










































3.3.3 The resonator’s intrinsic resonant frequency controls the network oscilla-
tions frequency

Similarly to the self-excited resonator networks discussed above, the functional role of cellular res-
onance is to determine the frequency of the network oscillations. This is illustrated in Fig. 12 for
various representative parameter set values. We followed the same protocol as in Section 3.2.2 (Fig. 7):
for each value of fres, the values of g1 and τ1 are balanced so to maintain Zmax constant. In all cases,
fntw increases with increasing values of fres (left panels). The oscillation amplitude increases with
increasing values of Gin (= Gin,1,2 = Gin,2,1) and is more variable than for the self-excited resonator.

The oscillatory active fres band (the range of values of fres for which network oscillations are
possible) is relatively small as compared to the self-excited resonator network and it depends on the
value of Zmax and gL,1. All other parameters fixed, decreasing values of Zmax (from Fig. 12-a to
-b) causes the oscillatory active resonant frequency band to slide to the right. Fig. 12-c shows that
the size active frequency band can be increased by decreasing gL,1 and increasing Zmax. A proper
comparison would involve changing one parameter at the time, but decreasing values of gL,1 require
increasing values of Zmax for the oscillations to be present.

3.4 Mutually excitatory 2D/1D hybrid networks can generate sus-

tained (limit cycle) oscillations and their frequency monotonically
depends on the intrinsic resonant frequency

In Section 3.2 we showed that self-excited resonators can produce limit cycle oscillations, their fre-
quency monotonically depends on the resonator’s resonant frequency, and relaxation oscillations de-
velop for high enough levels of self excitation. Here we extend our results to include two-cell networks.
Because self-excited resonators may be thought of as representing a population of synchronized in
phase cells, we expect our results from Section 3.2 to hold of these networks. However, the presence
of nonlinearities of cubic type are not apparent from either the model equations or the phase-space
diagrams and need to be uncovered using the method developed in Section 3.3.

3.4.1 Oscillations can be generated in 2D/1D hybrid networks and are amplified
with increasing levels of mutual excitation

Fig. 14-a1 show the small amplitude oscillations generated in a Hopf bifurcation (Fig. 16) for low
enough values of Gex (Gex,1,2 = Gex,2,1). This oscillations are not identical, because the cells are not
identical, but they are synchronized in phase. Fig. 14-b1 shows that increasing values of Gex lead to
oscillations of relaxation type. The dynamic mechanisms of oscillation amplification (Figs. 14-a2 and
-b2) as well as the cubic-based mechanisms of generation of relaxation oscillations (Figs. 14-a3 and
-b3) are analogous to the mutually inhibitory networks discussed in Section 3.3.

3.4.2 The resonator’s intrinsic frequency controls the network oscillations fre-
quency

Our results are presented in Fig. 15 for (i) values of Z1,max that increase from panel a to b (for a
fixed-value of gL,1), and (ii) values of gL,1 that decrease from panel b to c (for a fixed values of Z1,max).
In contrast to the mutually inhibitory networks, by increasing Z1,max, the oscillatory active resonant
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Figure 12: Oscillations in mutually inhibitory resonator-passive cell networks (2D/1D): the intrinsic resonant

frequency controls the network frequency. Left columns. Network oscillation frequency as a function of fres. Right

columns. Network oscillation amplitude (oscillator 1) as a function of fres. The synaptic conductances Gin,1,2 = Gin,2,1

are equal to the values reported in the figure. a. gL,1 = 0.25, Z1,max = 3.9. b. gL,1 = 0.25, Z1,max = 3.7. c. gL,1 = 0.1,

