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Abstract 

Background: Cardiometabolic affections greatly contribute to the global burden of disease. The 

susceptibility to these conditions associates with the ancestral genetic composition and gut 

microbiota. However, studies explicitly testing associations between genetic ancestry and gut 

microbes are rare. We examined whether the ancestral genetic composition was associated with 

gut microbiota, and split apart the effects of genetic and non-genetic factors on host health. 

Results: We performed a cross-sectional study of 441 community-dwelling Colombian mestizos 

from five cities. We characterized the host genetic ancestry using 40 ancestry informative 

markers and gut microbiota through 16S rRNA gene sequencing. We measured variables related 

to cardiometabolic health (adiposity, blood chemistry and blood pressure), diet (calories, 

macronutrients and fiber) and lifestyle (physical activity, smoking and medicament 

consumption). The ancestral genetic composition of the studied population was 67±6% European, 

21±5% Native American and 12±5% African. While we found limited evidence of associations 

between genetic ancestry and gut microbiota or disease risk, we observed a strong link between 

gut microbes and cardiometabolic health. Multivariable-adjusted linear models indicated that gut 

microbiota was more likely to explain variance in host health than genetic ancestry. Further, we 

identified 9 OTUs associated with increased disease risk and 11 with decreased risk. 

Conclusions: Gut microbiota seems to be more meaningful to explain cardiometabolic disease 

risk than genetic ancestry in this mestizo population. Our study suggests that novel ways to 

control cardiometabolic disease risk, through modulation of the gut microbial community, could 

be applied regardless of the genetic ancestry of the intervened population. 

 

Keywords: Ancestry informative markers, genetic admixture, mestizo, Latin America, gut 

microbiota, OTU, non-communicable diseases. 
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Background 

Obesity, cardiovascular disease and type 2 diabetes are notable contributors to the global 

burden of disease [1]. Seminal studies in monozygotic twins demonstrated that these 

cardiometabolic diseases are heritable [2–4], but genome-wide association studies (GWAS) have 

failed to consistently uncover replicable variants across human populations, with notable 

exceptions [5,6]. One possible explanation for this is that the identification of variants in 

candidate genes is highly dependent on the ethnic and geographic origin of the studied population 

[7]. Differences in allele frequencies and linkage disequilibrium structure make difficult the 

extrapolation of results between human groups with different genetic backgrounds. Therefore, the 

ancestral genetic composition of the studied population becomes a key element in association 

studies [8]. 

Additionally, the lack of replicability of many GWAS results across populations may be 

explained by the interactions between gene variants and non-genetic factors affecting the 

aforementioned complex phenotypes [9]. The gut microbiota, the set of microorganisms that 

naturally colonize the human intestine [10], is one of such factors. The gut microbiota has been 

shown to be central to host health [11–13], and to be shaped by human genetics [14,15]. Despite 

the impact of recent discoveries on the relationship between gut microbes and human health, the 

degree to which associations found in one population can extend to another is still unclear. The 

geographic origin of human populations is one of the most important factors shaping the 

composition of this microbial community [16,17], yet it is unknown whether such biogeographic 

pattern is explained by host genetics or by non-genetic factors correlated with geography and 

ancestry (e.g., diet, lifestyle). Studies explicitly testing associations between host genetic ancestry 

and gut microbiota are still very rare [18]. 

In this study, we analyzed a cohort of Colombian adults, whose genetic background is 

product of extensive recent admixture between three continental populations: Europeans, Native 
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Americans and Africans [19]. In these individuals, we estimated the ancestral genetic 

composition with ancestry informative markers (AIMs), characterized gut microbiota through 

high-throughput 16S rRNA gene sequencing and measured numerous variables that inform about 

diet, lifestyle and cardiometabolic disease risk. We aimed to determine whether the ancestral 

genetic composition of this population was associated with the structure of the gut microbiota, 

and split apart the effects of genetic and non-genetic factors on human health. 

 

Results 

The city of origin accounts for differences in the ancestral genetic composition 

We performed a cross-sectional study in which we enrolled 441 adult Colombian mestizos 

in roughly similar proportions across five cities spanning the Colombian Andes and both its 

Caribbean and Pacific coasts (Bogota, Medellin, Cali, Barranquilla and Bucaramanga); body 

mass index (BMI: lean, overweight, obese); sex (male, female); and age range (18-40 years, 41-

62 years). We characterized the ancestral genetic composition in 440 of these participants using a 

panel of 40 ancestry informative markers (AIMs) that have been previously shown to 

discriminate among European, Native American and African populations [20,21] (Table S1). One 

individual of our cohort could not be genotyped because we were not able to acquire DNA from 

blood. Overall, the 40 evaluated AIMs were found in Hardy-Weinberg equilibrium (all p>0.05 in 

exact Hardy-Weinberg tests). 

Overall, the ancestral genetic composition of the individuals of this cohort was (mean ± 

SD) 0.674 ± 0.057 European (range: 0.469–0.788); 0.209 ± 0.048 Native American (0.089–

0.397); and 0.117 ± 0.047 African (0.051–0.352) (Figure 1A). These values differed significantly 

among cities (ANOVA for European: F4,435 = 2.94, p = 0.02; Native American: F4,435 = 7.69, 

p<0.0001; African: F4,435= 5.78, p = 0.0002): the European component was highest in Medellin 

(Northwestern Andes) and lowest in Barranquilla (Northern Caribbean); the Native American 
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component highest in Bogota (Central Andes) and lowest in Medellin; and the African 

component highest in Barranquilla and lowest in Bogota (Figure 1B-1D). In agreement with this, 

we found evidence of limited but significant genetic structure (mean Fst ± SE = 0.004 ± 0.001, 

95% CI = 0.002–0.006). However, there was no evidence of isolation by distance, according to a 

Mantel test considering genetic (Fst/(1-Fst)) and log-transformed geographic distance matrices (r 

= -0.43, 95% CI = -0.94–0.14, two-tailed p = 0.43). Furthermore, we did not find significant 

differences in the ancestral genetic composition by other factors controlled by design (p>0.10 in 

all ANOVAs for BMI, sex and age range). 

