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Abstract 

The goal of this study is to demonstrate how one can compute the activating function and 

surface charge density resulting from application of an external electric field to a high-

resolution realistic neuronal morphology. We use the boundary element fast multipole 

method (BEM-FMM) on an ordinary computer to accurately perform these computations in 

under 2-10 minutes for a dense surface mesh of a single neuron with approximately 1.4 

million triangles. Prior work used commercial finite element method (FEM) software which 

required creation of a volumetric tetrahedral mesh between fine neuronal arbor, potentially 

resulting in prohibitively large volume sizes and long mesh generation times. We used the 

example of a human pyramidal neuron with an externally applied E-field to show how our 

approach can quickly and accurately compute the induced surface charge density on the cell 

surface and the activating function of the cable equation. We found that the induced surface 

charge density perturbs the macroscopically applied E-field on a microscopic spatial scale. 

The strength of the perturbation depends on the conductivity contrast; the stronger the 

contrast, the larger the perturbation. In our example, the induced surface charge density may 

change the average activating function by up to 75%.  We also embedded this neuron model 

into a detailed macroscopic human head model and simulated a realistic TMS excitation using 

the BEM-FMM method for the combined model. The solution obtained in this case predicted 

a smaller activating function error. The difference between the microscopic and the 

macroscopic effect of the externally applied electric field is of much interest to users of 

extracellular stimulation techniques and merits further study. 
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1. Introduction 
Neuronal activity in the cortex can be modulated using 

many possible techniques such as transcranial magnetic 

stimulation (TMS), transcranial electric stimulation (TES), 

and intracortical microstimulation (ICMS). The effectiveness 

of any given method depends on which neuron populations are 

modulated by the stimulation given specific spatial and 

temporal parameters [1],[2]. Computational models can be 

used to better understand how a given neuron experiences the 

externally applied electric field as a function of its 

morphology, location and orientation.  

 

There are many recent computational studies that simulate 

electrical stimulation of multicompartment neuron models 

with realistic morphologies. Seo et al. [3] modeled cortical 

pyramidal neurons with the activating function derived from 

an external TMS field, which was obtained based on an 

individual macroscopic head model. Goodwin & Butson [4] 

also modeled cortical neurons subject to an external TMS 

field. The subject-specific external TMS field was computed 

using realistic head and coil models and then applied to each 

neuron model to simulate its response based on the cable 

equation. Similarly, Aberra et al. [5] modeled cortical neurons 

with a detailed morphology subjected to an externally applied 

E-field which was projected onto the curved axonal and 

dendritic compartments of the neuron. 

 

These recent efforts use the “hybrid FEM cable-equation 

approach” (see Joucla et al. [6] for a review). First, they 

accurately compute the external macroscopic electric 

field/potential at the neuron position using the finite element 

method (FEM) (or an analytical equation). Then, this 

computed field is directly applied to a neuronal morphology, 

described by a number of one-dimensional straight segments 

in space. This gives us a local activating function for the one-

dimensional cable equation along the length of the neuron 

solved in NEURON software [7]. The activating function is 

proportional to the second spatial derivative of the 

extracellular electric field along the length of the neuron [8]. 

 

It is however known that the externally applied electric 

field will cause induced charges to reside on any physical 

interface (neuron membrane) separating two media with 

different conductivities. These charges will generate their own 

secondary field and electric potential, which will perturb the 

macroscopically applied electric field and may even affect the 

estimates of the above approach on a microscopic scale. It is 

therefore important to understand when the assumption of an 

unperturbed externally applied macroscopic stimulation field 

close to the neuron is applicable. In [9], the authors suggest 

that “this additional polarization typically has negligible 

amplitude and does not affect computational models.” Given 

the importance of this effect to users of extracellular 

stimulation technologies, this statement may need to be tested 

in realistic neuron models. 

 

One challenge is that it is difficult to model detailed cortical 

neuron morphologies using FEM. Each neuronal compartment 

must be represented as a thin tubular surface comprised of a 

triangular or quadrilateral mesh with at least one shell. 