Z1,max = 6. We used the following parameter values: gL,2 = 0.5, Ein = −20, vhlf = 0, vslp = 1.
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Figure 13: Bifurcation diagrams for mutually inhibitory resonator-passive cell networks (2D/1D) for repre-

sentative parameter values. The shadowed region corresponds the existence of sustained (limit cycle) oscillations. The

green-lined region corresponds to multistability (limit cycle and/or fixed-points). The inset trajectory diagrams indicated

the dynamics within the regions bounded by the solid and dashed curves (except the solid green curve): stable nodes, stable

foci, unstable foci and unstable nodes (from left to right). The inset diagrams correspond to the 3D linearized system for

the fixed-point before the static bifurcation. H0, H1 and H2 note the Hopf bifurcation branches, PF notes the pitchfork

bifurcation branch and SN notes the saddle-node branch. a. Bifurcation diagram in Gin-τ1 parameter space. Cell 1 is

a resonator for values of τ1 > τ1,res (dashed-black horizontal line). a1 gL,1 = 0.25 and g1 = 0.25. a2 gL,1 = 0.25 and

g1 = 0.3. b. Bifurcation diagram in Gin-g1 parameter space for gL,1 = 0.25 and τ1 = 100. c. Bifurcation diagram with Gin

as bifurcation parameter. The solid- and dashed-blue curves represent stable and unstable fixed-points, respectively. The

solid- and dashed-black curves represent the stable and unstable limit cycle branches created at the Hopf bifurcations (red

dots). c1 gL,1 = 0.25, g1 = 0.25 and τ1 = 40. c2 gL,1 = 0.25, g1 = 0.3 and τ1 = 40. We used the following parameter values:

gL,2 = 0.5, Ein = −20, vhlf = 0, vslp = 1.
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frequency band is increased, while the onset of oscillations occurs for lower values of fres, similarly to
mutually inhibitory networks. The opposite behavior is observed for decreasing gL,1 with all the other
parameters fixed. The behavior of the oscillations amplitude is similar to the mutually inhibitory
networks.
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Figure 14: Oscillations generated in mutually excited hybrid 2D-1D networks. Cell 1 is a resonator with fres = 8

(fnat = 0) and cell 2 is a passive cell. Left. Voltage traces (curves of v1 and v2 as a function of t ). Middle. Phase-plane

diagrams. The v1- and v2-hyper-nullclines are given by (10) and (11), respectively. The dashed red curve represents the v1

nullcline for cell 1 for g1 = 0 (no resonant gating variable). Right. Adapted phase-plane diagrams relative to the v2-hyper-

nullcline N2c(v1) (green curve in the phase-plane diagrams in the left panels). The red lines are the differences between the

v1- and v2-hyper-nullclines in the left panels parametrized by constant values of w1. The solid-red curve corresponds to an

intermediate value of w1. The dashed-red curves correspond to the maximal w1,max (lower) and minimal w1,min (upper)

values of w1. The trajectories (blue curves) are also referred to the v2-hyper-nullcline N2c(v1). a. Gex,1,2 = Gex,2,1 = 0.032.

The network frequency is fntw ∼ 7.1. b. Gex,1,2 = Gex,2,1 = 0.04. The network frequency is fntw ∼ 4.3. We used the

following parameter values: g1 = 1.8, gL,1 = 0.1, gL,2 = 1, τ = 750, Eex = 60, vhlf = 0, vslp = 1.
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Figure 15: Oscillations in mutually excited hybrid 2D-1D networks: the intrinsic resonant frequency controls

the network frequency. Left columns. Network oscillation frequency as a function of fres. Right columns. Network

oscillation amplitude (oscillator 1) as a function of fres. The synaptic conductances Gex,1,2 = Gex,2,1 are equal to the values

reported in the figure. a. gL,1 = 0.1, Z1,max = 9.2. b. gL,1 = 0.1, Z1,max = 9.87. c. gL,1 = 0.08, Z1,max = 9.87. We used

the parameter value gL,2 = 1, Eex = 60, vhlf = 0, vslp = 1.
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Figure 16: Bifurcation diagrams for mutually excitatory resonator-passive cell networks (2D/1D) for repre-

sentative parameter values. The shadowed region corresponds the existence of sustained (limit cycle) oscillations. The

green-lined region corresponds to multistability (limit cycle and/or fixed-points). The inset trajectory diagrams indicated the

dynamics within the regions bounded by the solid and dashed curves (except the solid green curve): stable and unstable foci.

H0 and H1 note the Hopf bifurcation branches. a. Bifurcation diagram in Gex-τ1 parameter space for gL,1 = 0.1 and g1 = 2.