Next, we performed a robust principal component analysis (PCA) for compositional data 

based on the individual proportions of European, Native American and African, and found a 

gradient where the first component (PC1) distinguished Native American and African ancestries, 

whereas the second component (PC2) discerned European and non-European ancestries (Figure 

2A-2C). In accordance with our previous result, these two components differed among the cities 

from which participants originated (ANOVA for PC1: F4,435 = 7.60, p<0.0001; PC2: F4,435 = 3.63, 

p = 0.006) but did not differ by BMI, sex or age range (p>0.10 in all ANOVAs). 

 

Limited evidence of an association between host genetic ancestry and gut microbiota 

Afterwards, we sought to examine whether the host genetic ancestry associated with the 

composition of gut microbiota. We analyzed the complete microbial community through 

principal coordinate analysis (PCoA) using weighted UniFrac distances on rarefied sequence 

counts, and found that the gut microbiota of Colombians formed a single point cloud of microbial 

abundances. Beta-diversity analyses indicated that differences in the structure of the microbial 

community were partly driven by the city of origin (PERMANOVA: R2 = 0.074, p = 0.001), BMI 

(R2 = 0.010, p = 0.003) and sex (R2 = 0.012, p = 0.001), but not by the age range (R2 = 0.003, p = 

0.22). It is noteworthy that despite the significant association of gut microbiota with the city of 
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origin, we did not find convincing evidence of a direct association between the microbial 

community and the host genetic ancestry, as shown by Procrustes analyses correlating weighted 

UniFrac distances and the individual proportions of European, Native American and African 

(Procrustes correlation = 0.04, p = 0.99), or the first two PCoA axes and PCA components 

(Procrustes correlation = 0.03, p = 0.91) (Figure 2D-2F). 

We further examined whether specific groups of microbes were associated with the host 

genetic ancestry. First, we correlated the ancestral genetic composition (either as individual 

proportions of European, Native American and African, or as genetic PCA components) and the 

relative abundances of dominant taxonomic ranks. At the family level, we observed a positive 

correlation between the relative abundance of Enterococcaceae (Firmicutes) and genetic PC1 

(Spearman’s rho = 0.16, p = 0.001, q = 0.17), meaning that this family was more abundant in 

individuals with higher contribution of African ancestry. We did not observe other significant 

correlations between the host genetic ancestry and relative abundances at the phylum, class, 

order, genus or species levels (q >0.20; Table S2). 

Next, we performed a similar analysis using the relative abundances of operational 

taxonomic units (OTUs) instead of taxonomic ranks. In this case, we restricted the comparisons 

to the 100 most abundant OTUs, whose median relative abundances were ≥0.01% across all 

samples and which comprised up to 80 ± 12% of all 16S rRNA gene reads, thus minimizing 

potential artifacts produced by sequencing errors. We found that the relative abundance of 

Otu00068 (Enterococcus casseliflavus) directly correlated with genetic PC1 (rho = 0.15, p = 

0.001, q = 0.12), corroborating the association described above. No other OTU associated with 

the host genetic ancestry (q>0.20; Table S3). 

Non-genetic factors intimately associated with the host genetic composition (e.g., 

geography, diet, lifestyle) could have confounded the observed correlations between African 

ancestry and the relative abundances of Enterococcaceae and Otu00068. To split apart the effects 
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of genetic ancestry and non-genetic factors, we fitted linear regression models using (arcsin 

square-root transformed) relative abundances of these microbes as dependent variables, and 

genetic PC1 and PC2, city of origin, sex, age, diet (calorie and fiber intakes) and lifestyle 

(physical activity levels, smoking status, and medicament consumption) as explanatory variables. 

We found that differences in microbial abundances were actually related to the city of origin 

(Enterococcaceae: F4,426 = 6.98, p<0.0001; Otu00068: F4,426 = 6.76, p<0.0001) and the smoking 

status (Enterococcaceae: F1,426 = 4.45, p = 0.04; Otu00068: F4,426 = 4.61, p = 0.03), being highest 

in Barranquilla, the city with the highest contribution of African ancestry, and nonsmokers 

(Figure S1). However, they did not relate to the host genetic ancestry after accounting for 

covariates (p>0.10 for genetic PC1 and PC2 for both taxa). 

 

Cardiometabolic health outcomes are better explained by gut microbiota composition than by 

host genetic ancestry 

Considering that we found limited evidence of an association between gut microbiota and 

host genetic ancestry, we next examined whether gut microbes and the participants’ ancestral 

genetic composition each associated with variables related to cardiometabolic health, diet and 

lifestyle. The risk of disease was assessed through a summary measure—the cardiometabolic risk 

scale—which totaled Z-scores of waist circumference, triglycerides, fasting insulin, diastolic 

blood pressure and high-sensitive C reactive protein (hs-CRP). These variables informed about 

different conditions involved in cardiometabolic disease, namely central obesity, dyslipidemia, 

insulin resistance, hypertension and low-grade systemic inflammation, respectively. 