Creating a volumetric tetrahedral or hexahedral mesh between 

many curved thin branches of the neuronal arbor is a difficult 

technical task which may result in prohibitively large 

volumetric mesh generation times and extremely large 

volumetric mesh sizes. This is perhaps why many of the 

related prior FEM modeling efforts ([10],[11],[6]) are 

restricted to a smaller number of straight cylinders (either 

joined or not) within the COMSOL environment, a general-

purpose commercial finite element software with a relatively 

low speed.  

 

In this study, we show how one can compute an external 

electric field for a realistic neuron with dense morphology 

efficiently using an alternative dedicated numerical approach, 

the boundary element fast multipole method (BEM-FMM) 

[12]. This method is fully compatible with the MATLAB® 

environment (Mathworks, Natick, MA). It is based on the 

surface-charge formulation of the BEM equations 

[13],[14],[15] and involves accurate computations of neighbor 

surface integrals [13] using an efficient FMMLIB3 library of 

a precompiled fast multipole method developed by Drs. 

Greengard and Gimbutas [16]. We have already applied the 

BEM-FMM method to TMS [12] and EEG/MEG related 

problems. 

 

Here, we first considered the simple case of a single human 

pyramidal neuron in a homogeneous extracellular volume 

subjected to a constant external electric field. Our 

computations were based on the “hole model” (see 

[17],[18],[19]) which involves computing around the cell by 

modeling the intracellular space as a nonconducting region. 

Effectively, the intracellular conductivity equals zero, which 

allows computation of a steady state distribution, that 

accurately accounts for the cell presence effects on the field 

[17],[18],[19]. Along with the precise hole model, we also 

tested some intermediate finite values of the intracellular 

conductivity and the corresponding conductivity contrast. 

This was done to highlight the method convergence, better 

understand the results, and establish a bridge to the coupled 

dynamic neuron-field model which indeed uses finite 

interacellular conductivity values.  

 

Our results suggest that the externally induced membrane 

charges may change the one-dimensional averaged activating 

function by up to 75% in contrast to the effect size suggested 

by the approaches used in the prior work cited above. 
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Finally, the detailed Computer Aided Design (CAD) 

neuron model with 1.4 M facets was embedded into the 

macroscopic CAD head model with 2.8 M facets (specifically, 

into a cortical sulcus). We assumed that the neuron was simply 

an extra brain compartment and, using the BEM-FMM 

method, ran coupled realistic multiscale TMS simulations for 

the head and the neuron as one single boundary element 

problem, without using any extra simplifications. 

 

2. Materials and Methods 

2.1. Neuron morphology 
We used a digital morphological reconstruction of a human 

neocortical pyramidal neuron H16-03-001-01-09-

01_559391771_m, ID NMO_86955 from the 

NeuroMorpho.Org inventory Version 7.5 [20]. The specific 

reconstruction contained a total of 81 segments: 23 axonal 

branches, 40 dendritic branches, 18 apical dendrite branches, 

and a (spherical, 6.3 µm radius) soma. The total number of 

individual straight geometrical segments or edges included in 

the morphology file was 9237 and the total number of nodal 

points was 9318. The neuron length was about 900 µm. 

 

2.2. CAD neuron model 
We developed an algorithm to create a high-quality strictly 

2-manifold or watertight “tubular” triangular mesh of arbitrary 

resolution around an arbitrary-bent single fiber path. The 

implementation was in MATLAB® (Mathworks, Natick, 

MA). The algorithm also creates a start and an end cap for the 

tubular mesh. We applied this algorithm to every segment of 

the neuron. Further, using Autodesk Meshmixer software 

(Autodesk, San Rafael, CA), the meshed segments were semi-

manually interconnected to each other and to the soma so as 

to create single mesh surface. Finally, we applied a surface-

preserving Laplacian smoothing process [21] to the final 

mesh. Fig. 1 shows the resulting high-quality triangular 

surface mesh. The mesh had 1.4 M triangles with the average 

mesh quality (defined as twice the ratio of incircle radius to 

the circumcircle radius of a triangle) of 0.64. 