Cell 1 is a resonator for values of τ1 > τ1,res ∼ 0.205: b. Bifurcation diagram in Gex-g1 parameter space for gL,1 = 0.1 and

τ1 = 100. We used the following parameter values: gL,2 = 1.2, Eex = 60, vhlf = 0, vslp = 1.

3.5 Graded mutually inhibitory or excitatory 2D/2D resonator net-

works generate sustained (limit cycle) oscillations and their frequency
interact to control the network frequency

Here we extend our results from Sections 3.3 and 3.4 to networks having two mutually connected 2D
resonators (that are not damped oscillators). We consider heterogeneous networks of non-identical
resonator in order to test the effects of the interaction band-pass filters with different frequency bands.
Because the mechanisms of generation of oscillations are similar to those discussed in Sections 3.3 and
3.4, we focus on the effects of the resonant frequencies of the participating resonators on the network
oscillation frequency. Our results are presented in Figs. 17. The gray curves corresponds to networks
of resonators with the same frequency band. The network model is given by system (1)-(4) with
g1, g2 > 0.

Fig. 17 shows the dependence of the network frequency on f1,res for representative values of f2,res
and other model parameters for mutually inhibitory (panels a and b) and mutually excitatory (panels
c) networks. As expected, in all cases the network frequency monotonically depends on the resonant
frequency of both oscillators.

The range of values of f1,res for which network oscillations are possible increase with increasing
values of f2,res as does the network frequency. However, the network frequency and the resonant
frequency of the oscillators is no longer one-to-one, as was the case for the 2D/1D networks investigated
in Sections 3.3 and 3.4, but it depends on the complex interaction between the two resonators. The
one-to-one dependence between the network frequency and the resonant frequencies of the individual
oscillators occurs when the two resonators have the same resonant frequency (black dots). The slopes
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of the network frequency curves for non-identical resonators are smaller than for identical resonators
indicating that the network frequency is larger (smaller) than the resonant frequency to the left (right)
of the black dot. This is independent of the mechanisms of amplification (mutual inhibition or mutual
excitation).

Increasing values of Z2,max for fixed values of Z1,max and f2,res causes the range of values of f1,res
for which oscillations exist increase, but the slope of the network frequency curves remains almost
unchanged, independently of the value of gL,1 used and whether the mechanisms of amplification is
based on mutual excitation or mutual inhibition (not shown).

4 Discussion

Network oscillations emerge from the cooperative activity of the intrinsic properties of the participating
neurons and the synaptic connectivity, and involve the nonlinearities and time scales present in the
circuit components and these that emerge from their interplay. MPR is a property of the interaction
between oscillatory inputs and the intrinsic neuronal properties (intrinsic resonant and amplifying
processes) that uncovers a circuit latent time scale associated to the resonant frequency (MPR can
be observed in the absence of intrinsic damped oscillations [2, 3]). MPR has been investigated both
experimentally and theoretically in many neuron types [1–4, 12–56]. However, whether MPR plays
any functional role for network oscillations or is simply an epiphenomenon is largely an open question.
A few studies have investigated the oscillatory properties of networks including neurons that exhibit
MPR [41, 57–63] or have resonant gating variables [64–66]. But the role that MPR plays in the
generation of network oscillations and how the latent time scales affect the properties of the oscillatory
networks in which they are embedded remained to be understood. One problem in addressing these
questions is the fact that a resonator and its latent oscillatory properties are characterized by the
impedance profile and the resonant frequency, respectively, which are properties that only emerge in
the presence of an oscillatory (AC) interaction, unlike damped oscillations that are intrinsic neuronal
properties that can be uncovered by constant (DC) perturbations.

In this paper we set out to investigate these issues using minimal network models consisting of non-
oscillatory resonators mutually coupled to either a low-pass filter neuron or another band-pass filter
(resonator). In this way we could separate the different effects that give rise to network oscillations
in two different levels of organization that can be manipulated separately. The resonator provides
the negative feedback and the network connectivity provides the amplification. Because we leave
out resonators that can be also damped-oscillators, the network oscillations are not inherited from
the individual cell level, but are created by the combination of the individual cell and connectivity
properties.