Individuals with high values of the cardiometabolic risk scale were more likely to be 

male; to be of older age; to have low levels of high density lipoprotein (HDL) cholesterol; high 

levels of total cholesterol, low density lipoprotein (LDL) cholesterol, very low density lipoprotein 

(VLDL) cholesterol, and triglycerides; high levels of fasting glucose, glycated hemoglobin 
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(HbA1c), fasting insulin and insulin resistance (HOMA-IR); high levels of hs-CRP, blood 

pressure and adiposity (BMI, waist circumference and body fat); and to regularly smoke and 

consume medications. In addition, these individuals were more likely to suffer of coronary heart 

disease, as assessed by the Framingham score [22]. While the cardiometabolic disease risk was 

not associated with genetic ancestry, diet intake or levels of physical activity, it was significantly 

associated with gut microbiota composition (Table 1). 

We verified these results by correlating variables summarizing genetic ancestry (PCA 

components) and gut microbiota (first two PCoA axes of weighted UniFrac) with biochemical 

profiles, blood pressure, adiposity, diet and physical activity. For this, we fitted linear models 

adjusted for the city of origin, sex, age, smoking status and medicament consumption, and 

calculated Spearman correlation coefficients between pairs of adjusted variables, so that 

correlations were independent of the aforementioned covariates. We found that the levels of 

blood insulin were negatively correlated with genetic PC2 (i.e., individuals with higher non-

European ancestries had higher insulin levels). On the other hand, microbiota PCoA axes were 

significantly associated with glucose metabolism (fasting glucose levels), hypertension (blood 

pressure), obesity (BMI and % body fat), central obesity (waist circumference), and fiber intake 

(Table 2). 

We next examined the contributions of host genetic ancestry, gut microbiota and their 

interaction to explain variance in cardiometabolic disease risk using multivariable-adjusted linear 

models. Models were adjusted for the city of origin, sex, age, calorie and fiber intakes, levels of 

physical activity, smoking status and medicament consumption. Based on likelihood-ratio tests 

and the Akaike information criterion (AIC), we found that gut microbiota composition explained 

more variance in the risk of cardiometabolic disease than genetic ancestry (model including 

genetic ancestry: χ2 (2 df) = 4.41, p = 0.11, AIC = 2262; model including gut microbiota: χ2 (2 df) 

= 22.9, p<0.0001, AIC = 2243; model including genetic ancestry × gut microbiota interaction: χ2 

(4 df) = 3.14, p = 0.53, AIC = 2248). Similar results were obtained for waist circumference, 
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blood pressure and the Framingham coronary heart disease score (Table S4). The model that best 

explained variance in insulin levels was that considering genetic ancestry, whereas triglycerides 

levels were best explained by the ancestry × gut microbiota interaction. Neither genetic ancestry 

nor gut microbiota seemed to significantly contribute to explain variance in hs-CRP levels (Table 

S4). 

Considering that gut microbiota associated with more health-related variables than genetic 

ancestry, we identified particular OTUs associated with cardiometabolic outcomes. For this, we 

analyzed the 100 most abundant OTUs and fitted quasi-Poisson generalized linear models 

(GLMs) on rarefied sequence counts, adjusting for the city of origin, sex, age, calorie and fiber 

intakes, physical activity, smoking status and medicament consumption. We calculated 

multivariable-adjusted Spearman correlation coefficients between OTU abundances and 

cardiometabolic outcomes, and obtained FDR-adjusted p-values. Independent of the 

aforementioned covariates, we found 19 OTUs significantly correlated with the cardiometabolic 

risk scale, eight with waist circumference, two with blood pressure and one with hs-CRP. No 

OTUs significantly correlated with triglyceride and fasting insulin levels or the Framingham 

coronary heart disease score. The relative abundances of nine OTUs, including Escherichia coli, 

Atopobium, Gemmiger formicilis and Clostridiaceae SMB53, among others, correlated with 

increased cardiometabolic disease risk, whereas 10 OTUs related to Akkermansia muciniphila, 

Oscillospira, Methanobrevibacter and Christensenellaceae, among others, correlated with lower 

disease risk (Figure 3). 
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Discussion 

Gut microbiota composition and the host genetic background have been each associated 

with human cardiometabolic health. However, the evidence associating the microbial community 

and the host genetic ancestry is sparse. We examined associations among host ancestry, gut 

microbiota and cardiometabolic health in a population with a history of recent, extensive 

admixture between Europeans, Native Americans and Africans [19]. Importantly, we quantified 

the levels of genetic admixture using ancestry informative markers (AIMs) located on most 

chromosomes, in opposition to self-reported ancestry [18,23]. While we found strong connections 

between gut microbiota and cardiometabolic health, the evidence associating these variables with 

the host genetic ancestry was limited. 

The studied population had an admixed genetic composition typical of urban Latin 

American mestizos, with predominance of European, followed by Native American and African 

ancestries [19]. Overall, the contributions of each ancestral component followed a previously 

described geographic pattern, where inhabitants of the inner, Andean regions (Bogota, Medellin 

and Bucaramanga) had the highest European ancestry; those North and Northwest the lowest 

Amerindian ancestry (Medellin and Barranquilla); and those on the Caribbean and Pacific coasts 

(Barranquilla and Cali) the highest African ancestry [19,24]. These results confirmed that the city 

of origin was associated with the ancestral genetic composition of the studied population and that 

the panel of selected AIMs adequately replicated results from previous studies in Colombians. 

