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Abstract 1 
 2 

Ectomycorrhizal fungi (ECMF) are partners in a globally distributed tree symbiosis that 3 

enhanced ecosystem carbon (C)-sequestration and storage. However, resilience of ECMF to 4 

future climates is uncertain. We sampled ECMF across a broad climatic gradient in North 5 

America, modeled climatic drivers of diversity and community composition, and then forecast 6 

ECMF response to climate changes over the next 50 years. We predict ECMF richness will 7 

decline over nearly half of North American Pinaceae forests, with median species losses as high 8 

as 21%. Mitigation of greenhouse gas emissions can reduce these declines, but not prevent them. 9 

Warming of forests along the boreal-temperate ecotone results in projected ECMF species loss 10 

and declines in the relative abundance of C demanding, long-distance foraging ECMF species, 11 

but warming of eastern temperate forests has the opposite effect. Sites with more ECMF species 12 

had higher activities of nitrogen-mineralizing enzymes, suggesting that ECMF species-losses 13 

will compromise their associated ecosystem functions. 14 

15 
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Introduction 16 

Forecasting changes in the diversity and composition of microbial symbiont communities 17 

under anticipated future climates is valuable for concentrating conservation efforts(van der Linde 18 

et al. 2018) and predicting changes to ecosystem function (Bissett et al. 2013; Koide et al. 2014; 19 

Duffy et al. 2017). Loss of host species results in decreased ecosystem productivity and stability 20 

across a broad range of taxa (Duffy et al. 2017), including effects on microbes (Duffy et al. 21 

2017; Laforest-Lapointe et al. 2017). Recent advances in the molecular methods of measuring 22 

species richness and composition have made it possible to characterize current continental scale 23 

diversity patterns of soil microbes (Tedersoo et al. 2012a; Talbot et al. 2014; Tedersoo et al. 24 

2014; van der Linde et al. 2018). However, continental-scale forecasts under future climates are 25 

unavailable for most microbial guilds, making it difficult to predict the consequences of climate 26 

change to global biodiversity and ecosystem services. Here we predict how the species richness, 27 

relative abundance, and composition of ectomycorrhizal fungi (ECMF) in North American pine 28 

forests will change over the next 50 years. 29 

ECMF are obligate plant symbionts that dominate global temperate and boreal forest soil 30 

communities and are implicated in most major ecosystem processes (Phillips et al. 2013). Two 31 

ECMF processes in particular may enhance how ecosystems will buffer the atmosphere against 32 

increased CO2 emissions: (1) the C-fertilization effect, where ECMF increase forest productivity 33 

and nutrient mobilization in response to increased atmospheric CO2 (Terrer et al. 2016); and (2) 34 

the Gadgil effect, where ECMF inhibit decomposition by free-living soil microbes (Gadgil & 35 

Gadgil 1971; Averill & Hawkes 2016). Because these functions enhance ecosystem C-36 

sequestration and –retention, respectively, they have the potential to buffer the planet against 37 

climate change by reducing CO2-associated radiative forcing. 38 
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The ability of ECMF to acquire soil organic nitrogen (N) is hypothesized to mediate C-39 

fertilization and the Gadgil effect. ECMF produce extracellular proteolytic and oxidative 40 

enzymes that liberate N from organic complexes. When ECMF transfer this N to their host trees 41 

under elevated CO2, it can fuel increased photosynthetic rates (Terrer et al. 2016). Similarly, by 42 

liberating N from organic complexes, ECMF are hypothesized to competitively inhibit free-43 

living soil microbes that require N to decompose and respire soil organic matter (Averill et al. 44 

2014).  If EMCF-associated enzyme activity is dependent on the diversity and composition of 45 

ECMF communities (Talbot et al. 2013), then diversity losses and shifts in composition have the 46 

potential to compromise ECMF-associated C-sequestration and –retention.    47 

Ecosystem services are also likely affected by shifts in the relative abundance of ECMF 48 

relative to other fungal guilds (inclusive of saprotrophs and pathogens) (Averill & Hawkes 49 

2016), and also to shifts in the abundances of different nutrient foraging strategies within ECMF. 50 

Relative to short-distance hyphal exploration strategies, long distance foraging ECMF are 51 

associated with higher activities of organic N mineralizing enzymes (Hobbie & Agerer 2010; 52 

Tedersoo et al. 2012c) and potentially also relatively higher demands for host C (Agerer 2001; 53 

Deslippe et al. 2011; Fernandez et al. 2017). Thus, reducing the abundance of long- relative to 54 

short-distance foraging ECMF may result in declines in C-allocation belowground and the fungal 55 

N-mineralization hypothesized to drive the C-fertilization and Gadgil-effects.  56 

