline website. For the X chromosome, we excluded the feature of 
inbreeding coefficient (IBC) from the SVM model and trained the model using X chromosome 
variants. The SVM filter removed 5,097,496 SNPs (Ts/Tv=1.04) and 4,307,458 INDELs on 
autosomes and 213,308 SNPs (Ts/Tv=1.00) and 174,871 INDELs on X chromosome. Following 
SVM, we further filtered variants with excessive heterozygosity (EXHET), defined as sites with a 
Hardy-Weinberg Equilibrium (HWE) p value <10-6 in the direction of excessive heterozygosity. 
The EXHET filter removed 620,625 SNPs (Ts/Tv=1.03) and 455,285 INDELs on autosomes and 
22,973 SNPs (Ts/Tv=0.86) and 18,802 INDELs on X chromosome. The low Ts/Tv ratios of the 
excluded SNPs suggest the effectiveness of both the SVM filter and the EXHET filter. 
 To improve genotyping accuracy, we used the BEAGLE software (version 4.1), which 
took genotype likelihoods as inputs, to perform LD-based genotype refinement.57 To speed up 
computation, we ran BEAGLE in parallel by splitting each chromosome into chunks of 10,000 
variants with an overlap of 1,000 variants between neighboring chunks. Splitting and merging 
were performed using the splitvcf.jar and mergevcf.jar programs in BEAGLE Utilities. Low 
quality variants with dosage R2≤0.3 by BEAGLE were filtered, including 7,314,083 SNPs 
(Ts/Tv=1.89) and 887,099 INDELs on autosomes and 36,112 SNPs (Ts/Tv=1.55) and 19,201 
INDELs on X chromosome. 
 The genotypes from BEAGLE were used to identify cryptic relatedness and duplicated 
samples (see next section). Based on the inferred trios/duos and the identified MZ/duplicate pairs, 
we calculated the total Mendelian and duplicate discordances (DISC) for each variant using 
PLINK (version 1.9).58 We further filtered variants with DISC>2, including 582,277 SNPs 
(Ts/Tv=0.96) and 509,361 INDELs on autosomes and 30,936 SNPs (Ts/Tv=1.07) and 37,566 
INDELs on X chromosome. 

We performed population-based haplotype phasing of all 5,381 samples using the default 
settings of EAGLE (version 2.3.5).33 For X chromosome, we first set the heterozygous calls in 
non-pseudo-autosomal region (non-PAR) for males to missing and then phased all samples 
together. After phasing, we removed 571 samples from the GUSTO/S-PRESTO birth cohort due 
to no consent for data release. We also removed 8,290,266 variants that are monomorphic in the 
remaining samples, including 1,015,402 variants on X chromosome. Proportionally, many more X 
chromosome variants were removed due to the extra step to set non-PAR heterozygotes to missing 
before phasing. The final SG10K call set consists of phased haplotypes from 4,810 WGS samples, 
covering 98,273,706 variants (SNPs and INDELs) from 22 autosomes and the X chromosome. 
Across 22 autosomes, we have 84,725,366 bi-allelic SNPs (Ts/Tv=2.07), 1,112,853 tri-allelic 
SNPs, 14,669 quad-allelic SNPs, 3,059,717 insertions and 5,708,237 deletions. On X chromosome, 
there are 3,275,181 bi-allelic SNPs (Ts/Tv=1.97), 31,853 tri-allelic SNPs, 364 quad-allelic SNPs, 
124,180 insertions and 221,286 deletions.  

We annotated variants in our final call set using the Ensembl Variant Effect Predictor 
(VEP) and the corresponding VEP-compiled annotation database (version 91_GRCh37).59 
Because VEP only annotates deleterious effects predicted by Polyphen36 and SIFT37 for SNPs, we 
separately annotated INDELs using the SIFT web server.38  
 
Genetic relatedness and inbreeding coefficient. Based on genotypes from BEAGLE, we used 
PC-Relate31 to estimate both kinship coefficient φ and the probability that two individuals share 
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zero identical by descent (IBD, π0).31 We focused on the common SNPs (MAF>0.05) overlapping 
with the SGVP dataset. We aggressively pruned the SNPs to be a least 100 kb apart from each 
other, resulting in 25,568 SNPs left, in order to accommodate the memory limitation for running 
PC-Relate on such a large number of samples. We also applied the SEEKIN software (using GT 
mode and SGVP as reference) to estimate kinship coefficients without pruning SNPs, and 
obtained similar results.60 We classified as k-degree related pairs if 2-k-1.5< φ< 2-k-0.5.61 Zero degree 
means monozygotic twins (MZ) or duplicates. First degree related pairs were further split into 
parent-offspring (PO) if π0<0.1 and full-sibling (FS) if π0>0.1. We treated pairs above 3rd degree 
as unrelated. We used the PRIMUS software to identify duos and trios using the estimated φ and 
π0 between pairs of individuals, as well as age and sex for each individual.32 To identify a 
maximum number of unrelated individuals, we first listed all related pairs, and then removed 
individuals sequentially from the one that appeared most frequently in the list. Once an individual 
was removed, the corresponding related pairs were also removed from the list. This procedure 
iterated until no related pairs remained in the list. The inbreeding coefficient for each sample was 
estimated as (2φii-1), where φii is the self-kinship coefficient for sample i output by PC-Relate.31,60 
 
