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Abstract

Several neuron types have been shown to exhibit (subthreshold) membrane potential resonance
(MPR), defined as the occurrence of a peak in their voltage amplitude response to oscillatory input
currents at a preferred (resonant) frequency. MPR has been investigated both experimentally and
theoretically. However, whether MPR is simply an epiphenomenon or it plays a functional role for
the generation of neuronal network oscillations and how the latent time scales present in individual,
non-oscillatory cells affect the properties of the oscillatory networks in which they are embedded
are open questions. We address these issues by investigating a minimal network model consisting
of (i) a non-oscillatory linear resonator (band-pass filter) with 2D dynamics, (ii) a passive cell (low-
pass filter) with 1D linear dynamics, and (iii) nonlinear graded synaptic connections (excitatory or
inhibitory) with instantaneous dynamics. We demonstrate that (i) the network oscillations crucially
depend on the presence of MPR in the resonator, (ii) they are amplified by the network connectivity,
(iii) they develop relaxation oscillations for high enough levels of mutual inhibition/excitation, and
(iv) the network frequency monotonically depends on the resonators resonant frequency. We explain
these phenomena using a reduced adapted version of the classical phase-plane analysis that helps
uncovering the type of effective network nonlinearities that contribute to the generation of network
oscillations. Our results have direct implications for network models of firing rate type and other
biological oscillatory networks (e.g, biochemical, genetic).
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Author Summary

Biological oscillations are ubiquitous in living systems and underlie fundamental processes in healthy
and diseased individuals. Understanding how the intrinsic oscillatory properties of the participating
nodes interact with the network connectivity is key for the mechanistic description of biological net-
work oscillations. In several cases these intrinsic oscillatory properties are hidden and emerge only
in the presence of external oscillatory inputs in the form of preferred amplitude responses to these
inputs. This phenomenon is referred to as resonance and may occur in systems that do not exhibit
intrinsic oscillations. Resonance has been primarily measured in neuronal systems, but their role in
the generation of neuronal network oscillations remains largely an open question. We have identified
a minimal network model consisting of a resonator (a node that exhibits resonance, but not intrinsic
oscillations), a low-pass filter (no resonance and no intrinsic oscillations) and nonlinear connectivity
with no dynamics. This network is able to produce oscillations, even in the absence of intrinsic oscil-
latory components. These oscillations crucially depend on the presence of the resonator. Moreover,
the resonant frequency, a dynamic property of the interaction between the resonator and oscillatory
inputs, controls the network frequency in a monotonic fashion. The results of our study have im-
plications for the generation of biological network oscillations in larger neuronal systems and other
biological networks.

1 Introduction

Neuronal network oscillations emerge from the cooperative activity of the participating neurons and
the network connectivity and involve the interplay of the nonlinearities and time scales present in
the ionic and synaptic currents. In some cases, the network time scales directly reflect the time
scales of the individual neurons. This class includes the networks that synchronize the oscillatory
activity of the individual neurons where the frequency of both (network and individual neurons)
belong to the same (narrow) frequency band. In other cases, the oscillatory time scales are latent
(or hidden) at the individual neuron level and become apparent at the network level. The oscillatory
networks of non-oscillatory neurons we investigate in this paper belong to this class. We focus on
the situations where at least one of the participating cells exhibits (subthreshold) membrane potential
resonance (MPR), a peak in the voltage amplitude response to oscillatory input currents at a preferred
(resonant) frequency [1–4]. Because the individual cells are non-oscillatory, the resonant frequency is
an oscillatory latent time scale.

The mechanisms of generation of sustained (limit cycle) oscillations in single neurons are rea-
sonably well understood [5–8]. They require the interplay of negative and positive feedback effects
provided by the ionic current gating variables or related processes. Resonant ionic processes (e.g.,
hyperpolarization-activated mixed-cation Ih current, M-type slow-potassium current IKs and T-type
calcium inactivation ICaT ) oppose changes in voltage, while amplifying ionic processes (e.g., persistent
sodium current INap, T-type calcium activation) favor these changes.

There is a hierarchy of dynamic oscillatory phenomena that requires the presence of a resonant
process and whose degree complexity increases with the levels of the amplifying current [1,9] in system
where sustained oscillations (subthreshold or spikes) are generated by Hopf bifurcation mechanisms
[5–7]. At the bottom of this hierarchy are the overshoot type of responses to square-pulse perturbations
(Fig. 1, green curves) in neurons that exhibit MPR [1–4], but not subthreshold oscillations (STOs).
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We refer to them as resonators. For higher amplification levels the neuron may display damped
subthreshold oscillations (Fig. 1, red curves). In these two cases the underlying systems may be
quasi-linear in large enough vicinities of the resting potential (fixed-point) [9]. At the top of the
hierarchy are the limit cycle oscillations (Fig. 1, blue curves) that require high enough amplification
levels for the development of the nonlinearities necessary for the existence of limit cycles [9]. If these
limit cycles represent STOs, additional amplification levels can produce spikes or depolarization block.
Examples of models exhibiting this type of behavior are the Morris-Lecar model [10] and the Ih +
INap or IKs + INap models studied in [9] (see also [11]).

MPR has been investigated in many neuron types both experimentally and theoretically [1–4,12–
56]. However, in contrast to single cell intrinsic oscillations, the role that cellular MPR plays in network
oscillations is not well understood. Only a few studies have addressed these issues in networks having
neurons that exhibit MPR [41, 57–63] or have resonant gating variables [64–66]. To our knowledge,
no study to date has examined the detailed mechanisms of generation of oscillations in networks of
non-oscillatory resonators and how the network oscillations reflect the latent time scale provided by
the resonant frequency.

In this paper we seek to understand how the resonant properties of individual nodes interact with
the network connectivity to produce oscillations in reciprocally connected networks. We reasoned that
if oscillations are to be generated in networks where the participating neurons only provide the reso-
nant properties, then the amplification effects should result from the network connectivity. According
to this hypothesis, oscillations will be generated in self-excited, but not self-inhibited resonators and
in two-cell networks of mutually inhibited or mutually excited cells that include one resonator. More-
over, the resonant frequency of the individual resonators should control, or at least have a direct
effect, on the network frequency. Along these lines, self-excited passive cells and mutually inhibited
passive cells should not be able to oscillate. Analogously to single cell oscillations, the mechanism
of generation of network oscillations should involve a Hopf bifurcation and the dynamic hierarchy
described above. Some of these patterns have been observed for similar systems [67] and for network
models using the Wilson-Cowan formalism [5, 68, 69]. However, the role that the filtering properties
of the individual nodes (preferred frequency responses to oscillatory inputs) play in the generation of
network oscillations has not been investigated.

We test these ideas using the simplest types of oscillatory networks with non-oscillatory neurons,
consisting of a linear resonator reciprocally connected to a linear low-pass filter or another resonator
with instantaneous graded synapses. More specifically, we use linear (linearized conductance-based)
models for the individual neurons to isolate the resonant effects from the nonlinear amplifications
that lead to sustained oscillations. In this way, we eliminate the nonlinear amplification from the
dynamics of the individual neurons in order to asses the effects of subthreshold resonance on the
network oscillations. These linearized models capture the quasi-linear dynamics of models having the
passive currents and Ih or IKs, but no amplifying currents (e.g., INap) [9]. They also capture the
linearized dynamics of firing rate models of Wilson-Cowan type [69] with adaptation [70–72]. We
primarily focus on parameter regimes where the individual neurons are resonators (produce overshoot
responses to square pulses of current, without damped oscillations). We use graded synapses because
of both the dynamic properties of linearized models and the range of voltage in which they operate
and because it is the type of nonlinearities used in firing rate models . They are assumed to be
instantaneously fast and have no dynamics [64,65,67,70–75].