 

2.3. Boundary element fast multipole method  
We used the fast multipole method or FMM introduced by 

Rokhlin [22] and Greengard and Rokhlin [23]. Conceptually, 

FMM is somewhat similar to the fast Fourier transform but 

developed for a complicated 3D morphology. It can speed up 

computation of a matrix-vector product by many orders of 

magnitude. The matrix-vector product naturally appears when 

the field from many point sources in space has to be computed 

at many observation points. This is exactly the task of the 

boundary element method or BEM. Makarov et al. recently 

developed an integration of the BEM and FMM for quasistatic 

electromagnetic computations [12] in an effort improve the 

BEM performance. The BEM-FMM method overcomes the 

major disadvantage of the BEM which is the inability to solve 

large high-resolution models, using a fast iterative algorithm 

and without system matrix storage. At the same time, the 

major advantage of the BEM – superior accuracy close to the 

boundaries and in the surounding space – is retained. 

 

Specifically, we used the efficient precompiled FMMLIB3 

library of the fast multipole method developed by Drs. 

Greengard and Gimbutas [16]. This library is fully compatible 

with the MATLAB environment (both Windows and Linux) 

and has already demonstrated excellent performance for TMS 

[12] and EEG/MEG related problems. We also used a native 

MATLAB generalized minimum residual (GMRES) iterative 

algorithm written by Drs. P. Quillen and Z. Hoffnung of 

MathWorks, Inc. 

 

Fig. 2 shows the BEM-FMM algorithm workflow used in 

this work. The fast multipole method was applied three times: 

(i) for computing the primary fields (electric or magnetic or 

the corresponding potential(s)) at all conductivity boundaries 

and in space, (ii) for solving the BEM equation iteratively and 

in a matrix-free form, and (iii) for computing the secondary 

and the total electric and magnetic fields. 

 

The major modification compared to our prior work [12] is 

that we accurately computed the primary and secondary 

electric potential with the fast multipole method. We also 

employed the generalized minimum residual method for the 

iterative solution itself. This method significantly reduces 

computational time. Finally, we explicitly enforced the charge 

conservation law, which is a must for accurate high-resolution 

computations of the electric potential.  

 

Numerical routines that generated results of this study 

along with the neuron CAD model have been organized in the 

form of a self-consistent code which utilizes the widely 

accessible MATLAB platform for both Windows and Linux. 

This code will be made available through MATLAB Central. 

 

2.4. Externally Applied E-field 
In its simplest form, the externally applied electric source 

field, 𝑬𝑝(𝒓), is constant and is directed along the neuron 

pointing toward the axon,  

 

                        𝑬𝑝(𝒓) = [0 0 1]  V/m                            (1)  

 

We assumed a value of 1 V/m for the E-field; since all 

results of extracellular computations given below are linear, 

they can be trivially scaled for different E-field strengths. 

 

2.5. Material parameters 
There are only two parameters for the present single-shell 

steady state neuronal model: the extracellular conductivity and 
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the intracellular conductivity. Following Refs. [24],[17] , we 

assigned the conductivity values around the numbers: 𝜎𝑒 =

20 mS/m for the extracellular space and 𝜎𝑖 = 5 mS/m for the 

intracellular space. We varied 𝜎𝑒 and 𝜎𝑖 according to Table 1 

given below. This is done to investigate the effect of the 

conductivity contrast, Σ =
𝜎𝑒−𝜎𝑖

𝜎𝑒+𝜎𝑖
, on the solution and the 

activating function, which will be an important result of this 

study. 

 

3. Results  

3.1. Method convergence and speed 
Table 1 reports method convergence (the maximum 

relative residual of the BEM system of equations is fixed at 

1e-6) for four different values of the conductivity contrast, 

Σ = 0.6, 0.8, 0.94, and 1.00. The convergence rate was 

promising, but it  also showed a slow-down for larger contrast 

values. The solution run times are given for an Intel Xeon E5-

2698 v4 CPU (2.20 GHz) Windows Server and for 

MATLAB® 8.2 platform. Similar results have been obtained 

for the maximum relative residual of 1e-9 and for the 

intermediate values of the residual. We also computed the 

relative least squares error of the iterative solution for the 

surface charge density itself. We found that, at the end of the 

iteration process, this error did not exceed 1e-6 – 1e-7. All 

computations in this study were performed using a single 

processor. 