Evaluation of genotyping accuracy and sensitivity. We have 1,263 samples from the SERI 
cohort that were previously genotyped by Illumina Quad610 arrays.34 We used the array data 
across 40,048 SNPs on chromosome 2 to evaluate the quality of our call set. By treating the array 
data as gold standard, we estimated the sensitivity, non-reference sensitivity, precision, overall 
genotype concordance, heterozygote concordance, and non-reference concordance of our call 
set.62 Sensitivity is defined as the fraction of polymorphic sites in the array data that were also in 
the final SG10K call set with both alleles matched. Heterozygote concordance rate is defined as 
the proportion of concordant genotypes across heterozygous sites in the array data. Definitions of 
the other four statistics are described in detail by Linderman et al. (2014)62 and are briefly 
mentioned in the footnote of Table 1. In addition, we designed a novel approach to estimate the 
sensitivity for detecting rare variants. For all 4,810 samples, we counted the number of non-
reference variants with MAF<0.001 and with MAF>0.001 in each sample. We fitted the number 
of non-reference variants per sample as a linear function of the sequencing depth for each 
population. The linear model enabled us to estimate the non-reference sensitivity in our call set by 
assuming 25× WGS achieved 0.99 non-reference sensitivity for detecting variants with 
MAF<0.001.24 We reported the Pearson’s correlation r between the number of non-reference 
variants and the sequencing depth per sample, and tested the null hypothesis of r=0 using the 
Student’s t test.  
 
Principal component analysis, ADMIXTURE, FST, and heterozygosity. We merged our 
SG10K dataset with the 1KG3 dataset5 by extracting 26,748,762 bi-allelic autosomal SNPs called 
in both datasets, excluding SNPs within five base pairs (bps) of INDELs. We then removed LD by 
thinning the SNPs to at least 2kb apart using PLINK,58 resulting in 1,260,657 SNPs. We 
investigated population structure using PCA,29 ADMIXTURE analysis,43 and the FST and He 
statistics.63  

To avoid the undesirable impacts of oversampling certain populations,42 we randomly 
selected 100 unrelated individuals from each Singapore population and combined with the 1KG3 
dataset for PCA. The remaining SG10K samples were projected into the PCA map using 
LASER.29 Analyses were based on 270,909 SNPs with MAF>0.05 in the combined dataset. 
Similarly, in the analyses of East/Southeast Asians (100 SG Chinese, 100 SG Malays, and 1KG3 
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East Asians), South Asians (100 SG Indians and 1KG3 South Asians), and Singaporeans (4,446 
unrelated SG10K individuals), we filtered SNPs with MAF<0.05 in the corresponding datasets. 
Based on the first two PCs of East/Southeast Asian analysis and South Asian analysis, we used 
SVM classifiers to classify SG Chinese and SG Indians into northern and southern groups. The 
SVM classifiers were trained using CHB and CHS for classifying northern and southern Chinese, 
and using PJL and STU for classifying northern and southern Indians. 
 We ran the unsupervised ADMIXTURE analyses on the same set of SNPs as PCA, with 
the number of ancestral components K from 5 to 15 for the dataset combined with 1KG3 and from 
2 to 10 for SG10K dataset alone. For each K, we repeated the analysis at least 7 times with 
different random seeds and picked the one with the highest likelihood to avoid local minimum. 
We used the five-fold cross-validation approach in ADMIXTURE to select the optimal K. 
 We calculated genome-wide FST between pairs of populations using the Weir-Cockerham 
estimator.63 Hierarchical clustering was applied on the FST matrix using the complete-linkage 
method implemented in the hclust function in R. 
 Heterozygosity for each Asian population was calculated by 𝐻! =

!
!

2𝑝!(1− 𝑝!)!
!!! , 

in which pm is the population-specific allele frequency for the mth SNP, and M=237,000 is the 
number of post-QC SNPs with MAF>0.05 in the combined SG10K and 1KG3 Asian dataset.  
 