The questions we ask in this paper are conceptually different from the issues addressed in previous
studies [41,64,65,67,73] and aim to conceptually address the mechanisms by which neuronal frequency
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filters interact within a network. This has implications not only for the understanding of neuronal
oscillations, but also for the understanding how frequency-dependent information is communicated
across neurons and networks and the phenomenon of network resonance [57,76].

This paper is motivated by previous work on neuronal resonance in individual neurons [3,4,11,40,
41, 57], and therefore we formulate the problem and the results in terms of neuronal systems, using
the typical terminology and notation in the field of neuroscience. However, the issues addressed in
this paper are more general and have direct implications to biological oscillatory networks in other
fields (e.g., biochemical, genetic).
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Figure 1: Response of Ih+INap and IKs+INap models to negative square pulses of current: representative

dynamic scenarios. a. Ih+INap model. It includes three ionic currents: hyperpolarization-activated (h-), persistent

sodium and leak (see Section 2.4 in Methods). b. IKs+INap model. It includes three ionic currents: M-type slow potassium,

persistent sodium and leak (see Section 2.4 Methods). Both Ih and IKs are resonant and INap is amplifying. Increasing the

levels of INap causes a transition from overshoot responses (green) to damped oscillations (red) to persistent (limit cycle)

oscillations (blue) in both models. The gray curve is a caricature of the square wave input deflected from zero with amplitude

1. We used the following parameter values: C = 1, ENa = 42, EL = −75, Eh = −26, GL = 0.3, Gh = 1.5, Iapp = 0.55,

Vhlf,p = −54.7, Vslp,p = 4.4, Vhlf,q = −80.2 and Vslp,q = 7.2 (Ih+INap model) and C = 1, ENa = 42, EL = −75, EKs = −96,

GL = 0.3, GKs = 1.5 and Iapp = 4, Vhlf,p = −54.7, Vslp,p = 4.4, Vhlf,q = −28, Vslp,q = 8 (IKs+INap model).

2 Methods

2.1 Networks of linearized cells with graded synapses

We used linearized biophysical (conductance-based) models for the individual cells and (nonlinear)
graded synaptic connections. The linearization process for conductance-based models for single cells
has been previously described in [2, 3]. We refer the reader to these references for details.

The dynamics of a two-cell network are described by
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1

Figure 2: Network diagrams. a. Self-excited resonator (2D). b. Self-inhibited resonator (2D). c. Mutually inhibited

passive cell network (1D/1D). d. Mutually inhibited resonator - passive cell network (2D/1D). d. Mutually excited resonator

- passive cell network (2D/2D). e. Mutually inhibited resonator network (2D).

Ck

dvk
dt

= −gL,k vk − gk wk − Isyn,k, (1)

τk
dwk

dt
= vk − wk, (2)

for k = 1, 2. In eqs. (1)-(2) t is time, vk is the voltage (mV) referred to the voltage coordinate of
the fixed-point (equilibrium potential) V̄k, wk is the gating variable referred to the gating variable
coordinate of the fixed-point w̄k and normalized by the derivative of the corresponding activation
curve, Ck is the capacitance, gL,k is the linearized leak maximal conductance, gk is the ionic current
linearized conductance, τk is the linearized time constant and Isyn,k is the graded synaptic current
from the other neuron in the network and given by

Isyn,k = Gsyn,jk S∞(vj)(vk − Esyn,k), j, k = 1, 2, j 6= k, (3)

where Gsyn,k is the maximal synaptic conductance, Esyn,k is the synaptic reversal potential referred
to V̄k and

S∞(v) =

(

1 + e
−

v−vhlf

vslp

)

−1

, (4)

where the half-activation point vhlf is also referred to V̄k.
We use the following units: mV for voltage, ms for time, µF/cm2 for capacitance, µA/cm2 for

current and mS/cm2 for the maximal conductances.
Unless stated otherwise, we used the following parameter values: C = 1, Vhlf = 0, Vslp = 1,

Ein = −20, Eex = 60.
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Note that the heterogeneity due to different values of the DC current Iapp,k and other biophysical
parameters in the original conductance-based model is translated into the reversal potentials Esyn,k

and the functions Sk,∞(v) through the fixed-point (V̄1, V̄2). Specifically, if Esyn and Vhlf are the
synaptic reversal potential and synaptic half-activation point of the original (not rescaled) model,
then Esyn,k = Esyn − V̄k and vhlf = Vhlf − V̄k.

2.2 Phase-space diagrams: nullclines and hyper-nullclines

2.2.1 Graded network of two 1D passive cells: nullclines

These are 2D networks consisting of system (1) with gk = 0 (k = 1, 2). The v1- and v2-nullclines are
given by

v2 = S−1
∞

(

−gL,1v1
Gsyn,2,1(v1 − Esyn,1)

)

, (5)

and

v2 =
Gsyn,1,2 S∞(v1)Esyn,2

gL,2 +Gsyn,1,2 S∞(v1)
, (6)

respectively, where

S−1
∞

(v) = vhlf + vslp ln
v

1− v
. (7)

2.2.2 Self-connected graded networks of a 2D resonant cell: nullclines

These networks are given by system (1)-(2) where v2 is substituted by v1 in Isyn,1 given by (3).
The phase-plane diagram is 2D. Because there is only one cell involved, we omit the subscript in the
notation of the participating variables and parameters. The v- and w-nullclines are given, respectively,
by

w = −
gLv +GsynS∞(v)(v − Esyn)

g
(8)

and

w = v. (9)

2.2.3 Graded network of two 2D cells: hyper-nullclines, fixed-points and dynamic
phase-plane analysis

These networks are given by system (1)-(4). The phase-space diagram is 4D. The v1- and v2-
nullsurfaces (obtained by making the current-balance equation for the corresponding nodes equal
to zero) depend on different variables (the v1-nullsurface depends on w1 and v2 and the v2-nullsurface
depends on v1 and w2). The w1- and w2-nullsurfaces are planes given by w1 = v1 and w2 = v2,
respectively. By substituting into the corresponding current-balance equations and rearranging terms
we obtain the following equations describing curves in the v1-v2 plane
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v2 = N1(v1) = S−1
∞

(

−
(gL,1 + g1) v1

Gsyn,2,1(v1 − Esyn,1)

)

(10)

and

v2 = N2(v1) =
Gsyn,1,2 S∞(v1)Esyn,2

gL,2 + g2 +Gsyn,1,2 S∞(v1)
. (11)

These are extensions of the nullclines (5) and (6) for the networks of 1D passive cells. Their inter-
section (v̄1, v̄2) give the v1- and v2-coordinates of the 4D fixed-points (v̄1, v̄2, w̄1, w̄2) = (v̄1, v̄2, v̄1, v̄2).
However, they are not nullclines, but projections of hyper-nullsurfaces onto the v1-v2 plane. We refer
to them as hyper-nullclines. For the hybrid networks having one 2D and one 1D cell we set g2 = 0 in
(11).

2.3 Bifurcation diagrams

As we mentioned in the previous section, the fixed-points are the intersections between the nullclines
(for 2D systems) or the hyper-nullclines (for 3D and 4D systems). To determine the stability of the
fixed-points we calculate the eigenvalues of the corresponding linearized system. For the 2D system
of two 1D passive cells, the eigenvalues are easily calculated (see Appendix A). The expressions of the
eigenvalues for the other considered networks (3D or 4D) are much more extensive and we will not
show them in this work.

In all systems we can study the eigenvalue expressions when the parameter values vary, and we
determine the existence of static bifurcations (such as, pitchfork and saddle-node) and dynamic bi-
furcations (for example, Hopf bifurcation) [77]. If a Hopf bifurcation exists, we calculate the first
Lyapunov coefficient with the MATLAB package MatCont [78], to determine the direction and sta-
bility of the emerging branch of cycles.