 

3.2. Induced charge density on the membrane surface 

and additional extracellular potential 
Fig. 3 shows the induced charge density in C/m2 due to the 

external applied electric field (Eq. 1) on the surface of the 

neuron. This charge density resides on the surface separating 

two media with different conductivities.  The results in Fig. 3a 

and Fig. 3b are given for the conductivity contrast Σ = 1.00 

and Σ = 0.60, respectively. In both cases, we found that the 

surface charge was distributed such that the electric field due 

to this surface charge tries to cancel the primary or external 

electric field inside the neuron compartments. We found that 

this dipole-like local distribution across the fiber was 

significantly stronger for the large conductivity contrast value 

(Fig. 3a) and less profound for the weaker conductivity 

contrast (Fig. 3b).  

 

The induced charge distribution gives rise to an extra 

electric potential that alters the extracellular potential values 

obtained directly from the primary field without the cell. This 

contribution was found to be rather small as compared to the 

primary potential for all three cases considered. Fig. 4 shows 

the induced or additional potential distribution in volts due to 

the external applied electric field (Eq. 1) exactly on the surface 

of the neuron. The results in Fig. 4a and Fig. 4b which again 

correspond to  Σ = 1.00 and Σ = 0.60, respectively. We note 

that the induced potential no longer has a dominant dipole-like 

distribution across the fiber; there is also significant variation 

along the fiber. 

 

3.3. Effect of induced charges and induced potential on 

total extracellular potential 
While the induced surface charge is not directly coupled to 

the cable equation, the extracellular potential is directly 

coupled. The one-dimensional neuron model based on the 

cable equation requires that the average value of the total 

extracellular potential 𝑉𝑖
𝑒 [25] be defined for every node 𝑖 of 

the centerline of every fiber in the neuron model. In order to 

do so, we (i) find all triangular facets 𝑗 which are closer to 

node 𝑖 than to any other node, (ii) compute the potential value 

𝑉𝑗
𝑖 for every such facet and (iii) average the results with the 

weights inversely proportional to the respective distances, 

 

        𝑉𝑖
𝑒 = ∑ 𝑉𝑗

𝑖 |𝒓𝑖 − 𝒓𝑗|⁄𝑁
𝑗=1 / ∑ 1 |𝒓𝑖 − 𝒓𝑗|⁄𝑁

𝑗=1            (2)  

 

This method works well for a mesh of nearly equilateral 

triangles, i.e. for the present model. If necessary, weighting by 

triangle areas can be added.  

 

Figs. 5 a, b demonstrate the distribution of the extracellular 

potential (Eq. 2) along dendrite #1. The x-axis is the distance 

along the dendrite. The blue curve is the primary extracellular 

potential, which was obtained without the charge density 

induced on the membrane surface and directly follows Eq. (1) 

after subsequent integration and projection onto the fiber path. 

Table 1. Convergence of the iterative BEM-FMM solution depending on the conductivity contrast. The maximum relative 

residual (the stopping criterion) is fixed at 1e-6 in every case. Time per one iteration is 9 sec. 

Setup # 𝜎𝑒 𝜎𝑖 

Dimensionless 

conductivity 

contrast Σ 

# of iterations 

needed to 

converge 

Solution run time, sec 

1 33 mS/m 
0 mS/m 

(precise hole model) 
1 76 684 

2 33 mS/m 1 mS/m 0.94 45 405 

3 18 mS/m 2 mS/m 0.80 20 180 

4 20 mS/m 5 mS/m 0.60 13 117 
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The red curve is the total extracellular potential, which takes 

into account the contribution of induced surface charges. The 

results in Fig. 5a and Fig. 5b are given for the conductivity 

contrast Σ = 1.00 and Σ = 0.60, respectively. 

 

In both figures, the difference between the two potential 

curves is quite small. However, we observe that the additional 

potential contribution attempts to significantly smooth the 

resulting potential curve and make it less jumpy. Those jumps 

are originally due to the complicated path shape of the dendrite 

itself. The smoothing effect is better seen in Fig. 5a; it is 

equivalent to reducing the second derivative of the 

corresponding potential function. We observed a similar 

smoothing effect for all other dendrites and axons. The effect 

was weaker for the lower conductivity contrast as Fig. 5b 

shows. 

  

3.4. Effect of induced charges and induced potential on 

activating function 
Although Figs. 5 a, b indicate only a small deviation for the 

potential itself, the result changes significantly when the 

second derivative of the extracellular potential is considered. 