Imputation experiments. We evaluated imputation accuracy both in three Singapore populations 
from the SGVP dataset, and in 53 worldwide populations from the HGDP dataset. We extracted 
46,338 bi-allelic SNPs on chromosome 2, which had consistent alleles in SGVP, HGDP and 1KG3 
datasets.5 We then masked genotypes of 4,633 SNPs (1 out of every 10 SNPs sorted by position). 
The masked genotypes were saved for evaluation of imputation accuracy.  
 We prepared four imputation reference panels for comparison: 1KG3, SG10K, and two 
combined panels that merge 1KG3 and SG10K datasets. For the 1KG3 panel, we used BCFtools 
to normalize INDELs, split multi-allelic variants into multiple bi-allelic variants, and removed 
duplicated variants and extremely rare variants (minor allele count, MAC<5), resulting in a panel 
of 2,650,510 variants and 5,008 haplotypes (chromosome 2 only). For the SG10K panel, we took 
the phased data of 4,446 unrelated samples and removed variants with MAC<5, leading to a panel 
of 2,340,867 variants and 8,892 haplotypes. The number of variants in both 1KG3 and SG10K 
panels is 1,233,346, indicating a substantial loss of variants if merging by intersection. Instead, we 
explored two alternative strategies to merge 1KG3 and SG10K to their union set of variants. The 
first strategy is the reciprocal imputation approach,47 in which we used Minimac3 to impute 1KG3 
to SG10K and SG10K to 1KG3 respectively,7 and then merged the two imputed datasets to form a 
combined panel (Combined-A). The second strategy is a naïve imputation approach by simply 
imputing missing data as reference homozygotes using BCFtools, and the combined panel is 
labelled as Combined-B. After removing 10,111 INDELs that have incompatible allele 
representations in 1KG3 and SG10K, both combined panels have 3,747,920 variants and 13,900 
haplotypes. 
 Given a reference panel, we pre-phased each populations from HGDP and SGVP using 
reference-based phasing algorithm in EAGLE2,33 followed by imputation using Minimac4.7 
Imputation error rate was computed for each population as the genotype discordance rate of the 
4,633 masked SNPs. In addition, for each of the three SGVP populations, we compared the Rsq 
statistic for imputed variants in different MAF bins (MAF: 0.005-0.01, 0.01-0.05, 0.05-0.2, and 
0.2-0.5).46 We did not compare the Rsq statistic for HGDP populations because Rsq cannot be 
estimated accurately when the sample size of the target population is small. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 11, 2018. ; https://doi.org/10.1101/390070doi: bioRxiv preprint 

https://doi.org/10.1101/390070
http://creativecommons.org/licenses/by-nc/4.0/


	 16	

 
Acknowledgements 
 
We would like to thank Hyun Ming Kang, Sayantan Das, Adrian Tan, and Fan Zhang at the 
University of Michigan and Po-Ru Loh at the Harvard University for helpful discussions. We 
would also like to acknowledge supports from all the participants and cohort clinical research 
coordinators. This study was supported by Singapore’s Agency for Science, Technology and 
Research (Core Funding and Industry Alignment Fund H17/01/a0/007), Biomedical Research 
Council (Strategic Positioning Fund SPF2014/001), National Medical Research Council 
(CIRG/1371/2013, CIRG/1417/2015, CIRG/1488/2018, CSA-SI/0012/2017, CG/017/2013, 
CG/M006/2017_NHCS, NMRC/TCR/013-NNI/2014, STaR/0011/2012, STaR2013/001, 
STaR/0026/2015, NMRC/TCR/006-NUHS/2013; Centre Grants 2010-13 and 2013-2017), 
National Research Foundation (NRF-NRFF2016-03), Core Funding from National University of 
Singapore, SingHealth and Duke-NUS, Alexandra Health Small Innovative Grant (SIGII/15203), 
and funding from Tanoto Foundation, Lee Foundation, Boston Scientific Investigator Sponsored 
Research Program and Bayer. The data management and analysis of the study was also supported 
by the National Super Computing Center, Singapore. 
 
