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Abstract 

Morphology assessment has become the standard method for evaluation of embryo quality 

and selecting human blastocysts for transfer in in vitro fertilization (IVF). This process is 

highly subjective for some embryos and thus prone to human bias. As a result, 

morphological assessment results may vary extensively between embryologists and in some 

cases may fail to accurately predict embryo implantation and live birth potential. Here we 

postulated that an artificial intelligence (AI) approach trained on thousands of embryos can 

reliably predict embryo quality without human intervention. 

To test this hypothesis, we implemented an AI approach based on deep neural networks 

(DNNs). Our approach called STORK accurately predicts the morphological quality of 

blastocysts based on raw digital images of embryos with 98% accuracy. These results 

indicate that a DNN can automatically and accurately grade embryos based on raw images. 

Using clinical data for 2,182 embryos, we then created a decision tree that integrates 
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clinical parameters such as embryo quality and patient age to identify scenarios associated 

with increased or decreased pregnancy chance. This IVF data-driven analysis shows that 

the chance of pregnancy varies from 13.8% to 66.3%.  

In conclusion, our AI-driven approach provides a novel way to assess embryo quality and 

uncovers new, potentially personalized strategies to select embryos with an improved 

likelihood of pregnancy outcome. 

 

Introduction 

Infertility remains an unremitting reproductive issue that affects about 186 million 

people worldwide1. In the United States, infertility affects approximately 8% of women 

of child-bearing age2. Approximately 44% of women in the U.S. meet t he criteria for 

infertility at a certain point during their reproductive years3. Assisted reproductive 

technology (ART), including in vitro fertilization (IVF), is one of the most common 

treatments for infertility. IVF involves ovarian stimulation followed by the retrieval of 

multiple oocytes, fertilization, and embryo culture for 1-6 days in controlled environmental 

conditions. Embryo quality is then assessed by morphological criteria in an effort to select 

the best one or two embryos for transfer to the patient’s uterus. Because embryo 

morphology is only an approximate surrogate for embryo quality, multiple embryos are 

often transferred, as no method is of high enough accuracy and reliability to assure that a 

single embryo selected will result in implantation4. Indeed, although IVF and embryo-

transfer technologies have improved considerably over the past 30 years, the efficacy of 

IVF continues to remain relatively low5. 

Conventional embryo evaluation involves observation, assessment, and manual grading of 

blastocyst morphological features by skilled embryologists. While this selection method is 

used universally in clinical practice, the evaluation of an embryo based on a static image 

represents a rather crude, subjective evaluation of embryo quality, which is also time-

consuming6-8. 

Complicating the problem, there continues to be a tendency for inconsistent blastocyst 

classification, often associated with different grading systems among medical centers. This 

makes it difficult and challenging to compare selection methodologies and analyze patients 

undergoing treatments in different clinics. Indeed, attempts to establish a universal grading 
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and selection system have thus far failed to catch on9. 

Improving the ability to select the embryos with the highest implantation potential would 

increase pregnancy rates as well as minimize the chance of multiple pregnancies due to 

the transfer of multiple embryos10. Opportunities exist to leverage artificial intelligence 

(AI) in IVF clinics which have adopted digital imaging as part of their clinical practice, 

utilizing their time-lapse datasets of many thousands of labeled images. Time-lapse 

imaging (TLI) is an emerging technology that allows continuous observation of embryo 

development without removing embryos from controlled and stable incubator 

conditions11. Time-lapse analysis was first used more than three decades ago to study 

the development of bovine embryos in vitro12, 13. Interest in using this technology to 

assess human embryos has recently grown, as it has been shown to improve selection of 

the most robust embryos for transfer14. This technology also improved IVF cycle 

outcomes by decreasing the embryos’ exposure to changes in temperature, high oxygen, 

and fluctuations in pH during culture15. In addition, it has enabled embryologists to assess 

embryo quality by tracking the timing of embryo cleavage events and the temporal intervals 

between hallmarks observed during embryo development (karyokinesis and cytokinesis)16. 

Currently, no robust and fully automatic method exists to analyze human embryo data by 

TLI. Several groups have attempted to use different machine learning approaches for 

embryo quality analysis, with varying degrees of success17, 18 for bovine and mammalian 

oocytes using artificial neural network (ANN)- and random forest (RF)-based 

classification, respectively. Their results showed 76.4% (test set = 73 embryos) and 

75% (test set = 56 embryos) accuracy for discretization of bovine embryo grades and 

mammalian oocyte grades, respectively. Furthermore, a few previously published 

approaches have focused on classifying human embryo quality based on specific features, 

such as the inner cell mass (ICM) area, trophectoderm (TE) area, zona pellucida (ZP) 

thickness, and blastocyst area and radius separately10, 19. In particular, Filho et al.19 

presented a semi-automatic grading system of human embryos. They showed that 

classifiers can have different accuracies for each object (blastocyst extension, ICM, and 

TE). Their results indicated various accuracy ranges from 67% to 92% for the embryo 

extension, f r om 67% to 82% for the ICM, and from 53% to 92% for TE detection; 92% 

was the highest accuracy achieved across a 73-embryo test set19. Although these methods 
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achieved reasonable accuracy in assessing human embryo quality, they require advanced 

embryological expertise and several preprocessing steps, which are time-consuming. 

Deep learning has recently been used to address a number of medical-imaging 

problems, such as predicting skin lesions or diagnosing disease20. Our group has also 

recently shown that deep learning can significantly improve performance, correctness, 

and robustness in classifying and quality assessment of digital pathology images in 

cancer21. 