Climate change can alter the community composition of ECMF by pushing fungi (Kipfer 57 

et al. 2010) or their host plants (Fernandez et al. 2017) outside their ranges of physiological 58 

tolerance (Pickles et al. 2012). However, most studies to date that have examined ECMF or 59 

whole fungal community responses to simulated climate change have found fairly small effects 60 

(Parrent et al. 2006; Tu et al. 2015; Fernandez et al. 2017; Mucha et al. 2018) relative to natural 61 
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changes in fungal communities observed along large natural gradients of temperature and 62 

precipitation (Jarvis et al. 2013; Talbot et al. 2014; Tedersoo et al. 2014; Nottingham et al. 2016; 63 

Peay et al. 2017). Yet, few datasets currently exist with spatial resolution necessary to make 64 

accurate predictions of ECMF response to climate change across relevant geographic regions 65 

(Mohan et al. 2014).  66 

To obtain the data needed to determine how ECMF communities are likely to change in 67 

altered climates, we used next-generation DNA sequencing to determine the species composition 68 

of ECMF in a series of 68 sites, each consisting of 26 soil samples taken with a consistent 69 

sampling design within a 40 x 40 m plot, spread across different EPA climatic regions in North 70 

America (Omernik & Griffith 2014) (Figure 1a). To isolate the effect of climate on ECMF 71 

communities while minimizing the known effects of vegetation biome type variation on 72 

microbial community structure and function (Fierer et al. 2012; Tedersoo et al. 2012b), we 73 

placed all of our sites in forests dominated by single species of tree from the family Pinaceae (an 74 

obligate ECMF host lineage). 75 

 Recent historical climates (30-year means) influence soil nutrient availability and 76 

constrain the composition and function of ecosystems in ways that govern their response to 77 

changing climates (Karhu et al. 2014; Hawkes et al. 2017). To determine how historical climate 78 

(1960-1990) structures ECMF communities in our sites, we fit non-linear models to the 79 

relationships between ECMF species richness, relative abundance, and community dissimilarity 80 

and climate, in situ measurement of local soil chemistry, global rasters of soil chemical 81 

characteristics, and estimated total N-deposition. Using model selection criteria that maximize 82 

performance relative to model complexity, we eliminated all but climatic predictors from our 83 

models. Additionally, to identify ECMF community thresholds to changes along temperature 84 
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gradients, we performed threshold indicator taxa analysis (Baker & King 2010). We then used 85 

our statistical models fit with 30-year climate means to forecast ECMF community changes 86 

under future (2070) climates, both with and without mitigations in greenhouse gas emissions. We 87 

inferred potential functional consequences of declines in ECMF diversity by comparing ECMF 88 

species richness to the activity of soil enzymes associated with hydrolysis and oxidation of 89 

organic substrates.  90 

Materials & Methods 91 

Sampling  92 

We sampled 68 sites across North America by focusing on forests dominated by a single plant 93 

family, the Pinaceae (Table S1). The Pinaceae are ideal for exploring environment-community-94 

function relationships across Kingdom Fungi because they have a broad distribution across North 95 

America and show low levels of host specificity for mycorrhizal fungi within the family (Rusca 96 

et al. 2006; Ishida et al. 2007). For example, North American pines readily associate with 97 

European ectomycorrhizal fungi (Vellinga et al. 2009) and co-occurring Pinaceae and 98 

angiosperms often share most common ectomycorrhizal fungi (Kennedy et al. 2003). Plots 99 

spread across North America were chosen with the help of local experts to find mature stands 100 

with high dominance of a single Pinaceae species (Fig. S1).  101 

Sampling was carried out in 2011 and 2012 near the period of peak plant biomass 102 

production for a given region. In each plot, 13 soil cores were collected from a 40 m x 40 m grid 103 

(Fig. S1). To look at spatial turnover of community and function at the local to landscape scales, 104 

we ensured that each plot had at least one other plot located within a 1-50 km range (Fig. S1B).  105 

At each point in the plot, fresh litter was removed and a 14 cm deep, 7.6 cm diameter soil core 106 

was taken and immediately separated into a humic (O) horizon and mineral (A) horizon. This 107 
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resulted in a total of 26 soil samples collected per plot (13 sample points x 2 horizons). After 108 

removal, soils were kept on ice until processed. Soils were sieved through a 2 mm mesh to 109 

remove roots and rocks and homogenized by hand. A ~0.15-0.25g subsample was placed directly 110 

into a bead tube from the Powersoil DNA Extraction Kit (MoBio, Carlsbad, CA USA), and the 111 

samples were stored at 4oC until DNA extraction. Before extraction, samples were homogenized 112 

for 30 seconds at 75% power using a Mini-Beadbeater (BioSpec, Bartlesville, OK USA).  A 113 

second subset of soil core x horizon samples were stored in -80 C freezer (within 48 hours of 114 

collection) for soil chemical analysis. 115 

Soil Chemistry 116 

Frozen soils were thawed and analyzed for pH in a 1:1 water ratio using a glass electrode. Total 117 

extractable ammonium and nitrate concentrations were analyzed in 2.0 M potassium chloride 118 

extracts of each soil sample using a WestCo SmartChem 200 discrete analyzer at Stanford 119 