 
Web Resources 
 
TOPMed calling pipeline, https://github.com/statgen/topmed_freeze3_calling 
BamUtil, https://genome.sph.umich.edu/wiki/BamUtil  
PC-Relate, https://www.rdocumentation.org/packages/GENESIS/versions/2.2.2/topics/pcrelate  
PRIMUS, https://primus.gs.washington.edu/primusweb/  
SEEKIN, https://github.com/chaolongwang/SEEKIN/ 
LASER, http://csg.sph.umich.edu/chaolong/LASER/ 
BEAGLE, https://faculty.washington.edu/browning/beagle/beagle.html 
ADMIXTURE, http://www.genetics.ucla.edu/software/admixture/  
BCFtools, https://samtools.github.io/bcftools/bcftools.html 
SIFT web server, http://sift.bii.a-star.edu.sg/ 
Variant Effect Predictor, https://asia.ensembl.org/info/docs/tools/vep/index.html 
1000 Genomes Project, http://www.internationalgenome.org/ 
Singapore Genome Variation Project, http://phg.nus.edu.sg/#sgvp  
Human Genome Diversity Project, http://www.hagsc.org/hgdp/   
gnomAD: https://macarthurlab.org/2017/02/27/the-genome-aggregation-database-gnomad/ 
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Tables 
 
Table 1. Evaluation of final SG10K call set based on array genotyping data of 1,263 samples on 
chromosome 2. 
 

 Minor allele frequency (MAF) bins 
0.01-0.05 0.05-0.2 0.2-0.5 All 

Number of SNPs on array 1,070 13,208 25,770 40,048 
Sensitivity 0.9981 0.9990 0.9973 0.9979 
Non-reference sensitivity 0.9991 0.9996 0.9997 0.9997 
Precision 0.9976 0.9984 0.9981 0.9982 
Overall concordance 0.9995 0.9996 0.9994 0.9995 
Heterozygote concordance 0.9973 0.9990 0.9992 0.9992 
Non-reference concordance 0.9979 0.9992 0.9993 0.9993 

Definitions: sensitivity, fraction of polymorphic sites in the array data that were also in the 
sequencing call set with both alleles matched; non-reference sensitivity, fraction of non-reference 
genotypes in array data that are also called as non-reference genotypes in sequencing data; 
precision, fraction of concordant genotypes across non-reference sites in the sequencing call set; 
overall/heterozygote/non-reference concordance, fraction of concordant genotypes across 
all/heterozygous/non-reference sites in array data. 
 
 
 
Table 2. Estimated sensitivity to detect variants with minor allele frequency below and above 
0.001 in the SG10K call set for different ethnicity groups. 
 

  SG Chinese SG Malay SG Indian 

MAF<0.001 
Variants per sample at 13.7× 1.145×105 1.251×105 1.369×105 
Variants per sample at 25× 1.215×105 1.343×105 1.525×105 
Non-reference sensitivity 0.9329 0.9225 0.8887 

MAF>0.001 
Variants per sample at 13.7× 3.553×106 3.593×106 3.653×106 
Variants per sample at 25× 3.566×106 3.597×106 3.665×106 
Non-reference sensitivity 0.9963 0.9989 0.9968 

The numbers of variants per sample were estimated using the fitted linear models in Figure 2. 
Non-reference sensitivity was estimated as the ratio between the numbers of variants at 13.7× and 
25×, assuming that 25× WGS is sufficient to detect 99% of the variants with MAF<0.001 and all 
of the variants with MAF>0.001. 
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Table 3. The median number of autosomal variant per genome in Singapore populations.  
 
 
 

Singapore Chinese 
N=1,267, depth=13.7× 

Singapore Malay 
N=454, depth=13.8× 

Singapore Indian 
N=814, depth=13.6× 

Variant annotation Variants Het/Hom Variants Het/Hom Variants Het/Hom 
SNP 3,308,882 1.43 3,346,583 1.51 3,406,391 1.73 
Insertion 103,206 1.50 106,398 1.61 116,305 1.91 
Deletion 158,864 1.85 162,288 1.98 170,818 2.33 
SNP not in dbSNP150 27,635 12.52 30,155 13.55 30,263 14.02 
Insertion not in dbSNP150 6,527 23.16 7,089 24.49 8,928 25.53 
Deletion not in dbSNP150 6,059 25.55 6,478 26.08 8,058 25.79 
Synonymous 11,675 1.45 11,844 1.55 12,077 1.78 
Missense 11,509 1.51 11,666 1.60 11,911 1.81 
Exon 127,268 1.46 128,961 1.56 131,579 1.78 
Intron 1,859,670 1.46 1,884,753 1.55 1,925,723 1.77 
UTR 53,751 1.46 54,418 1.55 55,564 1.79 
TFBS 4,911 1.61 4,995 1.72 5,141 1.99 
SIFT: Deleterious 1,672 2.81 1,697 3.00 1,715 3.48 
Polyphen: Probably damaging 877 3.34 896 3.56 902 4.15 
Polyphen: Possibly damaging 1,150 2.92 1,165 3.04 1,182 3.52 
ClinVar: Pathogenic 30 2.33 31 2.67 33 3.38 
ClinVar: Association 46 1.80 45 2.14 43 2.28 
ClinVar: Risk factor 82 1.45 82 1.61 82 1.89 
Only healthy individuals without any known major diseases were included in this analysis. 
Abbreviations: UTR, untranslated region; TFBS, transcription factor binding site; Het/Hom, ratio 
of number of heterozygotes to non-reference homozygotes. Annotations were from the Variant 
Effect Predictor (VEP-v91). For ClinVar annotations, “pathogenic” variants are those interpreted 
for Mendelian disorders by the American College of Medical Genetics and Genomics and the 
Association for Molecular Pathology (ACMG/AMP); “association” variants are those identified 
by GWASs and further interpreted for their clinical significance; “risk factor” variants are those 
interpreted not to cause a disorder but to increase the disease risk. 
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Figures 
 