We showed that oscillations can be generated in networks of increasing complexity: (i) self-excited
band-pass filters, (ii) mutually inhibited band- and low-pass filters, (iii) mutually excited band- and
low-pass filters, (iv) mutually inhibited band-pass filters, and (v) mutually excited band-pass filters.
The presence of a resonator is necessary to generate oscillations in these networks; if the resonators
are substituted by low-pass filters, network oscillations are not possible. However, what characterizes
the oscillatory activity of a resonator is the resonant frequency, which cannot be assessed in the
absence of oscillatory inputs. By showing that the network frequency monotonically depends on the
resonant frequency of the individual band-pass filters, we provide a direct link between MPR and the
generation of network oscillations. To our knowledge, this is the first time such a link is provided.
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Figure 17: Oscillations in mutually inhibitory or excitatory resonator cell networks (2D-2D): the intrinsic

resonant frequencies interact to control the network frequency. Left columns. Network oscillation frequency as

a function of fres. Right columns. Network oscillation amplitude (oscillator 1) as a function of fres. The gray curves

correspond to a network of identical cells for fixed values of gL,1 = gL,2 and Z1,max = Z2,max. The colored curves correspond

to a fixed cell 2 with the resonance frequency f2,res indicated in the figure. a. gL = 0.1, Zmax = 6, Gin = 0.1. b. gL = 0.25,

Zmax = 3.7, Gin = 0.1. c. gL = 0.1, Zmax = 9.2, Gex = 0.03.
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A similar results was obtained in electrically coupled networks [41], but in these cases, the network
oscillations were driven by one of the nodes that was a sustained oscillator. Network oscillations have
been shown to emerge as the result of the interaction of damped oscillators [65, 66, 82], but in these
cases, the network oscillations are inherited from the oscillatory activity of the individual intrinsically
oscillatory nodes.

The existence of sustained oscillations in networks of non-oscillatory neurons is not without prece-
dent. The inferior olive oscillatory network studied in [65] is composed of electrically coupled neurons
that, when isolated, are damped oscillators. In this case, the individual neurons are nonlinear and
include both resonant and amplifying effects, but the connectivity is linear. The model investigated
in [64] involves nonlinear neurons reciprocally inhibited with graded synapses. For baseline values of
the DC input current, the neurons are quasi-linear and are at most damped oscillators. The nonlin-
earities developed for negative input current values combined with the dynamics resulting from the
mutual synaptic inhibition result in the post-inhibitory rebound mechanism underlying the observed
network oscillations. Post-inhibitory rebound (PIR) and subthreshold resonance are closely related
phenomena since both require the presence of a negative feedback effect, but they are different in na-
ture. The mechanisms investigated in [64] depend crucially on the effective pulsatile nature resulting
from the dynamic interaction between cells and synaptic connectivity. Models having an h-current
also show PIR. Even in the presence of an (additive) amplifying current, such as the Ih + INap model,
the functional connectivity in these models is not PIR-based, but rather resonance-based as we show
in this paper (unpublished observation). In [67, 73] oscillations emerge in two reciprocally inhibited
passive cells where one of them is self-excited, thus providing additional dynamics to the network.
The model studied in [41] consists of an oscillator electrically coupled to a follower resonator whose
intrinsic resonant frequency directly affects the network frequency while the shape of the impedance
profile remains almost unchanged.

The minimal models we used in this paper serve the purpose of establishing the role of MPR for
the generation of network oscillations. Other types of models could include resonant properties at the
network level. Moreover, there are alternative possible scenarios where, for example, amplification
occurs at the single cell level and the negative feedback effect occurs at the network level. These types
of networks are beyond the scope of this paper. The understanding of the oscillatory properties of
such networks requires more research.