Considering the bifurcations of the fixed-points, we construct bifurcation diagrams in several pa-
rameter spaces determining regions with different dynamical scenarios. In particular, we can determine
parameter values in which stable limit cycles exist.

2.4 Conductance-based models

Primarily for illustrative purposes, in some of our simulations we used biophysical (conductance-based)
models [79, 80] to describe the subthreshold dynamics of neurons having one resonant and one fast
amplifying currents. The current balance equation is given by

C
dV

dt
= −IL − I1 − I2 − Isyn(t) + Iapp + Iin(t), (12)

where V is the membrane potential (mV), t is time (ms), C is the membrane capacitance (µF/cm2),
Iapp is the applied bias (DC) current (µA/cm2), Iin(t) is a time-dependent input current (µA/cm2),
IL = GL (V −EL) is the leak current, and Ij = Gj xj (V −Ej) are generic expressions for ionic currents
(j = 1, 2) with maximal conductance Gj (mS/cm2) and reversal potentials Ej (mV) respectively. The
gating variables obey kinetic equations of the form
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dx

dt
=

x∞(V )− x

τx(V )
. (13)

where xj,∞(V ) and τj,x(V ) are the voltage-dependent activation/inactivation curves and time con-
stants respectively. The former are given by

x∞(V ) =

(

1 + e
σx

V −Vhlf,x

Vslp,x

)

−1

, (14)

where Vhlf,x and Vslp,x > 0 are constants and the sign of σx indicates whether the curve describes an
activation (σx < 0) or inactivation (σx > 0) process. In this paper we use voltage-independent time
constants τj,x. This assumption is mostly for simplicity since we are focusing on the subthreshold
voltage regime where the time constants are typically slowly varying functions of V .

The ionic currents Ij we consider here are persistent sodium, INap = GNap p∞(V ) (V − ENa),
hyperpolarization-activated, mixed-cation, inward (or h-), Ih = Gh r (V − Eh) and slow-potassium
(M-type) IKs = GKs q (V − Ek).

2.5 Numerical simulations

The numerical solutions were computed by using the modified Euler method (Runge-Kutta, order
2) [81] with a time step ∆t = 0.1 ms in MATLAB (The Mathworks, Natick, MA). Smaller values of
∆t have been used to check the accuracy of the results.

3 Results

3.1 Two-cell networks of passive cells do not produce limit cycle

oscillations

Here we discuss some basic results regarding networks consisting of two interconnected cells with no
cellular resonance and no self-connections. We use system (1) with gk = 0 (k = 1, 2). The linearized
conductances are restricted to be gL,1 > 0 and gL,2 > 0. Negative values of these linearized conduc-
tances are possible from the linearization procedure [2, 3]. However, the lack of both nonlinearities
and intrinsic (resonant) negative feedback effects would cause the fixed-points (if they exist) to be
unstable. It is conceivable though that network stabilize the instabilities of the individual cells under
certain constraints.

The mathematical structure of these networks is similar to the two-dimensional firing rate models
of Wilson-Cowan type [5, 68, 69] (with no self-connections) and some of the results for these models
qualitatively apply here. For example, two-cell networks with the same connectivity sign (excitation
or inhibition) and excitatory-inhibitory networks without recurrent (self-) excitation cannot produce
sustained oscillations. We refer the reader to these references for further details.

The equations for the v1- and v2-nullclines are given by eqs. (5) and (6), respectively. Expressions
for the eigenvalues for the fixed-points are presented in the Appendix A.
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3.1.1 Inhibitory networks of passive cells do not produce oscillations

The v1- and v2-nullclines are quasi-linear for low values of the maximal synaptic conductances Gin,1,2

and Gin,2,1, respectively (Figs. 3-a1, -b1 and -c1) and therefore the network has a single fixed-point,
which is stable. Increasing values Gin,1,2 and Gin,2,1 cause the corresponding nullclines to develop
nonlinearities and additional fixed-points may emerge and be destroyed. These fixed-points can be
either stable nodes or saddles (see Appendix A).

For homogeneous networks (gL,1 = gL,2, Gin,1,2 = Gin,2,1, Esyn,1 = Esyn,2 and identical functions
S∞(v)), the stable fixed-point for low enough values of Gin (= Gin,1,2 = Gin,2,1) is symmetric (Fig.
3-a1). As Gin increases above some critical value (Fig. 3-a2), a pitchfork bifurcation occurs. The
symmetric fixed-point becomes unstable and two (non-symmetric) stable fixed-points are created (Fig.
3-a3). As Gin increases further, the fixed-points move along the nullclines, but the system remains
bistable (not shown).

For heterogeneous networks, bistability is created and terminated by saddle-node bifurcations
(Figs. 3-b and -c). Fig. 3-c illustrates this for a network of identical cells with heterogeneous
connectivity as the ratio Gin,1,2/Gin,2,1 decreases (Gin,2,1 increases with Gin,1,2 fixed). For low enough
values of Gin,2,1 cell 2 is inhibited (Figs. 3-c1 and c2). As Gin,2,1 increases a stable and an unstable
fixed-points are created (Fig. 3-c3). The stable fixed-point corresponds to an inhibited state for cell
1. The basin of attraction (measured as the distance between the stable and unstable fixed-points) is
larger for the fixed-point corresponding to cell 2 being inhibited (stable fixed-point to the right). As
Gin,2,1 increases further, the unstable fixed-point moves closer to this fixed-point (Fig. 3-c4). The two
of them eventually collide and disappear as Gin,2,1 continues to increase leaving the inhibited cell 1 as
the only steady state (Fig. 3-c5 and c6). Qualitatively similar dynamics are obtained for intrinsically
heterogeneous networks with homogeneous/heterogeneous connectivity (not shown).

3.1.2 Excitatory-inhibitory networks of passive cells produce damped oscillations
for balanced levels of excitation and inhibition

We illustrate this in Fig. 4. From eq. (22) in the Appendix A, for fixed values of Gex,1,2 the
eigenvalues are both real and negative for low enough values of Gin,2,1 (Fig. 4-a). As Gin,2,1 increases,
the radicand decreases and eventually becomes negative leading to complex eigenvalues (Fig. 4-b). As
Gin,2,1 increases further, the effect on Fv2 is balanced the effect on Fv1 , and the eigenvalues become
real again (Fig. 4-c). These eigenvalues never loose stability and therefore, no limit cycle oscillations
exist in these networks.

3.2 Self-excited resonators can produce limit cycle oscillations and

their frequency monotonically depends on the resonator’s resonant
frequency

The self-excited resonator model is given by system (1)-(2) where vk = vj in Isyn,k (3). Because there
is only one cell involved, we omit the subscripts in the notation of the variables and parameters. The
nullclines of the phase-plane diagrams are given by (8) and (9). The individual resonator does not
oscillate.

Self-excitation is the simplest mechanism of network oscillation amplification of a resonator. Math-
ematically, a self-excited resonator has the same structure as individual resonator+amplifying current
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Figure 3: Reciprocally inhibitory networks of passive cells: phase-plane diagrams. The v1- and v2-nullclines are

given by (5) and (6), respectively. Black dots indicate stable fixed-points (nodes) and gray dots indicate unstable fixed-points

(saddles). a Identical cells and connectivity. The parameter Gin represents Gin,1,2 = Gin,2,1. b. Non-identical cells with

identical connectivity. The parameter Gin represents Gin,1,2 = Gin,2,1. c. Identical cell with non-identical connectivity. We

used the following parameter values: gL,1 = gL,2 = 0.25, Ein,1 = Ein,2 = −20, vhlf = 0, vslp = 1.
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Figure 4: Excitatory-inhibitory networks of passive cells: phase-plane diagrams. The v1- and v2-nullclines are

given by (5) and (6), respectively. Black dots indicate stable nodes and gray dots indicate stable foci. For fixed values of

Gex,1,2 = 0.01, as Gin,2,1 increases, the fixed-point transitions from stable nodes to stable foci and back to stable nodes. We

used the following parameter values: gL,1 = gL,2 = 0.25, Ein,1 = Eex,2 = 60, vhlf = 0, vslp = 1.

models (e.g., Ih+ INap or IKs+INap), which are able to produce sustained oscillations for large enough
amplification levels (Fig. 1) [9]. In both types of models the activation of the amplifying component
(Isyn and INap) is instantaneous (or very fast), the shapes of their activation curves are similar, and
the reversal potentials (ENa and Eex) are above the resting potential. Models having Ih or IKs as the
only active ionic currents are quasi-linear resonators [9]. Therefore, it is not surprising that self-excited
linear resonators are able to produce oscillations given that resonant+amplifying models can do so.
However, since resonance and amplification belong to different levels of organization in self-excited
resonators, we can dissociate these two effects and investigate the effects of the resonant frequency of
the individual neurons on the oscillation frequency, which we cannot do in individual cells.