 
 
Figure 1. Quality evaluation of the SG10K call set. (A) Heterozygote discordance rate versus 
sequencing depth for 1,263 samples that have array genotyping data. Discordance rate was 
computed based on 39,964 SNPs on chromosome 2 that were in both sequencing call set and array 
data set. (B) Number of variants detected in each sample as a function of sequencing depth. In 
each of subpanels of (B), outliers more than 5 standard deviations from the mean sequencing 
depth (x-axis) or the mean number of variants (y-axis) were removed and not shown. A linear 
model (orange line and text) was fitted based on the remaining samples. The p value was derived 
from the Student’s t test against the null hypothesis of Pearson correlation r=0. Results without 
removing outliers are shown in Supplementary Figure 6. 
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Figure 2. Population structure of SG10K and 1KG3 samples. (A) PCA of the SG10K and 
1KG3 data. Proportion of variance explained by each PC is indicated in the axis label. (B) 
ADMIXTURE analysis of the SG10K and 1KG3 data (K=10). Each colored bar represents one 
individual and the length of each colored segment represents admixture proportion of an ancestral 
component. 100 unrelated individuals from each Singapore population were included in the 
analyses of (A) and (B). (C) ADMIXTURE analysis of 4,446 unrelated individuals from SG10K 
(K=3 and K=7). (D) ADMIXTURE analysis of 4,446 unrelated SG10K individuals together with 
South Asians and East Asians from 1KG3 (K=9). (E) Geographic distribution of the nine ancestry 
components in (D). Each pie chart represents the ancestry proportions averaged across individuals 
from the same population. Heterozygosity for each population was shown in the parentheses. 
Populations in 1KG3: ACB, African Caribbean; ASW, African American; ESN, Esan; GWD, 
Gambian; LWK, Luhya; MSL, Mende; YRI, Yoruba; CLM, Colombian; MXL, Mexican; PEL, 
Peruvian; PUR, Puerto Rican; CEU, Northern and Western European; FIN, Finnish; GBR, British; 
IBS, Iberian; TSI, Toscani; BEB, Bengali; GIH, Gujarati; ITU, Telugu; PJL, Punjabi; STU, Sri 
Lankan Tamil; CDX, Chinese Dai; CHB, Han Chinese in Beijing; CHS, Southern Han Chinese; 
JPT, Japanese; KHV, Kinh. 
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Figure 3. Imputation accuracy in 56 worldwide populations using different reference panels. 
Four panels were evaluated: 1KG3; SG10K; Combined-A, a merged panel of 1KG3 and SG10K 
using the reciprocal imputation approach; Combined-B, a merged panel of 1KG3 and SG10K 
using the naïve reference imputation approach. Imputation error rate was calculated by comparing 
to the masked genotypes of 4633 SNPs on chromosome 2. (A-C) Imputation error rate using 
SG10K, Combined-A and Combined-B panels (x-axis) versus error rate using the 1KG3 panel (y-
axis). The red inserted boxes are zoom-in plots of the left-bottom corners. (D-F) Fold change (log2 
scale, log2FC) of imputation error rates for non-African populations using SG10K, Combined-A, 
and Combined-B panels compared to using the 1KG3 panel. 
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Figure 4. Imputation Rsq in three Singapore populations using different reference panels. 
The same four reference panels were compared as in Figure 3. We evaluated imputation accuracy 
on chromosome 2 using the Rsq metric calculated for each population from the SGVP dataset. (A-
C) Box plots of Rsq values for imputed variants in different MAF bins for each population. 
Outliers more than 1.5 times of the interquartile range (marked by whiskers) are not shown. (D-F) 
Number of high-quality (Rsq>0.8) imputed variants in different MAF bins for each population. 
Different reference panels are coded by colors shown in the legend in (D). 
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