To within a constant, this is exactly the activating function of 

the cable equation. The second derivative is proportional to 

the central difference, 𝐷, [26] given by 

 

              
𝑑2𝑉𝑒

𝑑𝑧2 =
𝐷

ℎ2 , 𝐷 = 𝑉𝑖+1
𝑒 − 2𝑉𝑖

𝑒 + 𝑉𝑖+1
𝑒    (3) 

 

where 𝑧 is the distance along the path. Figs. 5 c, d plot the 

central difference 𝐷 given by Eq. (3) in volts. We ignored the 

constant discretization step ℎ, which does not add significance 

to the result. The blue curve is the second extracellular 

potential derivative without the induced charges. The red 

curve is the second extracellular potential derivative, which 

takes into account the contribution of induced surface charges. 

The results in Fig. 5c and Fig. 5d are given for the conductivity 

contrast Σ = 1.00 and Σ = 0.60, respectively. The key 

observation is that the exact electrical solution makes the 

activating function significantly more smooth due to the effect 

of the induced charges. Indeed, this only happens for the large 

conductivity contrast at the membrane as in Fig. 5c.  

 

3.5. Activating function error 
Finally in this section, we present in Fig. 6 the least squares 

error in the activating function for all dendrites and axons of 

the neuron. This error is the relative difference between the 

solution without the induced charges and the solution with the 

induced charges. When the conductivity contrast is high as in 

Fig. 6a, the average error may be on the order of 75%. When 

the conductivity contrast is relatively low as in Fig. 6d, the 

average error approaches 10% or so and becomes reasonably 

small as suggested in [9]. 

 

3.6 Application example 
We attempted to compute the activating function for a 

realistic TMS scenario. A surface head model corresponding 

to subject #101309 from the Population Head Model 

Repository [27],[28] and the Connectome Project [29] was 

used as a starting point. The original model included the 

following seven compartments: cerebellum, CSF, GM, skin 

(or scalp), skull, ventricles, and WM, and results in 0.7 M 

triangular facets in total. The average edge length is 1.5 mm.  

 

We refined the original surface meshes using a 14 

barycentric triangle subdivision and then applied surface-

preserving Laplacian smoothing [21]. The resulting mesh had 

an average resolution of 0.7 mm (0.6 mm for GM and WM) 

and 2.8 M triangular facets in total. Using the BEM-FMM 

solver, this macroscopic model alone ran reasonably fast 

(under 9 min in Linux MATLAB given 14 iterations and a 

relative residual below 10−4). Note that a finite element 

tetrahedral mesh for the same problem would result in at least 

10 M volumetric elements as indicated by a test run with the 

commercial FEM software ANSYS Electronics Desktop 

Maxwell 18.2 2017. We assigned the following material 

conductivities: 0.126 S/m for cerebellum, 2.0 S/m for CSF, 

0.106 S/m for GM, 0.333 S/m for skin (scalp), 0.0203 S/m for 

skull, 2.0 S/m for ventricles, and 0.065 S/m for WM. Grey 

matter and white matter shells of the head model are shown in 

Fig. 7a. 

 

The TMS coil model is the MRi-B91 of MagVenture, 

Denmark; this commercially available figure-of-eight coil 

with a rectangular conductor cross-section is shown in Fig. 7. 

To compute its incident field, we subdivided the coil 

conductors into about 100,000 small straight current elements 

and applied the fast multipole method again [12]. 

 

The neuron model from Fig. 1 with 1.4 M facets was 

embedded into the macroscopic CAD head model, specifically 

into a cortical sulcus as shown in Fig. 7a. The total combined 

model size was 4.2 M triangular faces. We assumed that the 

neuron was simply an extra brain compartment and ran the 

coupled multiscale simulations for the head and the neuron as 

one single boundary element problem, without using any 

additional asumptions. We assigned the intracellular 

conductivity as 2 mS/m so that the conductivity contrast with 

grey matter reaches Σ = 0.96. The coil position in Fig. 7b was 

chosen in such a way that the coil incident or primary unsteady 

electric field was aligned nearly parallel to the neuron. One 

iteration time for an Intel Xeon E5-2698 v4 CPU (2.20 GHz) 

Windows Server and for MATLAB 8.2 platform was 51 sec. 