Comparative cross-species studies indicate that hosts and symbionts have coevolved for 

millions of years [25,26], suggesting a heritable basis in this interaction. In agreement with this, 

recent studies in mice and humans suggest that gut microbiota is partly under the host genetic 

control [27–30], and particular microbes have been shown to be heritable [31]. However, the 

contribution of the host genetic ancestry to gut microbiota composition has been poorly studied, 
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albeit it could be crucial to explain pervasive inter-population differences in this community 

[16,17]. 

We found a general lack of association between host genetic ancestry and gut microbiota 

composition in a mestizo population, agreeing with a recent study performed in Israel considering 

a variety of self-reported ancestries, including Ashkenazi, North African, Middle Eastern, 

Sephardi, Yemenite and admixed [18]. The only correlations detected in our study between 

genetic ancestry and gut microbiota came from Enterococcaceae and Otu00068 (E. 

casseliflavus), whose association with African ancestry was confounded by non-genetic factors, 

specifically the city of origin and cigarette consumption. 

Multiethnic surveys have demonstrated that the origin of human populations contribute to 

the genetic predisposition to disease. Here, we found that individuals with higher Amerindian and 

African ancestries had higher blood insulin, independent of potential non-genetic confounders, 

including sex, age, the city of origin, diet and lifestyle. Studies in Mexican-Americans [32], US 

Native Americans [33] and Alaska Natives [34] have shown higher risk of type 2 diabetes in 

individuals of Amerindian ancestry. Likewise, Africans, African Americans and genetically-

admixed individuals with high African ancestry have higher risk of this disease [35–38]. 

Our analyses, however, did not reveal further associations between the ancestral genetic 

composition and cardiometabolic health. This contrasts with recent studies performed in 

Colombians, which have shown associations between Native American ancestry and high 

triglyceride levels [39]; African ancestry, high blood pressure and high risk of type 2 diabetes 

[38,39]; European ancestry and low risk of type 2 diabetes [40]. One possible explanation for the 

general lack of association between genetic ancestry and health of our study could be the relative 

homogeneity in the individual proportions of European, Native American and African (Figure 

1A). Unlike studies in which subjects with very dissimilar origin are compared, the individuals 

analyzed here were all mestizos with roughly similar admixed ancestry. The inclusion of 
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individuals with more diverse genetic backgrounds could allow finding clearer health–ancestry 

associations [38,41,42]. 

An alternative, non-exclusive explanation could be that the correlations between genetic 

ancestry and health are actually small and require larger sample sizes and more AIMs to uncover 

them. For the former, we calculated the sample sizes needed to detect statistically significant 

differences in genetic ancestry among tertiles of the cardiometabolic risk scale, as reported in 

Table 1, and found that the statistical power of our study was indeed limited. For α = 0.05 and β = 

0.80, we would have needed to enroll 860 individuals to detect statistically significant differences 

in European ancestry across levels of disease risk, 1108 for Native American, and 4849 for 

African. Concerning the number of evaluated AIMs, the power to detect statistical associations 

with a phenotype depends on the genome coverage of the evaluated genetic markers and on the 

basal linkage disequilibrium of the studied population. Although we only evaluated 40 AIMs, it 

was previously shown that as few as 30 AIMs allow getting an accurate representation of the 

ancestral genetic composition of Latin American populations [19]. In addition, our ancestry 

estimates at the population level were similar to those obtained in studies evaluating different set 

of variants [19] and population samples [39]. 

While the evidence associating genetic ancestry and health in our cohort was weak, the 

association between gut microbes and cardiometabolic outcomes was stronger. We found that the 

microbiota composition was a better explanatory variable of the risk of cardiometabolic disease 

than genetic ancestry, and informed about central obesity, hypertension and coronary heart 

disease. Further, we uncovered a list of particular OTUs associated with disease risk in the 

studied population. This included microbes that have been shown to be more abundant in patients 

with atherosclerotic disease, such as E. coli and Atopobium [11]; in type 2 diabetic patients, such 

as Clostridiaceae SMB53 [43]; and in unhealthy obese individuals, such as E. coli, Gemmiger 

formicilis and Clostridiaceae SMB53 [44]. On the other hand, microbes such as A. muciniphila, 
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Oscillospira, Methanobrevibacter and Christensenellaceae have been shown to be associated to 

healthy cardiometabolic states [14,45–47]. 

Our study had several strengths, including a thorough sampling in several cities and an in-

depth characterization of the studied cohort in terms of genetic ancestry, gut microbiota, 

cardiometabolic health outcomes and non-genetic factors associated with diet and lifestyle that 

allowed adjusting statistical models for potential confounding. However, for some comparisons 

we were limited by the sample size of our study, by the number of evaluated AIMs and by the 

fact that this was a cross-sectional study, so that we cannot distinguish cause and effect. 