University. For site-level values, we took the average of all soil cores processed for each site. 120 

Soil chemical variables were included in statistical models but later dropped during model 121 

selection (see Statistical Analysis and Supplemental Materials).  122 

Enzyme Assays 123 

We assayed the potential activities of six extracellular enzymes involved in soil carbon and 124 

nutrient cycling (using methods described in (Talbot et al. 2014): B-glucosidase  (BG, which 125 

hydrolyzes cellobiose into glucose), polyphenol oxidase (PPO, which oxidizes phenols), 126 

peroxidase (PER, including oxidases that degrade lignin), acid phosphatase (AP, which releases 127 

inorganic phosphate from organic matter), N-acetylglucosaminidase (NAG, which breaks down 128 

chitin), and leucin-aminopeptidase (LAP, which breaks down polypeptides). Potential enzyme 129 
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activities in bulk soil were measured separately for individual organic and mineral horizon 130 

samples using fluorometric and colorimetric procedures (German et al. 2011) on a microplate 131 

reader (n=253).  132 

Molecular Methods 133 

To characterize fungal communities we sequenced the internal transcribed spacer (ITS) region of 134 

the nuclear ribosomal RNA genes, the official barcode of life for fungi (Schoch et al. 2012). 135 

Because of improvements in technology during the course of this project, soil samples were 136 

sequenced using two different platforms. Soil samples from twenty-five sites were sequenced via 137 

454 pyrosequencing as per Talbot et al. 2014. The remaining 43 sites were sequenced on an 138 

Illumina MiSeq at the Stanford Functional Genomics Facility using the primer constructs and 139 

protocols from (Smith & Peay 2014). Using a common set of soil samples from this study 140 

sequenced on both platforms we have previously demonstrated that both richness and species 141 

composition are highly reproducible and strongly correlated between the two platforms (Smith & 142 

Peay 2014) so that combining samples should not cause any bias in our analyses. 143 

 144 

Bioinformatics 145 

Samples sequenced on the 454 platform were cleaned and denoised in QIIME (Caporaso et al. 146 

2010) (Reeder & Knight 2010), after which we extracted the ITS1 region (Nilsson et al. 2010). 147 

For samples sequenced on the Illumina platform, samples were first trimmed using Cutadapt 148 

(Martin 2011) and Trimmomatic (Bolger et al. 2014), and then merged using USEARCH (Edgar 149 

2010). At this point cleaned 454 and Illumina sequences were merged into a single FASTA file, 150 

where sequences were dereplicated, clustered into species level operational taxonomic units 151 

(OTUs) at 97% sequence similarity using USEARCH. We removed all singletons and chimeras, 152 
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and dropped occurrences <0.025% of relative sequence abundance within a sample to account 153 

for tag-swapping (Carlsen et al. 2012). We took a two-step approach to assigning taxonomic 154 

identity, first using the BLAST tool with the UNITE reference database (Koljalg et al. 2013) to 155 

eliminate potentially non-fungal taxa; and next using the naïve Bayesian classifier from the 156 

Ribosomal Database Project (RDP) (Wang et al. 2007) along with the Warcup ITS reference set 157 

(Deshpande et al. 2016) to assign taxonomy. OTUs with sufficiently confident taxonomic 158 

assignments were then matched to functional guilds using the FUNGUILD database (Nguyen et 159 

al. 2016). The relative abundance of ECMF exploration strategies (% of ECMF OTUs) were 160 

assigned by matching ECMF genera against published lists (Agerer 2006; Tedersoo & Smith 161 

2013), which are available online (www.deemy.de). Strategies were assigned to the following 162 

categories according to (Fernandez et al. 2017):  contact short (CS), contact medium (CM), and 163 

medium long (ML). Full description of the bioinformatic methods are available in the online 164 

supplement. 165 

 166 

Statistical Analyses 167 

To correct for variability in DNA sequencing depth between samples from the two sequencing 168 

platforms, we rarefied our sequences to an even-depth of 17,273 sequences. The even-depth was 169 

determined after aggregating samples to their respective sites. To determine the relative 170 

abundance of ECMF sequences relative to all fungal sequences, we also summed the total 171 

number of ECMF sequences and divided it by the sum of all fungal sequences.  172 

Recent-historical climates (30 year means) are commonly used to model the bioclimatic 173 

variables that shape current species distributions and responses to climate change (Hijmans & 174 

Graham 2006). To determine the role of climate in shaping the current and future distributions of 175 
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ECMF species richness and community composition, we downloaded the following 30 year 176 

mean (1960-1990) and projected future (2070) bioclimatic variables from World Clim version 177 