However, many (about 100) such iterations were necessary to 

achieve a reasonable relative residual value of 1e-8. Again, the 
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convergence varies depending on the value of the conductivity 

contrast. 

 

Similar to Fig. 6, we present in Fig. 7c the least squares 

error in the activating function for all dendrites and axons of 

the neuron. This error is the relative difference between the 

solution without the induced charges and the solution with the 

induced charges. To obtain the former solution, the 

intracellular conductivity value was made equal to the grey 

matter conductivity value. From Fig. 7c, we observe that a 

small relative average error (about 2% for dendrites and 7% 

for axons) was generated by the surface charges; it appears to 

be larger for the axonal branches. This result is in a certain 

disagreement with the previous study concerned with the 

neuron alone (Fig. 6). However, this result has been verified 

for different values of the membrane conductivity and slightly 

different neuron positions. It may be possible that an “all in 

one” approach is not the best solution for the present coupled 

problem since the iterative solution accuracy may vary for the 

neuron and the large brain compartments, respectively, despite 

the overall small residual. To overcome this potential problem, 

we could extract the final field distribution from the 

macroscopic model and then solve the neuron alone. In this 

case, the presumably small effect of the neuron on the 

macroscopic cortical charge distribution can be ignored.  

4. Discussion and Conclusions 

In this study, the BEM-FMM method demonstrated an 

excellent convergence for the biophysically detailed single-

neuron model subject to an externally applied electric field in 

terms of the extracellular problem statement. The relative 

residual values of 1e-9 and the relative iterative solution 

differences of 1e-7 have been achieved for all considered 

cases and for all conductivity contrasts in a relatively short 

amount of time. The convergence is fastest for smaller values 

of the conductivity contrast. Multiple and tightly spaced 

neurons could probably be modeled in a similar way. The 

BEM-FMM method does not have constraints on the model 

size or on the hard disk space although the RAM requirements 

may be demanding. 

 

We employed the obtained solution in order to quantify the 

effect of the induced surface charge density on the activating 

function of the cable equation using the hole neuron model in 

the steady state. We found that, for sufficiently large 

conductivity contrasts (including the terminal value of 1) 

between the intracelluilar and the extracellular volume, the 

corresponding error in the activating function may be as large 

as 75%. Finally, we embedded the neuron model into a 

detailed macroscopic head model and simulated a realistic 

TMS excitation scenario using the BEM-FMM method for the 

entire combined boundary element model cosnsided as a 

whole. The solution obtained predicted a much smaller 

activating function error. This observation needs to be 

investigated further. 
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Fig. 1 Neuron morphology a) and its CAD model b), c). The soma is modeled by a sphere with the given 

radius of 6.3 µm. 
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Fig. 2. Flow chart of the fast multipole boundary element method (BEM-FMM) used in this study. 

Generally, the source field is due to the externally applied electric field injected by TMS or TES.  
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Fig. 3. Induced surface charge density in C/m2 due to the external applied electric field (Eq. 1) on the surface of 

the neuron. The results in Fig. 3a are given for the conductivity contrast Σ = 1.00 and in Fig. 3b for the 

conductivity contrast Σ = 0.60.  
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Fig. 4. Induced (or secondary) electric potential in V due to the surface charge on the surface of the neuron. The 

results in Fig. 3a are given for the conductivity contrast Σ = 1.00 and in Fig. 3b for the conductivity contrast Σ =
0.60.  
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Fig. 5. (a, b) – Total electric potential; (c, d) – its second center difference along centerline of dendrite #1. Blue 

curves: solution without surface charges; red curves – with surface charges. 
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Fig. 6. Least squares error in the activating function for all dendrites and axons of the neuron as compared to the 

no-induced charge solution. Horizontal line shows the mean value. 
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Fig. 7. a) – Combined microscopic neuron and macroscopic tissue (grey and white matter) compartment model. 

Neuron position in a cortical sulcus is marked by a circle; (b) coil model for the coupled solution; c) least squares 

relative error in the activating function for all dendrites and axons of the neuron as compared to the no-induced 

charge solution.  
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