3.2.1 Self-excited resonators can produce sustained (limit cycle) oscillations for
appropriate balances among the resonance, amplification and excitation levels

Geometrically, increasing values of the excitatory maximal conductance Gex create nonlinearities of
cubic type in the phase-planed diagram (Fig. 5). In single neurons this type of nonlinearities are
typically created by amplifying gating variables (e.g., INap) in the presence of resonant gating variables
(e.g., Ih or IKs) [9, 11] (see also [5, 7]).

Fig. 5-a illustrates the effects of increasing values of Gex when the linearized resonant conductance
g (= 1) is much larger than the linearized leak conductance gL (= 0.25) for a resonator (with no
intrinsic damped oscillations when Gex = 0). For low values of Gex, the coupled cell shows damped
oscillations as the cubic-like nonlinearities of the v-nullcline begin to develop (panel a1). Limit cycle
oscillations emerge as Gex increases further (panel a2) and disappear when the fixed-point moves to
the right branch of the cubic-like v-nullcline for larger values of Gex and regains stability (panel a3). As
Gex increases within the oscillatory range the amplitude increases and a time scale separation between
the participating becomes more prominent, generating, for large enough values of Gex, oscillations of
relaxation type (Fig. 6-a).

Fig. 5-b illustrates that oscillations are not generated when the g (= 0.25) to gL (= 0.25) ratios are
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relatively low. The cubic-like nonlinearities are still developed for high enough values of Gex (panels
b2 and b3), but the fixed-point is located on the right branch of the v-nullcline where the fixed-point
is stable, and moves further away from the knee as Gex increases. The amplification still happens,
but it leads directly to depolarization block without oscillations. Similar behavior was observed when
the fixed-point of the isolated cell is a stable focus instead of a stable node. However, oscillations can
be restored by increasing the value of vhlf , which moves the fixed-point to the middle branch where
it loses stability (not shown).

The transition of a resonator to a damped oscillator can be achieved by decreasing the value
of τ [3]. Contrary to intuition, the presence of damped oscillations in the cell does not necessarily
generate sustained oscillations in the self-excited network (Fig. 5-c). When it happens, the time scale
separation is smaller than for the resonator and therefore relaxation oscillations are more difficult to
obtain (Fig. 6-b).

3.2.2 The intrinsic resonant frequency controls the network oscillations frequency

Self-excited resonators are the simplest models where we can investigate the effects that changes on
the resonant frequency (fres) of the individual non-oscillatory cells have on the network oscillation
frequency (fntw). The resonator parameters that control fres (26) also control the values of other
attributes of the impedance profile Z(f) such as the maximal impedance Zmax (27). In order to
establish the effects of fres on fntw it is necessary change the model parameters in such a way as to
cause the minimal possible changes on the shape of Z(f) [41]. In the ideal situation, changes in fres
would be accompanied only by a translation of Z(f). This is not possible for 2D linear models, but it
is possible to change the model parameters in a balanced way so that fres changes, but Zmax remains
constant [41]. In this way the impedance profiles are displaced with minimal changes in their shape
(Fig. 7-a).

Figs. 7-b and -c show that increasing values of fres directly affect fntw (Figs. 7-b1 and -c1) with
minimal changes in the oscillation amplitude (Figs. 7-b2 and -c2). The onset of oscillations occurs for
lower values of fres the lower gL (Figs. 7-b1) and Gex (Figs. 7-c1). As expected, the oscillations are
more amplified the lower gL (Figs. 7-b2) [3, 9] and the higher Gex (Figs. 7-c2).

3.2.3 Self-inhibited resonators do not produce sustained (limit cycle) oscillations

The primary effect of self-inhibition is to attenuate signals. By this we mean to reduce the equilibrium
values (Fig. 8-a), to reduce the amplitude of the damped oscillations (measured, for example, as the
difference between a maximum and the consecutive minimum), or to transform damped oscillations
into trajectories of a stable node (Fig. 8-b).

The presence of self-inhibition generates nonlinearities in the v-nullcline, while the w-nullcline
remains linear (as for the uncoupled system) (Figs. 8-a2 and -b2). The dependence of these nonlinear
effects with the connectivity parameters is illustrated in Figs. 8. For low values of Gin the system is
quasi-linear (Figs. 8-a1 and -b1) and the dynamics qualitatively remains as for the uncoupled system
(not shown). For larger values of Gin the v-nullcline bends creating two quasi-linear portions (Figs.
8-a2 and -b2) with different slopes. For the connectivity parameters used in Figs. 8-a2 and -b2 (Gin,
vhlf and vslp) the fixed-point is located on the branch of the v-nullcline with the steepest slope, which
in some cases changes the properties of the fixed-point (Fig. 8-b). For higher values of vhlf where the
synaptic function moves to the right, effectively decreasing the connectivity, the v-nullcline remains
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Figure 5: Self-excited (linear) resonators can produce sustained (limit cycle) oscillations, while self-excited

damped-oscillators may fail to produce sustained oscillations. Phase-plane diagrams for representative pa-

rameter values. The v- and w-nullclines are given by (8) and (9), respectively. The fixed-point for the uncoupled (linear)

system is a stable node (fnat = 0) in panels a and b and a stable focus in panels c (fnat ∼ 48.9). a. fres ∼ 17.6 for gL = 0.25,

g = 1 and τ = 100. b. fres ∼ 10.4 for gL = 0.25, g = 0.25 and τ = 100. c. fres ∼ 55.2 for gL = 0.25, g = 1 and τ = 10. We

used the following additional parameter values: , Eex = 60, vhlf = 0, vslp = 1.
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Figure 6: Development of relaxation oscillations in self-excited resonators, but not necessarily in self-excited

damped-oscillators. (a) Self-excited resonator. Parameter values are as in Fig. 5-a: fres ∼ 17.6 and fnat = 0 for gL = 0.25,

g = 1 and τ = 100. Oscillations are generated/terminated by Hopf bifurcations for low (supercritical) and high (subcritical)

values of Gex. (a1) fntw = 15.5 for Gex = 0.021. (a2) fntw = 11.1 for Gex = 0.04. (a3) fntw = 8.5 for Gex = 0.05.