1.4 (Hijmans et al. 2005):  mean annual temperature (°C), temperature seasonality (standard 178 

deviation of monthly temperatures), mean annual precipitation (mm), and seasonality of 179 

precipitation (coefficient of variation in monthly precipitation). These variables capture both the 180 

range and central tendency of climate factors that are demonstrated to affect fungal communities 181 

and exhibit low co-linearity (variance inflation factor < 3), which minimizes spurious fits 182 

between predictor and response variables. We extracted data for our 68 sites from these climate 183 

rasters.    184 

We fit generalized additive models (GAMs) of the ECMF species richness, relative 185 

abundance (out of all fungi), and relative abundance of CS, CM, and ML exploration strategies 186 

of each site as a function of the bioclimatic variables using the mgcv package in R (Figure S7). 187 

We choose to use non-parametric GAMs, rather than linear models, so that our statistical models 188 

would have sufficient flexibility to capture curvilinear responses of EMCF diversity and 189 

abundance to environmental factors. However, a potential drawback of this approach is the 190 

potential to over-fit data, predicting environmental responses that are difficult to interpret 191 

biologically. In order to navigate these twin pitfalls, we constrained our model fits to four knots 192 

to allow for threshold, saturating, uni- and bi-modal responses to environmental variables.  193 

In addition to the four climatic variables for which we have recent-historical and 194 

projected 2070 data, we also considered GAMs with only in situ soil predictors (soil pH, NH4-195 

N), only soil predictors from global rasters of surface horizon chemistry [soil pH in KCl (Hengl 196 

et al. 2017) and total N density (Task 2000)], only estimates of total atmospheric N-deposition 197 

(Hember 2018), and combinations of climate with soil in situ, soil raster, and N-deposition 198 
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predictors. We selected our climate-only model based on its superior performance relative to 199 

model-complexity according to the generalized cross validation (GCV) statistic (full details in 200 

Supplementary Materials). In contrast with soil data, climate variables are also available across 201 

North American pine forests for both recent-historical and projected future scenarios (contingent 202 

on anthropogenic greenhouse emissions), allowing us to predict and project ECMF species 203 

richness, abundance, and community composition across time and space.  204 

We used our statistical models to generate predictions over North America, under both 205 

historical and future climate conditions. We constrained our predictions to the spatial extent of 206 

the distributions of the twelve most abundant pine tree species from our plots. Tree species 207 

distributions were derived from the United States Geological Survey (USGS) shapefiles, which 208 

we dissolved into one composite range using the “raster” package in R. To summarize our results 209 

by region, we subset our predictions according to EPA vegetation zones (Omernik & Griffith 210 

2014). In Figure 1ab, the EcoRegions temperate sierras, semi arid highlands, and tropical dry 211 

forests were combined into the composite Ecoregion “S. Sierras.” This was done due to the 212 

similar climate of the small areas of the constituent regions that overlap with the distribution of 213 

pine-forests.   214 

To project our statistical models to future climates (the year 2070), we downloaded 215 

predicted climate rasters from 17 different global climate models (GCMs) that have been 216 

incorporated into the Coupled Model Intercomparison Project Phase 5 (CMIP5) (Table S5).  217 

While these 17 GCMs differ in complexity, each simulates anthropogenic changes using two 218 

greenhouse emission scenarios, corresponding to Relative Concentration Pathways (RCP) of 4.5 219 

and 8.5 (Allen et al. 2014).  In order to offset prediction-errors associated with individual GCMs 220 

(e.g., (Pierce et al. 2009), we projected ECMF species richness, relative abundances, and 221 
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composition using a consensus-GCM, which is the average predicted climate for each pixel 222 

across all 17 GCMs. To plot the percent change in species richness, we took the predicted 223 

[(future richness - historical richness)/(historical richness)]. 224 

In order to analyze ECMF community composition, we first transformed our OTU table 225 

into a table of the proportion of sequences represented by each species at our sites. We then 226 

derived a Bray-Curtis dissimilarity matrix for each pair of sites. The relationship between 227 

geographic distance and difference in climate predictors of each site was analyzed using 228 

generalized dissimilarity models (GDM) using the package “gdm” in R (Manion et al.). We used 229 

the fitted GDM model to project the change in dissimilarity among forest sites in historical vs. 230 

projected climates. For the future climate, we scaled the first PC axes of predicted community 231 

composition from 0-255 and plotted the points using three dimensional color scaling [PCA 1 232 