 

Conclusions 

Genetic-association studies have given great insights into the nature of complex 

phenotypes, such as cardiometabolic diseases. Accumulating evidence on non-genetic factors 

intimately linked to the host, such as the gut microbiota, has enriched this picture, demonstrating 

an intimate and complex connection between symbionts and human health. We here showed that 

the specific composition of gut microbes has a dramatic effect on disease risk, ultimately opening 

a promising avenue to ameliorate human health through targeted modulation of the microbial 

community. Our results, and those recently obtained in a different population [18], suggest that 

modulation strategies could be applied regardless of the genetic ancestry of the intervened 

population. 
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Methods 

Study population 

We enrolled 441 mestizo adult men and women, living in the cities of Bogota, Medellin, 

Cali, Barranquilla and Bucaramanga (Colombia, South America) between July and November 

2014. The national census indicates that these cities contribute about 30% of the Colombian 

population. Participants were enrolled in similar proportions according to the city of residence 

(19% Bogota, 22% Medellin, 20% Cali, 20% Barranquilla and 18% Bucaramanga), BMI (31% 

lean, 39% overweight and 30% obese), sex (48% male, 52% female), and age range (47% 18-40 

years, and 53% 41-62 years). We excluded underweight participants (i.e., BMI<18.5 kg/m2), 

pregnant women, individuals who had consumed antibiotics or antiparasitics in the three months 

prior to enrollment, and individuals diagnosed with neurodegenerative diseases, current or recent 

cancer (<1 year), and gastrointestinal diseases (Crohn’s disease, ulcerative colitis, short bowel 

syndrome, diverticulosis or celiac disease). 

 

Genotyping of ancestry informative markers (AIMs) 

The ancestral genetic composition of participants was assessed through a panel of 40 

AIMs located on most chromosomes, chosen for having strong differences in allele frequency 

between European, Native American and African populations, and to be unlinked (Table S1). The 

selected AIMs have been previously used [24,39,48,49]. Of these, 34 corresponded to 

insertion/deletion variants (INDELs) and six to single nucleotide polymorphisms (SNPs). Primers 

and PCR conditions followed specific protocols for each AIM. For INDELs, genotypes were 

resolved with 1.5-2.0% agarose gel electrophoresis if the variant was >10 bp, otherwise with 

capillary electrophoresis in an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems, Foster 

City, CA). SNPs were genotyped with PCR-RFLP and resolved with 2.5-3.0% agarose gel 

electrophoresis. 
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Analysis of host genetic ancestry 

The host genetic ancestry was analyzed as follows: genotypes for each AIM served to 

calculate the observed and expected allelic and genotypic frequencies, to test the Hardy-

Weinberg equilibrium with an exact test [50], and to estimate overall population structure (Fst) 

using the Weir and Cockerham estimator [51]. The standard error and 95% confidence intervals 

of this estimator were calculated by jackknifing and bootstrapping over loci, respectively. 

Population-genetic analyses were performed with GenePop [52] and FSTAT 2.9.3 [53]. 

Afterwards, we tested isolation by distance by correlating genetic (Fst/(1-Fst)) and (log-

transformed) geographic distance matrices using a Mantel test, as implemented in the ecodist 

package of R [54], with 10,000 permutations and 10,000 bootstrap iterations for calculating 

confidence intervals. 

Next, a hidden Markov model approach was used to infer the individual genetic 

contributions of European, Native American and African ancestries using ADMIXMAP 3.7. [55]. 

This method models individual admixture using genotypic information for all individuals and 

AIMs, the AIM’s physical position in the chromosome and the frequency of the largest allele in 

parental populations. Allelic frequencies in the parental populations were previously reported for 

Europeans (Spain, Germany, England, Ireland), Native Americans (Maya, Pima and Puebla) and 

Africans (Nigeria, Sierra Leone, Central African Republic, African-American and Afro-

Caribbean) [56,57]. The parameters used for running ADMIXMAP were: 40 loci, 440 diploid 

individuals, 250,000 iterations with a burn-in of 10,000 iterations, and a model of three 

populations. 

The proportions of European, Native American and African ancestries were compared 

across the five cities from which our participants originated, BMI (lean, overweight, obese), sex 

(male, female) and age range (18-40, 41-62 years) with ANOVA, after verifying 

homoscedasticity with the Fligner-Killeen test. Where necessary, data were transformed with 

natural logarithm for unbounded variables, or arcsin square root for proportions. We also 
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performed robust principal components analysis (PCA) for compositional data with the 

individual proportions of the three genetic ancestries using the robCompositions package of R 

[58]. For this, the compositional dataset was transformed using the isometric log ratio, and a PCA 

was afterwards performed. PC1 and PC2 components were compared across cities, BMI, sex and 

age range using ANOVA. 

 

Gut-microbiota characterization 

Detailed laboratory and bioinformatic procedures can be found elsewhere [59]. Briefly, 

each participant collected a fecal sample from which the total microbial DNA was extracted 

using the QIAamp DNA Stool Mini Kit (Qiagen; Hilden, Germany). The V4 region of the 16S 

rRNA gene was amplified with primers F515 and R806, sequenced with Illumina MiSeq v2, and 

processed as previously described [59]. 

The gut microbiota was analyzed at the whole community level using principal coordinate 

analysis (PCoA) based on weighted UniFrac distances. These distances were computed on 

rarefied sequence counts (3667 reads/sample) with the GUniFrac package of R [60], and 

compared across cities, BMI, sex and age range with permutational multivariate analysis of 

variance using distance matrices (PERMANOVA), as implemented in the Vegan package of R 

[61]. Microbiota analyses were also performed at the phylum, class, order, family, genus and 

species level, as well as at the OTU level. For taxonomy-based tests, we calculated the relative 

abundance of microbial sequences classified at all taxonomic ranks according to the Greengenes 

13_8_99 taxonomy [62]. At the OTU level, we grouped sequences at 97% identity using the 

average neighbor algorithm [63], and extracted the OTUs that had median relative abundances 

≥0.01% across all samples. The latter procedure guaranteed that the majority of sequences was 

analyzed (~80% of total reads) and minimized the impact of sequencing artifacts. 
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Cardiometabolic health, diet and lifestyle 