(b) Self-excited damped-oscillator. Parameter values are as in Fig. 5-c, except for g that is larger to produce sustained

oscillations: fres ∼ 59.8 and fnat = 53.8 for gL = 0.25, g = 1.2 and τ = 10. (b1) fntw = 52.1 for Gex = 0.032. (b2)

fntw = 48.5 for Gex = 0.05. (b3) fntw = 45.5 for Gex = 0.065. We used the following additional parameter values: Eex = 60,

vhlf = 0, vslp = 1.
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Figure 7: Oscillations in self-excited resonators: the intrinsic resonant frequency controls the network fre-

quency. a. Representative resonator impedance profiles with different resonant frequencies (fres) and the same maximal

impedance: Zmax ∼ 9.5 (a1) and Zmax = 3.9 (a2). b. Network oscillation frequency (b1) and amplitude (b2) as a function

of fres for representative values of gL. c. Network oscillation frequency (c1) and amplitude (c2) as a function of fres for

representative values of Gex. We used the following parameter values: Eex = 60, vhlf = 0, vslp = 1.
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nonlinear, but the fixed-point moves to the other portion of the v-nullcline (not shown).
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Figure 8: Self-inhibited resonant cells: phase-plane diagrams for representative parameter values. The v- and

w-nullclines are given by (8) and (9), respectively. Black dots indicate stable nodes and gray dots indicate stable foci. a.

gL = 0.25. The fixed-point for the uncoupled system is a stable node. b. gL = 0.01. The fixed-point for the uncoupled

system is a stable focus. We used the following parameter values: g = 0.25, τ = 100, Ein = −20, vhlf = 0, vslp = 1.

3.2.4 Self-excited low-pass filter cells do not produce sustained (limit cycle) os-
cillations

Resonance can be lost by various mechanisms [3]. One of them is having low enough values of the
resonant conductance g (in the limit of g = 0 the coupled cell is 1D and therefore oscillations are not
possible). Another one is having low-enough values of the time constant τ . Fig. 9-a illustrates how
oscillations are lost as τ decreases. Note that the location of the fixed-point is independent of τ . Figs.
9-b anc -c illustrate that oscillations cannot be recovered by decreasing Gex (panel b) or increasing
vhlf (panel c) for the same value of τ as in panel a3. In both cases, these changes move the fixed-point
to the middle branch of the v-nullcline, but it remains stable.
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Figure 9: Self-excited 2D cells: phase-plane diagrams for representative parameter values. The v- and w-

nullclines are given by (8) and (9), respectively. The quantities fnat and fres refer to the natural and resonant frequencies of

the uncoupled cells. The fixed-point for the uncoupled system is a stable focus. a. Gex = 0.04 and vhlf = 0. b. Gex = 0.015

and vhlf = 0. c. Gex = 0.04 and vhlf = 1. We used the following parameter values: gL = 0.25, g = 1, Eex = 60, vslp = 1.
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3.3 Mutually inhibitory 2D/1D hybrid networks can generate sus-
tained (limit cycle) oscillations and their frequency monotonically

depends on the intrinsic resonant frequency

The hybrid networks we consider here consist of a linear resonator (2D, cell 1) and a passive cell (1D,
cell 2) reciprocally inhibited through graded synapses. We use system (1)-(2) with g1 > 0 and g2 = 0
and the additional description of the synaptic connectivity presented in Section 2.

These networks can be thought of as two “overlapping” circuits, non of each able to produce
oscillations on their own: the linear 2D resonator used in Section 3.2 and the reciprocally inhibited
passive cells discussed in Section 3.1. The oscillations result from the combined activity of these
two “sub-circuits” where the mutually-inhibitory component acts as an amplifier of the resonant
component.

For our analysis we represent the dynamics of these 3D networks using projections of the 3D phase-
space (for v1, w1 and v2) onto the v1−v2 plane and use the hyper-nullclines (10)-(11) (g2 = 0) defined
in Section 2.2 (e.g., Fig. 10, left columns). In order to relate the dynamics of the hybrid networks to
these of the mutually inhibitory passive cells (Section 3.1) we include in the phase-plane diagrams the
v-nullcline for cell 1 (dashed-red curve) for g1 = 0 (no resonant gating variable).

3.3.1 Oscillations can be generated in 2D/1D hybrid networks and are amplified
with increasing levels of mutual inhibition

Fig. 10 shows the oscillations generated in these networks for values of Gin (= Gin,1,2 = Gin,2,1) that
increase from top to bottom. Because the networks are mutually inhibited, these oscillations are not
synchronized in-phase. They are created in a supercritical Hopf bifurcation (Fig. 13-a1) and therefore
they have small amplitude and are sinusoidal-like for small enough values of Gin (Fig. 10-a). The
effect of the resonant gating variable w1 is to bring the fixed-point of the mutually inhibitory (non-
oscillatory) 1D/1D system (intersection between the dashed-red and green curves) to the oscillatory
region where the v2 hyper-nullcline (green curve) is non-linear.

The oscillations amplitude increases with increasing values of Gin as the limit cycle trajectories
evolve in small vicinities of the v2 hyper-nullcline (Fig. 10-b and -c). This amplification is accompanied
by the development of a separation of time scales. For large enough values of Gin the oscillations are
of relaxation-type (Fig. 10-c). This partially reflects the time constant of the resonators, which needs
to be slow enough, but it is a network effect since linear models do not display sustained oscillations.

For low values of Gin within the oscillatory regime, the network has only one fixed-point. As Gin

increases, additional fixed-points are created (Figs. 10-c1 and 13-c1) in a Pitchfork bifurcation (Fig.
13-a1), but they are not stable and they do not obstruct the presence of oscillations. However, as Gin

increase further, these new fixed-points become stable by subcritical Hopf bifurcations and coexist
as attractors with the limit cycle (Fig. 13-a1). The oscillations are abruptly terminated when the
stable limit cycle collides with an unstable limit cycle generated in one of the mentioned subcritical
Hopf bifurcations (Fig 13-c1). Without oscillations the attractors that remain in the network are the
fixed-points corresponding to one of the cells inhibited (Fig. 13-a1 and c1).

Similarly to the mutually inhibited passive cells discussed above, for other parameter regimes the
pitchfork bifurcation can be transformed into a saddle-node bifurcation (Fig. 13-a2) without causing
significant qualitative changes to the network dynamics (Fig. 13-c2).
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Fig. 13-b illustrates that existence of network oscillations requires balanced combinations of Gin

and g1.
The generation of oscillations requires certain heterogeneity in the underlying mutually inhibitory

1D/1D system. For the oscillations in Fig. 10 gL,1 = 0.25, gL,2 = 0.5. This has been observed also for
the related system studied in [67]. Oscillations are not possible for the hybrid 2D/1D network when
gL,1 = gL,2 and C1 = C2 unless there is heterogeneity in the synaptic connectivity (Gin,2,1 > Gin,1,2)
(not shown).

3.3.2 Development of relaxation oscillations for large mutual inhibition levels

In order to understand the mechanisms of generation of network oscillations and their properties in
terms of the model parameters it is useful to consider the v1-nullsurface

v2 = N1,w1
(v1, w1) = S−1

∞

(

−
gL,1v1 + g1w1

Gsyn,2,1(v1 − Esyn,1)

)

(15)

parametrized by constant values of w1, N1c(v1) = N1c(v1, c), and track the motion of the trajectory
as time progresses and the values of w1 change. This will cause the v1-hyper-nullclines in Fig. 10 to
move as the trajectory evolves following the dynamics of w1. For the second cell the curve (12) for
g2 = 0 is time-independent and therefore remains fixed. Note that eq. (15) is eq. (10) before w1 is
substituted by v1.

In order to uncover the presence of nonlinearities of cubic type and to further capture the effect of
the model’s geometric properties that give rise to the different types of oscillations we use an adapted
version (Fig. 11) of the phase-plane diagram discussed in Fig. 10 where the hyper-nullclines and
trajectories are referred to the v2-hyper-nullcline. In the adapted phase-plane diagram, the v2 hyper-
nullcline (green curve) is the zero-level line and the v1-hyper-nullclines (red curves) are cubic-like.
The dashed-red curves represent the maximum (lower curve) and minimum (upper curve) levels of w1

during the oscillations. The red curve moves in between these two dashed-red curves as the oscillation
progresses. The intersections between the green line and the moving red curve generated “transient
fixed-points”, which are not fixed-points of the 3D system, but they serve as targets for the evolution
of the trajectories. Specifically, in the v1-v2 plane presented in Fig. 11 (left panels), trajectories
move towards the transient fixed-points with negative slope and their speed depends on the distance
between the moving red curve and the green line. The existence of oscillations imply that the local
extrema of the dashed-red curves do not intersect the zero-level reference green line. We emphasize
that this is not a standard phase-plane diagram and it captures only specific aspects of the dynamics.