(green), PCA 2 (red), PCA 3 (blue)].  233 

In order to identify responses of individual ECMF taxa to changes in temperature 234 

gradients, we performed Threshold Indicator Taxa ANalysis (TITAN) using the “TITAN2” 235 

package in R (Baker & King 2010). First, we aggregated our OTU table to the level of assigned 236 

species name and removed all species that occurred in fewer than 4 sites. Next, we used TITAN 237 

to find the individual ECMF species responses to gradients of mean annual temperature, which 238 

our analyses identified as having two different ECMF-diversity optima. The analysis returns two 239 

metrics for each species:  (1) a change point, which splits each species’ abundances into two 240 

classes along a environmental gradient (above and below a set temperature) in a way that 241 

maximizes the fidelity of species’ association for one of the two classes; ands (2) a standardized 242 

z-score, where the magnitude is proportional to the sensitivity of the species to change and the 243 

sign indicates that the species’ increases or decreases in relative abundance when temperatures 244 
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exceed the change point (positive and negative z-scores, respectively). For plotting purposes, we 245 

display only pure and reliable indicator taxa [e.g., (van der Linde et al. 2018)], We identified the 246 

temperature thresholds for ECMF communities as the peaks in the cumulative distributions of 247 

the negative and positive-z values, respectively. 248 

The mean activity of each enzyme in all cores (organic and mineral horizons) were 249 

calculated for each site and log-transformed. Because activity of individual enzymes were often 250 

correlated we express enzyme activity in terms of the first two axes from principal component 251 

analyses of activities across the 25 sites where enzyme activity was measured.  252 

Results  253 

Climate variables explained 58% of the deviance in ECM species richness (range 33-199 254 

species per plot), 41% of the deviance in ECMF relative abundance (7-78% of sequences), and 255 

41% of species composition (0.6-1 dissimilarity) among sites (Table 1). The most species-rich 256 

and relatively abundant ECMF communities are associated with sites with high seasonality in 257 

temperature and precipitation (Figure 2ab). Seasonality also explains the most variability in 258 

ECMF species composition, with the largest differences associated with differences in 259 

temperature seasonality (Figure 2c).  260 

ECMF respond to historical climates differently by region. The most species-rich ECMF 261 

communities in the northern and northwest mountain forests are cold and dry (0°C and < 1 m 262 

mean annual temperature and precipitation, respectively). By contrast, the most species-rich 263 

ECMF communities in eastern temperate forests are hot and wet (> 12°C, >1 m precipitation, 264 

Figure 2a). Using general-additive models, which fit continuous, curvilinear responses along 265 

temperature gradients, we found a bimodal relationship between species richness and mean 266 

temperature, with separate cold- and hot-diversity optima (Figure 2a). As a result, our models 267 
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predict that warming decreases species richness in the relatively cold north/northwest forests and 268 

increases species richness in the eastern temperate forests.  269 

Relative abundance and species richness of ECMF are correlated (R2=0.23, p<0.01) and 270 

respond similarly to variability in climate (Figure 2ab). However, unlike ECMF species richness, 271 

ECMF relative abundance increases with temperature even in forests with mean annual 272 

temperatures < 12°C. As a result, our statistical models predict partial increases in ECMF 273 

relative abundance with warming, although the net-effect is contingent on climate changes to 274 

precipitation and seasonality (Figure 2b). 275 

Similar to our models of ECMF species richness, the relative abundance of long-distance 276 

foraging strategies increases with mean temperature in eastern temperate forests with mean 277 

annual temperatures > 12°C and declines with mean temperature in southern boreal forests 278 

(Figure S7c), By contrast, both short and medium-distance foragers increase in relative 279 

abundance with temperature increases in the colder north / northwestern EcoRegions (Figure 280 

S7ab). As a result, our models predict that sites that lose species with increased temperatures 281 

should also decline in the abundance of long-distance foraging strategies.  282 

Threshold indicator taxa analysis identifies ECMF species that reliably respond either 283 

negatively or positively to increases in mean annual temperature (Figure 3a). Based on the peaks 284 

of the cumulative distributions of the change points for ECMF species with negative and positive 285 

temperature associations (Figure 3b), we identify two ECMF-community thresholds:  (1) a cold 286 

threshold at 3 °C, which is associated with declines among threshold indicator species with 287 

negative z-scores; and (2), a hot threshold at 12 °C, which is associated with increases among 288 

threshold indicator species with positive z-scores. Notably, these ECMF community thresholds 289 
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occur near the inflection points for the response of overall ECMF species richness to mean 290 

annual temperature (Figure 1a). 291 

We compared model predictions using 30-year mean climates (1960-1990) to climate 292 

projections for 2070 both with and without mitigation in greenhouse gas emissions (RCP 4.5 and 293 

8.5, respectively). Our models predict that both ECMF diversity and the abundance of long-294 

distance foragers decline at the temperate-boreal ecotone, which includes the southern extent of 295 

the northern forests, the northwest mountain forests, and the marine west coast forests (Figures 296 