We measured several variables that might interact with both gut microbiota and the host 

genetic ancestry. These included health-related variables (blood chemistry, blood pressure and 

adiposity), diet intake (calories, macronutrients and dietary fiber) and lifestyle (physical activity, 

smoking status, medicament consumption). Detailed information about measurement of these 

variables is presented elsewhere [44]. Briefly, blood biochemical variables, including HDL, LDL, 

VLDL, total cholesterol, triglycerides, fasting glucose, HbA1c, fasting insulin, and hs-CRP, were 

measured using standard techniques routinely used in a clinical laboratory (Dinámica IPS, 

Medellin, Colombia). Blood insulin served to calculate the insulin resistance index using the 

homeostasis model assessment (HOMA-IR). The systolic and diastolic blood pressures were 

measured in mm Hg with a Rossmax AF701f digital tensiometer (Berneck, Switzerland). 

Adiposity was assessed through BMI (weight (kg)/height squared (m2)), waist circumference 

(cm) and percentage body fat (calculated with the thicknesses of four skinfolds: biceps, triceps, 

subscapular and ileocrestal). 

To assess the risk of cardiometabolic disease, we constructed a summary scale—the 

cardiometabolic risk scale—by summing Z-scores of waist circumference, triglycerides, fasting 

insulin, diastolic blood pressure and hs-CRP (Z = [x-µ]/δ, where µ  is the population mean and δ is 

the standard deviation of the population). Variables were log-transformed to adjust to a normal 

distribution before obtaining Z-scores. These variables were chosen because they informed about 

different conditions involved in cardiometabolic disease: central obesity, dyslipidemia, insulin 

resistance, hypertension and low-grade systemic inflammation, respectively. In addition, we 

calculated the Framingham coronary heart disease score [22] using sex, age, diabetes status, 

smoking status, blood pressure, HDL and total cholesterol as predictor variables. Since the 

Framingham score did not consider individuals younger than 30 years, these were given the 

lowest age score (-1). 
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Daily intakes of macronutrients (g/day of carbohydrates, protein and fat), dietary fiber 

(g/day) and calories (kcal/day) were estimated with 24-hour dietary recall interviews [64]. 

Physical activity (number of metabolic equivalents per minute per week: MET/min/week) with 

the short form of the International Physical Activity Questionnaire [65]. Smoking and 

medicament consumption were self-reported in specific questionnaires. For the latter, we 

considered all drugs taken by participants on a regular basis during the three months prior to 

enrollment, to the exception of over-the-counter vitamin and mineral supplements, 

phytotherapeutics and contraceptives. All measurements and questionnaires were performed by 

trained personnel. 

 

Associations of host genetic ancestry, gut microbiota and cardiometabolic health 

The direct association between host genetic ancestry and microbiota composition was 

assessed with Procrustes analyses. These were performed to examine, on one hand, the 

correlation between the weighted UniFrac distance matrix and the matrix of individual 

proportions of European, Native American and African; and, on the other hand, the correlation 

between the first two PCoA axes of the microbiota analysis and the PCA components of genetic 

ancestry. In both cases, microbiota matrices were set as targets and genetic ancestry matrices as 

those to be rotated and scaled. Statistical significance was determined using 10,000 permutations. 

We also explored associations between genetic ancestry and microbiota composition at 

the phylum, class, order, family, genus, species and OTU levels. In these cases, we correlated the 

relative abundance of each microbial group with the individual proportions of European, Native 

American and African, as well as with the two genetic PCA components, using Spearman 

correlation tests; p-values were adjusted for multiple comparisons (FDR) using the Benjamini-

Hochberg method. 
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To dissect the effects of genetic ancestry and non-genetic factors on the abundance of 

particular groups of microbes, we fitted linear regression models in which the relative abundance 

of each microbial group was modeled in function of genetic ancestry (PCA components), city of 

origin, sex, age, diet (calorie and fiber intakes) and lifestyle (physical activity levels, smoking 

status, and medicament consumption). In these cases, relative abundances were arcsin square-root 

transformed. 

We next investigated associations of the host genetic ancestry and gut microbiota 

composition with cardiometabolic health. For this, we divided the cardiometabolic risk scale by 

tertiles (low, middle and high risk) and tested differences among them for each variable using 

ANOVA and chi-square tests. Where necessary, variables were appropriately transformed as 

mentioned above. 

Afterwards, we correlated variables informing about genetic ancestry (PCA components) 

and gut microbiota (first two PCoA axes of weighted UniFrac) with cardiometabolic outcomes, 

diet and physical activity. For this, we fitted linear models adjusted for the city of origin, sex, 

age, smoking status and medicament consumption, calculated Spearman correlation coefficients 

and obtained FDR-adjusted p-values for all pairs of adjusted variables. 

To examine the contributions of host genetic ancestry, gut microbiota and their interaction 

in explaining cardiometabolic disease risk, we fitted several linear models. The basic model 

included the city of origin, sex, age, calorie and fiber intakes, levels of physical activity, smoking 

status and medicament consumption. We then evaluated alternative models including genetic 

ancestry (PCA components), gut microbiota (first two PCoA axes of weighted UniFrac) and the 

genetic ancestry × gut microbiota interaction. The first two alternative models were each 

compared against the basic model, the latter model was compared against the best preceding 

model. We obtained log-likelihoods of all models and evaluated their changes with likelihood 

ratio tests. Model selection was based on AIC. Models were fitted for the cardiometabolic risk 
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scale, for individual variables adding up to this scale and for the Framingham coronary heart 

disease score. 