Similarly the self-excited resonator discussed above, increasing amplification levels are character-
ized by more pronounced cubic-like nonlinearities. Here the amplification levels are provided by the
levels of mutual inhibition that are measured in terms of the values of Gin (compare panels a1 and b1
in Fig. 11).

When w1 = w1,min the red curve is at its highest level and the trajectory moves to the right
(F1), towards the only transient fixed-point with relatively high speed (jump up). As this happens w1

increases, causing the red curve to shift down with the consequent motion of the transient fixed-point
to the left. The variable v1 reaches its maximum when the trajectory crosses the transient fixed point
and is forced to reverse direction (S1). As the red curve continues to shifts down, the stable and
unstable transient fixed-points collide and disappear leaving only one transient fixed-point (on the
leftmost side, for lower values of v1), which becomes the new target for the trajectory. The trajectory
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Figure 10: Oscillations generated in mutually inhibited hybrid 2D-1D networks. Cell 1 is a resonator with

fres = 10.4 (fnat = 0) and cell 2 is a passive cell. Left. Phase-plane diagrams. The v1- and v2-hyper-nullclines are given

by (10) and (11), respectively. Black dots indicate stable nodes and gray dots indicate unstable foci. The dashed red curve

represents the v1 nullcline for cell 1 for g1 = 0 (no resonant gating variable). Right. Voltage traces (curves of v1 and v2

as a function of t). (a) Gin,1,2 = Gin,2,1 = 0.112. The network frequency is fntw = 6.1. (b) Gin,1,2 = Gin,2,1 = 0.14. The

network frequency is fntw = 5.4. (c) Gin,1,2 = Gin,2,1 = 0.22. The network frequency is fntw = 2.4. We used the following

parameter values: g1 = 0.25, gL,1 = 0.25, gL,2 = 0.5, τ = 100, Ein = −20, vhlf = 0, vslp = 1.
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moves towards this target fixed-point, but it does so on a very slow time scale (S1) due to the ghost
effect of the “defunct” fixed-points until it reaches the (jump down) region of fast motion (F2). The
process repeats to complete the cycle through.

Relaxation oscillations are created when difference between the two local extrema on each dashed-
red curve is large enough (well separated). This occus in Fig. 11-a, but not in Fig. 11-b, where the
oscillations do not show any separation of time scales.
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Figure 11: Development of relaxation oscillations for large mutual inhibition levels in hybrid 2D-1D networks.

The parameter values correspond to Fig. 10. Cell 1 is a resonator with fres = 10.4 (fnat = 0) and cell 2 is a passive cell. The

values of Gin,1,2 = Gin,2,1 are represented by Gin. Left. Adapted phase-plane diagrams relative to the v2-hyper-nullcline

N2c(v1) (green curve in the phase-plane diagrams in Fig. 10, left panels). The red lines are the differences between the v1-

and v2-hyper-nullclines in Fig. 10 (left panels) parametrized by constant values of w1. The solid-red curve corresponds to the

fixed-point w1 = w̄1. The dashed-red curves correspond to the maximal w1,max (lower) and minimal w1,min (upper) values

of w1. The trajectories (blue curves) are also referred to the v2-hyper-nullcline N2c(v1). Right. Voltage traces for v1, v2 and

w1. (a) Relaxation oscillations for Gin,1,2 = Gin,2,1 = 0.22. The network frequency is fntw = 2.4. (b) Oscillations with a

uniform time scale for Gin,1,2 = Gin,2,1 = 0.112. The network frequency is fntw = 6.1.
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3.3.3 The resonator’s intrinsic resonant frequency controls the network oscilla-
tions frequency

Similarly to the self-excited resonator networks discussed above, the functional role of cellular res-
onance is to determine the frequency of the network oscillations. This is illustrated in Fig. 12 for
various representative parameter set values. We followed the same protocol as in Section 3.2.2 (Fig. 7):
for each value of fres, the values of g1 and τ1 are balanced so to maintain Zmax constant. In all cases,
fntw increases with increasing values of fres (left panels). The oscillation amplitude increases with
increasing values of Gin (= Gin,1,2 = Gin,2,1) and is more variable than for the self-excited resonator.

The oscillatory active fres band (the range of values of fres for which network oscillations are
possible) is relatively small as compared to the self-excited resonator network and it depends on the
value of Zmax and gL,1. All other parameters fixed, decreasing values of Zmax (from Fig. 12-a to
-b) causes the oscillatory active resonant frequency band to slide to the right. Fig. 12-c shows that
the size active frequency band can be increased by decreasing gL,1 and increasing Zmax. A proper
comparison would involve changing one parameter at the time, but decreasing values of gL,1 require
increasing values of Zmax for the oscillations to be present.

3.4 Mutually excitatory 2D/1D hybrid networks can generate sus-

tained (limit cycle) oscillations and their frequency monotonically
depends on the intrinsic resonant frequency

In Section 3.2 we showed that self-excited resonators can produce limit cycle oscillations, their fre-
quency monotonically depends on the resonator’s resonant frequency, and relaxation oscillations de-
velop for high enough levels of self excitation. Here we extend our results to include two-cell networks.
Because self-excited resonators may be thought of as representing a population of synchronized in
phase cells, we expect our results from Section 3.2 to hold of these networks. However, the presence
of nonlinearities of cubic type are not apparent from either the model equations or the phase-space
diagrams and need to be uncovered using the method developed in Section 3.3.

3.4.1 Oscillations can be generated in 2D/1D hybrid networks and are amplified
with increasing levels of mutual excitation

Fig. 14-a1 show the small amplitude oscillations generated in a Hopf bifurcation (Fig. 16) for low
enough values of Gex (Gex,1,2 = Gex,2,1). This oscillations are not identical, because the cells are not
identical, but they are synchronized in phase. Fig. 14-b1 shows that increasing values of Gex lead to
oscillations of relaxation type. The dynamic mechanisms of oscillation amplification (Figs. 14-a2 and
-b2) as well as the cubic-based mechanisms of generation of relaxation oscillations (Figs. 14-a3 and
-b3) are analogous to the mutually inhibitory networks discussed in Section 3.3.

3.4.2 The resonator’s intrinsic frequency controls the network oscillations fre-
quency

Our results are presented in Fig. 15 for (i) values of Z1,max that increase from panel a to b (for a
fixed-value of gL,1), and (ii) values of gL,1 that decrease from panel b to c (for a fixed values of Z1,max).
In contrast to the mutually inhibitory networks, by increasing Z1,max, the oscillatory active resonant
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Figure 12: Oscillations in mutually inhibitory resonator-passive cell networks (2D/1D): the intrinsic resonant

frequency controls the network frequency. Left columns. Network oscillation frequency as a function of fres. Right

columns. Network oscillation amplitude (oscillator 1) as a function of fres. The synaptic conductances Gin,1,2 = Gin,2,1

are equal to the values reported in the figure. a. gL,1 = 0.25, Z1,max = 3.9. b. gL,1 = 0.25, Z1,max = 3.7. c. gL,1 = 0.1,