1b,3, 6). By contrast, our models predict increases in ECMF species richness in 297 

south/southeastern forests, including the southern extent of the eastern temperate and temperate 298 

sierran forests of Northern Mexico (Figure 1a, Figure 4a). The projected shifts in community 299 

composition, which are independent from projected changes in species richness, are also more 300 

severe at the southern and western extent of the northern and northwest mountain forests and 301 

along the eastern temperate forests (Figure 4c). With mitigation in greenhouse gas emissions, 302 

median loss of species richness and the geographic extent of those declines shrink from 21 to 303 

14% and from 48 to 44% of pine forests, respectively. Species gains are also more extensive and 304 

intense with higher greenhouse-gas emissions (Figures 1b,4).   305 

Sites differed in the soil activities of five different extra-cellular enzymes, which we 306 

represent with the first two axes of principal component analysis (explaining 56 and 21% of 307 

enzymatic variability, Figure 6a). All assayed enzymes load positively onto PC axis 1, while axis 308 

2 discriminates between oxidative (positive loading) and hydrolytic enzymes (negative loading, 309 

with the exception of leucine-aminopeptidase). Both total and oxidative enzyme activity are 310 

correlated with ECMF species richness using single regression (Figure 6bc), but the relationship 311 

is statistically significant only for oxidative enzymes (R2=0.17, p=0.04).   312 
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 313 

Discussion 314 

 With no mitigations in greenhouse gas emissions, we predict that as many as 48% of 315 

North American pine forests will lose 21% of their ECMF species due to climate changes in the 316 

next 50 years. Predicted declines in ECMF diversity are associated with the temperate-boreal 317 

ecotone, which is already vulnerable to global change due to warming-associated declines in 318 

growth and photosynthetic rates of southern boreal trees (Reich & Oleksyn 2008). Our 319 

predictions are generated using a model of historical climate on current ECMF diversity and 320 

composition that yields two key findings: (1) continental diversity patterns of ECMF in Pinaceae 321 

forests are driven primarily by differences in temperature and precipitation seasonality and (2) 322 

the ECMF diversity of a forest can either increase or decrease with mean annual temperature, 323 

contingent on its association with cold- or hot- diversity optima.  324 

Our models explain a substantial fraction of variability in ECMF diversity and 325 

community structure using climate only, with soil N-availability and anthropogenic N-deposition 326 

being dropped as predictors during model selection due to their low predictive power relative to 327 

model-complexity (Supplementary Materials). This negative result with respect to N-deposition 328 

contrasts with some regional studies of ECMF (Pardo et al. 2011; Jarvis et al. 2013; Suz et al. 329 

2014; Batstone et al. 2017), including a recent continental-scale analysis of ECMF community 330 

composition across western Europe (van der Linde et al. 2018).  By contrast, we found that once 331 

the effects of climate gradients were taken into account, our multiple regression models fit small 332 

and statistically insignificant responses of ECMF diversity to total N deposition (Figure S6). 333 

While we acknowledge that there are many potential drivers of ECMF community structure, our 334 

study design, which focuses exclusively on ECMF in Pinaceae dominated forest stands, allowed 335 
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us to isolate the large and regionally divergent responses of ECMF communities to spatial-336 

temporal climate gradients.  337 

The most diverse EMCF forests in our network had highly seasonal temperature and 338 

precipitation. Seasonal forests are also associated with ephemeral flushes of nutrients (Voříšková 339 

et al. 2014), which ECMF can rapidly absorb, store in networks of soil mycelia, and transfer to 340 

tree hosts at later times (Read 1991). The higher predicted ECMF diversity associated with 341 

seasonality in precipitation mirror results from experimental manipulations on fungal 342 

communities (Hawkes et al. 2011) and suggests ECMF diversity may be associated with a 343 

storage effect of seasonal specialists (Chesson 2000).  344 

The regionally opposite effects of temperature gradients we observed for ECMF diversity 345 

and composition are consistent with regionally opposite effects of climate on host-tree 346 

physiology. We found that ECMF diversity and long-distance forager abundance decline with 347 

increasing mean temperatures in sites from northern and northwest mountain forests, but increase 348 

with temperature in sites from eastern temperate forests. As a result, our models predict that 349 

ECMF diversity and long-distance forager abundance will decrease in sites along the temperate-350 

boreal ecotone, but increase in eastern temperate forests. Warming of boreal tree species growing 351 

near the boreal-temperate ecotone has also been shown to reduce tree growth and photosynthetic 352 

rate (Reich & Oleksyn 2008; Reich et al. 2015; Fernandez et al. 2017), which causes trees to 353 

allocate less C to ECMF (Fernandez et al. 2017). By contrast, stimulated warming does not result 354 

in declines in photosynthetic rates for temperate tree species, which are adapted to warmer 355 

climates, or in boreal tree species growing at their colder, northern range limits (Reich & 356 