Finally, we identified particular OTUs associated with cardiometabolic outcomes by 

fitting quasi-Poisson GLMs on rarefied sequence counts, adjusting for the city of origin, sex, age, 

calorie and fiber intakes, physical activity, smoking status and medicament consumption. The 

residuals of these GLMs were then correlated with cardiometabolic outcomes using Spearman 

correlation coefficients and FDR-adjusted p-values. 

 

Power calculation 

We performed statistical power calculations to determine the sample sizes required to 

observe significant differences in genetic ancestry among tertiles of cardiometabolic disease risk, 

using the pwr package of R [66]. For this, we set the significance level (α = 0.05) and statistical 

power (β = 0.80), calculated the within-group variance for each ancestral genetic composition 

(proportions of European, Native American and African), and effect sizes (f). The latter were 

calculated using: 

 

� � �∑ ���������
��

���

��
, 

 

where k is the number of groups, pi = ni/N, ni is the number of observations in group i, N is the 

total number of observations, µi is the mean in group i, µ is the grand mean, and σ2 is the error 

variance within groups [67]. 
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Figure titles 

Figure 1. Contributions of European, Native American and African ancestries to the studied 

population. (A) Ancestral genetic composition across individuals (vertical bars). Data sorted by 

European component. Eur=European; NAm=Native American; Afr=African. (B-D) Ancestral 

genetic composition along the five Colombian cities from which participants originated. The raw 

data, average and 95% confidence intervals are shown in each plot. Mean ± SD given above each 

plot. Note the change in scale among panels. 

 

Figure 2. Ancestral genetic composition and gut microbiota composition in the studied 

population. Each set of panels shows the same cloud point colored by the contributions of each 

ancestry: (A–C) Robust principal components analysis (PCA) for compositional data based on 

the proportions of European (A), Native American (B) and African (C) ancestries. (D–F) 

Principal coordinate analysis (PCoA) based on weighted UniFrac distances of gut microbiota for 

European (D), Native American (E), and African (F) ancestries. Percentages on the axes 

represent the proportion of explained variation. Note the change in scale among panels. 

 

Figure 3. Heatmap showing the correlations between rarefied OTU abundances and 

multivariable-adjusted cardiometabolic outcomes. The dendrogram to the left was obtained by 

hierarchical Ward-linkage clustering based on correlation coefficients of the relative abundances 

of the 100 OTUs that had median abundances ≥0.01% across all participants. Correlations 

adjusted for the city of origin, sex, age, calorie and fiber intakes, physical activity, smoking status 

and medicament consumption. The color scale indicates Spearman correlation coefficients. FDR-

adjusted p-values from quasi-Poisson generalized linear models are indicated (*=q<0.10). 
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Table 1. Characteristics of the study population. Variables presented overall and according to 

tertiles of the cardiometabolic risk scale. Data presented as mean ± SEM. P-values from ANOVA 

to the exception of sex, age range, smoking status and medicament consumption (chi-squared 

tests). 