Z1,max = 6. We used the following parameter values: gL,2 = 0.5, Ein = −20, vhlf = 0, vslp = 1.
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Figure 13: Bifurcation diagrams for mutually inhibitory resonator-passive cell networks (2D/1D) for repre-

sentative parameter values. The shadowed region corresponds the existence of sustained (limit cycle) oscillations. The

green-lined region corresponds to multistability (limit cycle and/or fixed-points). The inset trajectory diagrams indicated

the dynamics within the regions bounded by the solid and dashed curves (except the solid green curve): stable nodes, stable

foci, unstable foci and unstable nodes (from left to right). The inset diagrams correspond to the 3D linearized system for

the fixed-point before the static bifurcation. H0, H1 and H2 note the Hopf bifurcation branches, PF notes the pitchfork

bifurcation branch and SN notes the saddle-node branch. a. Bifurcation diagram in Gin-τ1 parameter space. Cell 1 is

a resonator for values of τ1 > τ1,res (dashed-black horizontal line). a1 gL,1 = 0.25 and g1 = 0.25. a2 gL,1 = 0.25 and

g1 = 0.3. b. Bifurcation diagram in Gin-g1 parameter space for gL,1 = 0.25 and τ1 = 100. c. Bifurcation diagram with Gin

as bifurcation parameter. The solid- and dashed-blue curves represent stable and unstable fixed-points, respectively. The

solid- and dashed-black curves represent the stable and unstable limit cycle branches created at the Hopf bifurcations (red

dots). c1 gL,1 = 0.25, g1 = 0.25 and τ1 = 40. c2 gL,1 = 0.25, g1 = 0.3 and τ1 = 40. We used the following parameter values:

gL,2 = 0.5, Ein = −20, vhlf = 0, vslp = 1.
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frequency band is increased, while the onset of oscillations occurs for lower values of fres, similarly to
mutually inhibitory networks. The opposite behavior is observed for decreasing gL,1 with all the other
parameters fixed. The behavior of the oscillations amplitude is similar to the mutually inhibitory
networks.
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Figure 14: Oscillations generated in mutually excited hybrid 2D-1D networks. Cell 1 is a resonator with fres = 8

(fnat = 0) and cell 2 is a passive cell. Left. Voltage traces (curves of v1 and v2 as a function of t ). Middle. Phase-plane

diagrams. The v1- and v2-hyper-nullclines are given by (10) and (11), respectively. The dashed red curve represents the v1

nullcline for cell 1 for g1 = 0 (no resonant gating variable). Right. Adapted phase-plane diagrams relative to the v2-hyper-

nullcline N2c(v1) (green curve in the phase-plane diagrams in the left panels). The red lines are the differences between the

v1- and v2-hyper-nullclines in the left panels parametrized by constant values of w1. The solid-red curve corresponds to an

intermediate value of w1. The dashed-red curves correspond to the maximal w1,max (lower) and minimal w1,min (upper)

values of w1. The trajectories (blue curves) are also referred to the v2-hyper-nullcline N2c(v1). a. Gex,1,2 = Gex,2,1 = 0.032.

The network frequency is fntw ∼ 7.1. b. Gex,1,2 = Gex,2,1 = 0.04. The network frequency is fntw ∼ 4.3. We used the

following parameter values: g1 = 1.8, gL,1 = 0.1, gL,2 = 1, τ = 750, Eex = 60, vhlf = 0, vslp = 1.
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Figure 15: Oscillations in mutually excited hybrid 2D-1D networks: the intrinsic resonant frequency controls

the network frequency. Left columns. Network oscillation frequency as a function of fres. Right columns. Network

oscillation amplitude (oscillator 1) as a function of fres. The synaptic conductances Gex,1,2 = Gex,2,1 are equal to the values

reported in the figure. a. gL,1 = 0.1, Z1,max = 9.2. b. gL,1 = 0.1, Z1,max = 9.87. c. gL,1 = 0.08, Z1,max = 9.87. We used

the parameter value gL,2 = 1, Eex = 60, vhlf = 0, vslp = 1.
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Figure 16: Bifurcation diagrams for mutually excitatory resonator-passive cell networks (2D/1D) for repre-

sentative parameter values. The shadowed region corresponds the existence of sustained (limit cycle) oscillations. The

green-lined region corresponds to multistability (limit cycle and/or fixed-points). The inset trajectory diagrams indicated the

dynamics within the regions bounded by the solid and dashed curves (except the solid green curve): stable and unstable foci.

H0 and H1 note the Hopf bifurcation branches. a. Bifurcation diagram in Gex-τ1 parameter space for gL,1 = 0.1 and g1 = 2.

Cell 1 is a resonator for values of τ1 > τ1,res ∼ 0.205: b. Bifurcation diagram in Gex-g1 parameter space for gL,1 = 0.1 and

τ1 = 100. We used the following parameter values: gL,2 = 1.2, Eex = 60, vhlf = 0, vslp = 1.

3.5 Graded mutually inhibitory or excitatory 2D/2D resonator net-

works generate sustained (limit cycle) oscillations and their frequency
interact to control the network frequency

Here we extend our results from Sections 3.3 and 3.4 to networks having two mutually connected 2D
resonators (that are not damped oscillators). We consider heterogeneous networks of non-identical
resonator in order to test the effects of the interaction band-pass filters with different frequency bands.
Because the mechanisms of generation of oscillations are similar to those discussed in Sections 3.3 and
3.4, we focus on the effects of the resonant frequencies of the participating resonators on the network
oscillation frequency. Our results are presented in Figs. 17. The gray curves corresponds to networks
of resonators with the same frequency band. The network model is given by system (1)-(4) with
g1, g2 > 0.

Fig. 17 shows the dependence of the network frequency on f1,res for representative values of f2,res
and other model parameters for mutually inhibitory (panels a and b) and mutually excitatory (panels
c) networks. As expected, in all cases the network frequency monotonically depends on the resonant
frequency of both oscillators.

The range of values of f1,res for which network oscillations are possible increase with increasing
values of f2,res as does the network frequency. However, the network frequency and the resonant
frequency of the oscillators is no longer one-to-one, as was the case for the 2D/1D networks investigated
in Sections 3.3 and 3.4, but it depends on the complex interaction between the two resonators. The
one-to-one dependence between the network frequency and the resonant frequencies of the individual
oscillators occurs when the two resonators have the same resonant frequency (black dots). The slopes
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of the network frequency curves for non-identical resonators are smaller than for identical resonators
indicating that the network frequency is larger (smaller) than the resonant frequency to the left (right)
of the black dot. This is independent of the mechanisms of amplification (mutual inhibition or mutual
excitation).

Increasing values of Z2,max for fixed values of Z1,max and f2,res causes the range of values of f1,res
for which oscillations exist increase, but the slope of the network frequency curves remains almost
unchanged, independently of the value of gL,1 used and whether the mechanisms of amplification is
based on mutual excitation or mutual inhibition (not shown).

4 Discussion

Network oscillations emerge from the cooperative activity of the intrinsic properties of the participating
neurons and the synaptic connectivity, and involve the nonlinearities and time scales present in the
circuit components and these that emerge from their interplay. MPR is a property of the interaction
between oscillatory inputs and the intrinsic neuronal properties (intrinsic resonant and amplifying
processes) that uncovers a circuit latent time scale associated to the resonant frequency (MPR can
be observed in the absence of intrinsic damped oscillations [2, 3]). MPR has been investigated both
experimentally and theoretically in many neuron types [1–4, 12–56]. However, whether MPR plays
any functional role for network oscillations or is simply an epiphenomenon is largely an open question.
A few studies have investigated the oscillatory properties of networks including neurons that exhibit
MPR [41, 57–63] or have resonant gating variables [64–66]. But the role that MPR plays in the
generation of network oscillations and how the latent time scales affect the properties of the oscillatory
networks in which they are embedded remained to be understood. One problem in addressing these
questions is the fact that a resonator and its latent oscillatory properties are characterized by the
impedance profile and the resonant frequency, respectively, which are properties that only emerge in
the presence of an oscillatory (AC) interaction, unlike damped oscillations that are intrinsic neuronal
properties that can be uncovered by constant (DC) perturbations.