Oleksyn 2008). Thus, the qualitatively different effects of climate we detected on ECMF species 357 

richness and composition could reflect the climate-envelopes of their associated host trees, with 358 
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projected declines in species richness occurring only in regions where ECMF host tree 359 

performance declines with increasing temperature. 360 

Additionally, adaptation of ECMF species to different climate envelopes can explain 361 

qualitatively different community responses to temperature and precipitation (Lehto et al. 2008; 362 

Malcolm et al. 2009) (Hawkes & Keitt 2015). ECMF communities associated with different sites 363 

have completely separate species compositions (mean dissimilarity of 0.97 out of 1, 42% species 364 

endemic to a single site), which is consistent with the generally high spatial turnover among soil 365 

fungal communities (Talbot et al. 2014). The most dissimilar ECMF communities also have the 366 

most contrasting climates (e.g., northern forests with hot summers and cold winters vs. pacific 367 

coastal and southeastern temperate forests that lack seasonality, Figure 2c), such that different 368 

ECMF species are associated with the cold- and hot- diversity optima. Similarly, threshold 369 

indicator taxa analysis along mean annual temperature gradients identify ECMF community 370 

thresholds at ~3°C (Figure 3b), such that a host of cold-adapted ECMF species should decline 371 

with increasing temperature (Figure 3a). However, whereas small-scale studies of stimulated 372 

warming generally find low or absent effects on ECMF diversity (Parrent et al. 2006; Tu et al. 373 

2015; Fernandez et al. 2017; Mucha et al. 2018), our models predict that addition to EMCF 374 

compositional changes, larger scale climate alteration will result in substantial diversity losses 375 

and gains across North America. 376 

The magnitude of ECMF species losses and gains are contingent on the decisions of 377 

human policymakers, though even with mitigation of greenhouse gas emissions the outcomes are 378 

not qualitatively different. If greenhouse gas emissions are capped by 2040, median loss of 379 

species richness and the geographic extent of those declines shrink from 21 to 14% and from 48 380 

to 44% of pine forests, respectively. Conversely, the predicted increase in ECMF diversity and 381 
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abundance have the potential to increase C sequestration and retention in both far northern and 382 

south/southeastern forests. These increases are also more extensive and intense with higher 383 

greenhouse-gas emissions (Figures 1b, 3,4). However, while ECMF differ in foraging and 384 

dispersal strategy and enzymatic abilities, which can lead to positive diversity-seedling growth 385 

relationship from a range of 1-4 ECMF species in experimental tree seedlings (Baxter & Dighton 386 

2001, 2005), it remains unclear how a system with ~100 ECMF species will respond to a loss or 387 

gain of 25-30%. Despite uncertainty of the magnitude of this effect, recent work suggests that 388 

species loss results in declines in ecosystem productivity and resiliency across a broad range of 389 

taxa (Duffy et al. 2017), including plant-microbial symbionts (Laforest-Lapointe et al. 2017).  390 

The most likely functional fallouts for forest ecosystems predicted to lose ECMF 391 

diversity, such as northern and northwest mountain forests, are decreased C sequestration (via 392 

declining productivity (Terrer et al. 2016)) and decreased C-retention (via relaxed inhibition of 393 

free-living microbes (Averill & Hawkes 2016)). Two lines of evidence from our data support this 394 

functional shift: (1) forests projected to loss ECMF species in altered climates are also projected 395 

to decline in the relative abundance of C-demanding, long- and medium-distance exploration 396 

strategies (Figure 5abc); and (2) sites with higher ECMF species richness have higher activity of 397 

oxidative enzymes associated with N mineralization and the slow-decomposition of soil C 398 

(Figure 6). Thus, the loss of long- and medium-distance foraging strategies could result in less 399 

fixed-C being sequestered below-ground, while decreased enzymatic function associated with 400 

declines in ECMF diversity could compromise the ECMF-associated C-fertilization and Gadgil 401 

effects in altered climates (Averill et al. 2014; Averill & Hawkes 2016).  402 

Forecasting continental changes in ECMF communities is a first-step in projecting the 403 

functional consequences of those changes. In summary, over the next 50 years we predict climate 404 
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change will cause ECMF species richness to contract by 16-22% in north/northwestern pine 405 

forests of North America and expand by 21-28% in south/southeast pine forests. These changes 406 

have the potential to expand and contract the role ECMF play as boosters of forest productivity 407 

and inhibitors of soil respiration by free-living microbes.   408 
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Tables 415 

Table 1. Current summary statistics for (a) ECMF species richness, (b) relative abundance, 416 

and (c) Bray-Curtis dissimilarity, along with significance of climate variables in general-417 

additive models [(k)nots=4] for (a) and (b) and a summary of the general-dissimilarity 418 

model for (c, k=3).  419 

(a) species richness (mean = 97.4, median = 98.5, iqr = 59.5) 
climate variable Estimated 

degrees of 
freedom (df) 

Ref.df F-value p-value 

Mean annual 
temperature  

2.89 2.98 9.98 <0.001 *** 

Temperature 
seasonality 

2.59 2.89 10.64 <0.001*** 

Mean annual 
precipitation 

2.15 2.54 5.45 0.01** 

Precipitation 
seasonality 

3.00 3.00 7.59 <0.001*** 

Deviance explained = 58.3%; GCV = 845.43; Scale est. = 700.78 
(b) relative abundance (mean = 0.48, median = 0.52, iqr = 0.17) 
Mean annual 
temperature  

1.75 2.07 11.23 0.07 . 