 
Overall 

Cardiometabolic risk scale 
 Tertile 1 Tertile 2 Tertile 3 p-value 

n 440 147 146 147  
Sex (%)     <0.0001 
  Male 0.48 0.33 0.46 0.64  
  Female 0.52 0.67 0.54 0.36  
Age range (%)     0.05 
  18-40 years 0.47 0.55 0.41 0.45  
  41-62 years 0.53 0.45 0.59 0.55  
Lipid profile      
  HDL cholesterol (mg/dL) 46 ± 1 52 ± 1 46 ± 1 40 ± 1 <0.0001 
  LDL cholesterol (mg/dL) 115 ± 1 110 ± 3 120 ± 2 115 ± 3 0.02 
  VLDL cholesterol (mg/dL) 28.8 ± 1 17.7 ± 0.6 27.5 ± 1.0 40.5 ± 2.2 <0.0001 
  Total cholesterol (mg/dL) 186 ± 2 178 ± 3 189 ± 3 190 ± 3 0.003 
  Triglycerides (mg/dL) 143 ± 5 87 ± 3 138 ± 5 203 ± 11 <0.0001 
Glucose metabolism      
  Fasting glucose (mmol/L) 89 ± 1 82 ± 1 88 ± 1 96 ± 2 <0.0001 
  HbA1c (%) 5.55 ± 0.03 5.37 ± 0.02 5.49 ± 0.05 5.77 ± 0.06 <0.0001 
  Fasting insulin (µU/ml) 13.27 ± 0.41 8.04 ± 0.29 11.67 ± 0.39 19.62 ± 0.80 <0.0001 
  HOMA-IR 3.12 ± 0.15 2.84 ± 0.33 2.97 ± 0.19 3.58 ± 0.22 0.0005 
Low-grade inflammation      
  hs-CRP (mg/L) 3.15 ± 0.22 1.56 ± 0.11 2.63 ± 0.20 5.30 ± 0.58 <0.0001 
Blood pressure      
  Systolic (mm Hg) 124 ± 1 112 ± 1 125 ± 1 136 ± 1 <0.0001 
  Diastolic (mm Hg) 80 ± 1 71 ± 1 81 ± 1 88 ± 1 <0.0001 
Adiposity      
  BMI (kg/m2) 27.9 ± 0.2 23.7 ± 0.2 28.2 ± 0.3 31.8 ± 0.4 <0.0001 
  Waist circumference (cm) 92.8 ± 0.6 80.5 ± 0.6 93.3 ± 0.7 104.0 ± 0.9 <0.0001 
  Body fat (%) 37.2 ± 0.3 33.9 ± 0.4 38.0 ± 0.4 39.6 ± 0.4 <0.0001 
Disease risk      
  Cardiometabolic risk scale 0.00 ± 0.16 -3.83 ± 0.13 0.18 ± 0.07 3.57 ± 0.12 <0.0001 
  Framingham score 0.52 ± 0.32 -3.33 ± 0.53 1.38 ± 0.49 3.49 ± 0.48 <0.0001 
Diet      
  Calories (kcal/day) 1931 ± 21 1944 ± 31 1921 ± 41 1922 ± 38 0.60 
  Carbohydrates (g/day) 266 ± 3 268 ± 5 265 ± 6 264 ± 5 0.69 
  Protein (g/day) 74 ± 1 74 ± 1 73 ± 1 74 ± 1 0.79 
  Fat (g/day) 63 ± 1 63 ± 1 62 ± 1 63 ± 1 0.54 
  Fiber (g/day) 17.7 ± 0.2 18.2 ± 0.4 17.5 ± 0.4 17.3 ± 0.4 0.21 
Lifestyle      
  Physical activity (MET/min/week) 5115 ± 264 5322 ± 434 5079 ± 412 5012 ± 528 0.18 
  % Smoking (yes/no) 0.13/0.87 0.09/0.91 0.12/0.88 0.18/0.82 0.05 
  % Medicament consumption (yes/no) 0.42/0.58 0.31/0.69 0.39/0.61 0.56/0.44 <0.0001 
Genetic ancestry (%)      
  European 67.37 ± 0.27 67.53 ± 0.43 68.02 ± 0.44 66.42 ± 0.52 0.10 
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  Native American 20.94 ± 0.23 20.66 ± 0.38 20.59 ± 0.38 21.63 ± 0.43 0.17 
  African 11.69 ± 0.22 11.82 ± 0.38 11.39 ± 0.34 11.96 ± 0.44 0.71 
  PC1 0.03 ± 0.02 0.04 ± 0.03 0.02 ± 0.03 0.02 ± 0.03 0.49 
  PC2 -0.02 ± 0.01 -0.02 ± 0.01 -0.003 ± 0.02 -0.05 ± 0.02 0.15 
Microbiota composition (%)      
  PCo1 0.00 ± 0.01 0.03 ± 0.01 -0.006 ± 0.01 -0.02 ± 0.01 0.006 
  PCo2 0.00 ± 0.01 0.03 ± 0.01 -0.009 ± 0.01 -0.02 ± 0.01 0.001 
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Table 2. Multivariable-adjusted correlations between cardiometabolic outcomes, diet and 

physical activity with the host genetic ancestry and gut microbiota. Variables adjusted for the city 

of origin, age, sex, smoking status and medicament consumption. Spearman correlation 

coefficients (rho) and FDR-adjusted p-values (q-values) are shown. Values in bold highlight 

significant correlations. 

 Genetic ancestry Gut microbiota 
 PC1 PC2 PCo1 PCo2 

 rho q-value rho q-value rho q-value rho q-value 

Lipid profile         

  HDL cholesterol 0.03 0.82 -0.02 0.91 0.06 0.67 0.02 0.91 

  LDL cholesterol 0.03 0.85 -0.04 0.79 0.03 0.83 -0.04 0.77 

  VLDL cholesterol -0.05 0.71 -0.01 0.93 -0.05 0.69 -0.08 0.45 

  Total cholesterol 0.0001 0.99 -0.05 0.69 0.04 0.79 -0.05 0.69 

  Triglycerides -0.05 0.70 -0.01 0.93 -0.05 0.69 -0.08 0.45 

Glucose metabolism         

  Fasting glucose -0.05 0.70 -0.01 0.92 -0.13 0.08 -0.01 0.94 

  HbA1c 0.04 0.75 -0.08 0.41 0.004 0.96 0.03 0.86 

  Fasting insulin -0.06 0.68 -0.13 0.05 -0.11 0.21 -0.07 0.54 

  HOMA-IR -0.02 0.91 -0.04 0.74 -0.10 0.27 -0.03 0.83 

Low-grade inflammation         

  hs-CRP -0.003 0.96 -0.04 0.79 -0.06 0.64 -0.10 0.27 

Blood pressure         

  Systolic -0.02 0.91 0.02 0.91 -0.13 0.05 -0.15 0.04 
  Diastolic 0.05 0.70 0.02 0.91 -0.11 0.19 -0.16 0.03 
Adiposity         

  BMI 0.01 0.93 -0.10 0.27 -0.09 0.31 -0.16 0.03 
  Waist circumference 0.005 0.96 -0.05 0.69 -0.08 0.45 -0.13 0.05 
  Body fat -0.03 0.79 -0.06 0.64 -0.06 0.67 -0.14 0.05 
Diet         

  Calories 0.03 0.79 0.01 0.93 -0.02 0.91 -0.04 0.74 

  Carbohydrates 0.01 0.93 0.01 0.95 0.01 0.93 -0.07 0.54 

  Protein 0.03 0.79 0.06 0.67 -0.01 0.93 -0.07 0.60 

  Fat 0.05 0.69 -0.01 0.94 -0.04 0.77 0.03 0.86 

  Fiber -0.04 0.74 -0.03 0.79 0.01 0.93 -0.15 0.04 

Lifestyle         

  Physical activity 0.02 0.88 -0.08 0.45 -0.02 0.91 -0.01 0.95 
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