In this paper we set out to investigate these issues using minimal network models consisting of non-
oscillatory resonators mutually coupled to either a low-pass filter neuron or another band-pass filter
(resonator). In this way we could separate the different effects that give rise to network oscillations
in two different levels of organization that can be manipulated separately. The resonator provides
the negative feedback and the network connectivity provides the amplification. Because we leave
out resonators that can be also damped-oscillators, the network oscillations are not inherited from
the individual cell level, but are created by the combination of the individual cell and connectivity
properties.

We showed that oscillations can be generated in networks of increasing complexity: (i) self-excited
band-pass filters, (ii) mutually inhibited band- and low-pass filters, (iii) mutually excited band- and
low-pass filters, (iv) mutually inhibited band-pass filters, and (v) mutually excited band-pass filters.
The presence of a resonator is necessary to generate oscillations in these networks; if the resonators
are substituted by low-pass filters, network oscillations are not possible. However, what characterizes
the oscillatory activity of a resonator is the resonant frequency, which cannot be assessed in the
absence of oscillatory inputs. By showing that the network frequency monotonically depends on the
resonant frequency of the individual band-pass filters, we provide a direct link between MPR and the
generation of network oscillations. To our knowledge, this is the first time such a link is provided.
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Figure 17: Oscillations in mutually inhibitory or excitatory resonator cell networks (2D-2D): the intrinsic

resonant frequencies interact to control the network frequency. Left columns. Network oscillation frequency as

a function of fres. Right columns. Network oscillation amplitude (oscillator 1) as a function of fres. The gray curves

correspond to a network of identical cells for fixed values of gL,1 = gL,2 and Z1,max = Z2,max. The colored curves correspond

to a fixed cell 2 with the resonance frequency f2,res indicated in the figure. a. gL = 0.1, Zmax = 6, Gin = 0.1. b. gL = 0.25,

Zmax = 3.7, Gin = 0.1. c. gL = 0.1, Zmax = 9.2, Gex = 0.03.
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A similar results was obtained in electrically coupled networks [41], but in these cases, the network
oscillations were driven by one of the nodes that was a sustained oscillator. Network oscillations have
been shown to emerge as the result of the interaction of damped oscillators [65, 66, 82], but in these
cases, the network oscillations are inherited from the oscillatory activity of the individual intrinsically
oscillatory nodes.

The existence of sustained oscillations in networks of non-oscillatory neurons is not without prece-
dent. The inferior olive oscillatory network studied in [65] is composed of electrically coupled neurons
that, when isolated, are damped oscillators. In this case, the individual neurons are nonlinear and
include both resonant and amplifying effects, but the connectivity is linear. The model investigated
in [64] involves nonlinear neurons reciprocally inhibited with graded synapses. For baseline values of
the DC input current, the neurons are quasi-linear and are at most damped oscillators. The nonlin-
earities developed for negative input current values combined with the dynamics resulting from the
mutual synaptic inhibition result in the post-inhibitory rebound mechanism underlying the observed
network oscillations. Post-inhibitory rebound (PIR) and subthreshold resonance are closely related
phenomena since both require the presence of a negative feedback effect, but they are different in na-
ture. The mechanisms investigated in [64] depend crucially on the effective pulsatile nature resulting
from the dynamic interaction between cells and synaptic connectivity. Models having an h-current
also show PIR. Even in the presence of an (additive) amplifying current, such as the Ih + INap model,
the functional connectivity in these models is not PIR-based, but rather resonance-based as we show
in this paper (unpublished observation). In [67, 73] oscillations emerge in two reciprocally inhibited
passive cells where one of them is self-excited, thus providing additional dynamics to the network.
The model studied in [41] consists of an oscillator electrically coupled to a follower resonator whose
intrinsic resonant frequency directly affects the network frequency while the shape of the impedance
profile remains almost unchanged.

The minimal models we used in this paper serve the purpose of establishing the role of MPR for
the generation of network oscillations. Other types of models could include resonant properties at the
network level. Moreover, there are alternative possible scenarios where, for example, amplification
occurs at the single cell level and the negative feedback effect occurs at the network level. These types
of networks are beyond the scope of this paper. The understanding of the oscillatory properties of
such networks requires more research.

The types of models we used could be argued to be too simplistic and not realistic. We used these
models precisely because of their simplicity in order to understand some conceptual points that can be
generalized and applied to more realistic networks. However, one should note that the type of models
we used are very close to the firing rate models of Wilson-Cowan type [69] with adaptation [70–72],
which are essentially resonators (unpublished observation). In this models, the nonlinearity is similar
to the one we used (sigmoid type, instantaneously fast). Therefore, our results can be easily generalized
to these models. One example are the networks of OLM cells and fast spiking (PV+) interneurons
(INT) that have been shown to be able to produce network oscillations [83, 84]. OLM cells show
MPR [33], while the presence of MPR in INT is debated [25,33]. Although our models are simplistic,
they make predictions that can be tested using the dynamic clamp technique [85,86].

Our results open several questions regarding the ability of networks of band-pass filters to generate
oscillatory patterns and how the properties of these patterns depend on the properties of the band-pass
filters. More research is required to address these issues.
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A Graded networks of passive cells: linearization

The linearization of system (1) with gk = 0 for k = 1, 2 and Isyn,k given by (3) and (4) reads

dv1
dt

= Fv1(v1 − v̄1) + Fv2(v2 − v̄2), (16)

dv2
dt

= Gv1(v1 − v̄1) +Gv2(v2 − v̄2), (17)

where

C1 Fv1 = −gL,1 −Gsyn,2,1S∞(v̄2), (18)

C1 Fv2 = −Gsyn,2,1S
′

∞
(v̄2)(v̄1 − Esyn,1), (19)

C2Gv1 = −Gsyn,1,2S
′

∞
(v̄1)(v̄2 − Esyn,2), (20)

C2Gv2 = −gL,2 −Gsyn,1,2S∞(v̄1), (21)

The eigenvalues (r1 and r2) are given by

2 r1,2 = Fv1 +Gv2 ±
√

(Fv1 −Gv2)
2 + 4Fv2Gv1 . (22)

The first two terms in (22) are always negative (provided gL,1 > 0 and gL,2 > 0). The second term
in the radicand is positive if Fv2 and Gv1 have the same sign and negative if Fv2 and Gv1 have different
signs. Therefore, the fixed-point for networks with the same type of connections (both excitatory or
both inhibitory) can be either stable nodes or saddles, while the fixed-points for excitatory-inhibitory
networks can be either stable nodes or stable foci.
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B Impedance profiles with fixed peak values and chang-

ing resonant frequencies

The impedance profile for a 2D system of the form

C
dv

dt
= −gL v − g w, (23)

τ
dw

dt
= v − w, (24)

is given by

Z(ω) =

√

1 + τ2 ω2

(gL + g − τ C ω2)2 + (gL τ + C)2 ω2
, (25)

where ω = 2πf/1000. The resonant frequency is given by

ωres =
1

τ

√

−1 +

√

g2 + 2 gL g + 2
g

τ
, (26)

where for simplicity C = 1. The impedance peak is given by

Zmax = Z(ωres) =



g2L −
1

τ2
− 2

g

τ
+

2

τ

√

g (2 + g τ + 2 gL τ)

τ
,





−1

, (27)

from where

g =
(Zmax + τ2 − Zmax g

2
L τ2)2

4Zmax τ (−τ2 + Zmax (1 + gL τ)2)
. (28)

In order to calculate the values of g and τ , if they exist, for given values of Zmax and gL (fixed)
we proceed as follows. First we take values of τ within certain range and compute the corresponding
values of g using (28). For these values of gL, g and τ we compute ωres using (26) and C = 1. In this
way we have g = g(τ) and ωres = ωres(τ) for a given value of Zmax.
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