Temperature 
seasonality 

2.48 2.80 13.54 <0.001*** 

Mean annual 
precipitation 

1.75 2.07 11.23 <0.001*** 

Precipitation 
seasonality 

2.81 2.96 4.52 <.01** 

Deviance explained = 54.3%, GCV = 0.014, Scale est. = 0.012 
(c) Bray-Curtis dissimilarity (mean = 0.94, median = 0.97, iqr=  0.07) 
Null Deviance = 154. 11;  GDM Deviance = 90.6; Deviance explained = 41.2% 
 420 

421 
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Figures 422 

 423 

Figure 1. The predicted change in ECMF species richness by 2070 under two estimates of424 

greenhouse gas emissions.  (a) A map of North America shaded by EPA EcoRegion, with425 

sites indicated by points. (b) Median predicted change in species richness by EcoRegion426 

with error bars containing the inter-quartile range for RCP 8.5. 427 
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429 

Figure 2.  The predictions of partial regression and best-fit splines for general-additive430 

models for species richness (a) and relative abundance (b) by historical (1960-1990)431 

climate, with shading along the 95% confidence interval. Total species richness and relative432 

abundance for each site are equal to the sum of the four predictions and an intercept value433 

(97.04 and 0.48 for species richness and relative abundance, respectively).  Points are434 

colored according to EPA EcoRegion as in Figure 1. (c) The expected difference in ECMF435 

community composition, measured as the partial ecological distance, among sites according436 

to generalized dissimilarity models, with lines on the x-axis indicated empirical values,437 

while shading represents the 95% confidence interval after sampling 70% of sites 10 times. 438 
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 440 

 

Figure 3. (a) The change

points (circles) and 95%

confidence intervals for

ECMF species with negative

and positive responses to

increasing mean annual

temperature (-z and +z,

respectively). (b) The sum of

z-scores (lines with points,

left axis) and cumulative

distribuiton of change points

(right axis) for ECMF

species with negative and

positive z-scores. Peaks in the

unfiltered sum(z) and sharp

increases in cumulative

frequency indicate ECMF

community thresholds for

change along mean annual

temperature gradients.  
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 442 

 443 

444 

Figure 4. Predicted maps (right) using historical climate and general-additive models for445 

(a) species richness, (b) relative abundance and the (c) first three PCA axes indicated by446 

green, red, and blue color scaling using a general dissimilarity model for species447 

composition [with % of predicted variance explained]. Contour lines for species448 

composition (c) delineate four clusters in the three dimensional PCA space. The projected449 

changes for 2070 under different RCP scenarios are plotted to the left. Regions of high450 

ECMF predicted species richness (a) at the temperate-boreal ecotone and throughout451 

northwest mountain and marine west coast forests are particularly vulnerable to species452 

loss, while eastern temperate forests are expected to increase to species richness.453 
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454 

Figure 5. Predicted relative abundance (% of ECMF sequences) of (a) contact-short, (b)455 

contact-medium, and (c) medium long hyphal exploration strategies under historical456 

climates (right, top key) and projected changes in relative abundance under two different C457 

emissions scenarios for 2070 (left, bottom key). Contact-short strategies increase sharply in458 

northern / northwest forests and decrease in southeast temperate forests. Medium-long459 

strategies have the opposite pattern.  460 
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 464 

 

Figure 6. (a) Plot of forest sites against the first two

axes of principal component analysis for log-

transformed enzyme activity. Blue vector indicate

the loading values of oxidative enzymes (PPO; PER,

peroxidase), while red vectors indicate loading

values of hydrolytic enzymes (LAP, leucin-

aminopeptidase; AP, acid phosphatase; NAG, N-

acetylegulocsaminidase; BG, B-glucosidase). All

enzymes load negatively onto PC 1, while PC 2

discriminates between oxidative and hydrolytic

enzyme activity. (b) and (c) show the correlation

between ECMF species richness and -PC 1 (not-

significant) and PC 2 (significant). All points are

sized according to the relative abundance of ECMF

relative to all fungi (legend in panel a), while points

in (b) and (c) are colored using 3D color scaling of

the relative abundance of different hyphal

exploration strategies (CS, contact-short; CM,

contact-medium; ML, medium-long).  
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