The types of models we used could be argued to be too simplistic and not realistic. We used these
models precisely because of their simplicity in order to understand some conceptual points that can be
generalized and applied to more realistic networks. However, one should note that the type of models
we used are very close to the firing rate models of Wilson-Cowan type [69] with adaptation [70–72],
which are essentially resonators (unpublished observation). In this models, the nonlinearity is similar
to the one we used (sigmoid type, instantaneously fast). Therefore, our results can be easily generalized
to these models. One example are the networks of OLM cells and fast spiking (PV+) interneurons
(INT) that have been shown to be able to produce network oscillations [83, 84]. OLM cells show
MPR [33], while the presence of MPR in INT is debated [25,33]. Although our models are simplistic,
they make predictions that can be tested using the dynamic clamp technique [85,86].

Our results open several questions regarding the ability of networks of band-pass filters to generate
oscillatory patterns and how the properties of these patterns depend on the properties of the band-pass
filters. More research is required to address these issues.
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theta resonance in cortical circuits. Neuron, 80:1263–1276, 2013.

[58] R. A. Tikidji-Hamburyan, J. J. Mart́ınez, J. A. White, and C. Canavier. Resonant interneurons
can increase robustness of gamma oscillations. J. Neurosci., 35:15682–15695, 2015.

[59] T. Tchumatchenko and C. Clopath. Oscillations emerging from noise-driven steady state in
networks with electrical synapses and subthreshold resonance. Nature Comm., 5:5512, 2014.

[60] S. L. Schmidt, C. R. Dorsett, A. K. Iyengar, and F. Frölich. Interaction of intrinsic and synaptic
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A Graded networks of passive cells: linearization

The linearization of system (1) with gk = 0 for k = 1, 2 and Isyn,k given by (3) and (4) reads

dv1
dt

= Fv1(v1 − v̄1) + Fv2(v2 − v̄2), (16)

dv2
dt

= Gv1(v1 − v̄1) +Gv2(v2 − v̄2), (17)

where

C1 Fv1 = −gL,1 −Gsyn,2,1S∞(v̄2), (18)

C1 Fv2 = −Gsyn,2,1S
′

∞
(v̄2)(v̄1 − Esyn,1), (19)

C2Gv1 = −Gsyn,1,2S
′

∞
(v̄1)(v̄2 − Esyn,2), (20)

C2Gv2 = −gL,2 −Gsyn,1,2S∞(v̄1), (21)

The eigenvalues (r1 and r2) are given by

2 r1,2 = Fv1 +Gv2 ±
√

(Fv1 −Gv2)
2 + 4Fv2Gv1 . (22)

The first two terms in (22) are always negative (provided gL,1 > 0 and gL,2 > 0). The second term
in the radicand is positive if Fv2 and Gv1 have the same sign and negative if Fv2 and Gv1 have different
signs. Therefore, the fixed-point for networks with the same type of connections (both excitatory or
both inhibitory) can be either stable nodes or saddles, while the fixed-points for excitatory-inhibitory
networks can be either stable nodes or stable foci.
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B Impedance profiles with fixed peak values and chang-

ing resonant frequencies

The impedance profile for a 2D system of the form

C
dv

dt
= −gL v − g w, (23)

τ
dw

dt
= v − w, (24)

is given by

Z(ω) =

√

1 + τ2 ω2

(gL + g − τ C ω2)2 + (gL τ + C)2 ω2
, (25)

where ω = 2πf/1000. The resonant frequency is given by

ωres =
1

τ

√

−1 +

√

g2 + 2 gL g + 2
g

τ
, (26)

where for simplicity C = 1. The impedance peak is given by

Zmax = Z(ωres) =



g2L −
1

τ2
− 2

g

τ
+

2

τ

√

g (2 + g τ + 2 gL τ)

τ
,





−1

, (27)

from where

g =
(Zmax + τ2 − Zmax g

2
L τ2)2

4Zmax τ (−τ2 + Zmax (1 + gL τ)2)
. (28)

In order to calculate the values of g and τ , if they exist, for given values of Zmax and gL (fixed)
we proceed as follows. First we take values of τ within certain range and compute the corresponding
values of g using (28). For these values of gL, g and τ we compute ωres using (26) and C = 1. In this
way we have g = g(τ) and ωres = ωres(τ) for a given value of Zmax.
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