In this paper, we introduce a computational method using deep learning techniques (Figure 

1) to predict the quality of human embryos. In the first step, our embryologists 

generated embryo images from TLI and labeled embryos as good-quality or poor-

quality. In the second step, a deep neural network (DNN) was trained to automatically 

assess the quality of the images and evaluated using a blind test set comprising of good- 

and poor-quality images of human embryos. Finally, a decision tree was used to combine 

the deep learning-based assessment of embryo quality with clinical data such as patient’s 

age to identify the (ideal) clinical scenarios associated with a maximized likelihood of 

pregnancy (Figure 1).  

Figure 1. This flowchart demonstrates the design and assessment of STORK. (a) Human embryo images 

are provided from the embryology lab; (b) the embryo images are labeled by embryologists as good-

quality or poor-quality based on their pregnancy likelihood; (c) the labels and clinical information from 

the extracted images are integrated, and the Inception-V1 algorithm is trained for good-quality and poor-

quality classes; (d) the CHAID decision tree is used to investigate the interaction between clinical 

information, such as patient age with embryo quality; and (e) STORK is evaluated by a blind test set to 

assess its performance in predicting embryo quality. 

 

Results 

We obtained time-lapse images of 10,148 de-identified embryos, taken at 110 hpi (hours 
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post-insemination) after fertilizing oocytes, at the Center for Reproductive Medicine at 

Weill Cornell Medicine, New York (WCM-NY). The images were taken at seven focal 

depths (+45, +30, +15, 0, -15, -30, and -45), constituting a set of 50,392 total images. 

Trained embryologists evaluated embryo quality using an internal scoring system. To 

enable the AI analysis, the 10,148 embryos were subsequently classified into three major 

groups (good-quality = 1,345 embryos, fair-quality = 4,062 embryos, and poor-quality = 

4,741 embryos) (Figure 2a) as described in the Methods section. 

We sought to train an Inception-V1 deep learning- based algorithm using the two quality 

groups at both ends of the spectrum, i.e., good-quality and poor-quality. The Inception-

V1 architecture is a transfer learning algorithm, where we initially performed fine-tuning 

of the parameters for all of the layers. Upon preprocessing and removal of bad-quality 

images and random selection of a balanced set of images, we were left with a total of 12,001 

images with up to seven focal depths (+45, +30, +15, 0, -15, -30, and -45): 6,000 images in 

877 good-quality embryos, and 6,001 images in 887 poor-quality embryos. We used 50,000 

steps for training the DNN. We then evaluated the performance of STORK using a 

randomly selected independent test set with 964 good-quality images (141 embryos) and 

966 poor-quality embryo images (142 embryos). 

 

DNN architecture achieves the expert-level classification of embryo images 

Our results showed that the trained algorithm was able to identify good-quality and poor-

quality images with 96.94% accuracy (1,871 correct predictions out of 1,930 images = 

96.94% accuracy) when tested on 964 good-quality and 966 poor-quality embryos.  

To measure the accuracy of STORK for individual embryos, we used a simple voting 

system across multiple image focal depths. If the majority of images from the same 

embryo were predicted good-quality, then the final quality of the embryo was considered 

good. For a small number of cases in which the number of good-quality and poor-quality 

images was equal (e.g., three good-quality and three poor-quality when the number of 

focal depth was 6), we used STORK’s output probability scores to break the tie. We 

compared the average STORK probability scores of the good-quality images with the 

average probability scores of the poor-quality images. 
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Figure 2. (a) Embryologists evaluate embryo quality using an internal scoring system and subsequently 

classify them into three major groups (good-quality, fair-quality, poor-quality). (b) Inception-V1 (fine-

tuning the parameters for all layers) results for three datasets. WCM-NY: data from the Center for 

Reproductive Medicine and Infertility at Weill Cornell Medicine of New York; Universidad de Valencia: 

data from the Institute Valenciano de Infertilidad, Universidad de Valencia; IRDB-IC: data from the 

Institute of Reproduction and Developmental Biology of Imperial College. (c) STORK classifies the fair-

quality images into existing good-quality and poor-quality classes. For example, figures “i” and “ii” are 

labeled 3A-B according to the Veeck and Zaninovic grading system, while STORK classified them as 

poor-quality and good-quality, respectively. Also, figures “iii” and “iv” are both labeled 3BB. However, 

the algorithm correctly classified figure “iii” as poor-quality and figure “iv” as good-quality. As the figure 

shows, the outcome in the embryos in “ii” and “iv” is positive live birth, whereas it is negative live birth 

in “i” and “iii”. (d) This circular heatmap demonstrates the agreement between STORK and five 

embryologists in the labeling of the same images from 394 embryos. The heatmap also compares 

STORK’s result with the majority vote results from all of the embryologists for 239 embryos. Orange: 

embryos with good-quality; navy: embryos with poor-quality; gray: embryos with fair-quality; red: 

embryos that are not labeled due to uncertainty. 
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We observed 97.53% accuracy (276 correct predictions out of 283 embryos; Figure 2b) 

on the blind test set. We also found that training an Inception-V1 model without 

parameter fine-tuning did not affect performance (accuracy; see Supplementary Figure 

1). This observation is in agreement with previous studies using these deep learning 

techniques20-22. 

We also found that STORK classified the fair-quality embryo images (4,480 images from 640 

embryos) as 82% good-quality (526 embryos) and 18% poor-quality (114 embryos), respectively 

(Figure 2c). Attesting to the intermediate status of the fair-quality group, the average STORK 

probability score was 0.98 for good-quality predictions and 0.93 for poor-quality predictions 

(Supplementary Figure 2). 

These STORK probability scores are significantly (p-value <0.01) lower than the 

probability scores for good-quality and poor-quality images (0.99 on average). Because 

Inception-V1 was trained for good-quality and poor-quality classes with different 

pregnancy probabilities (an approximately 58% and 35% chance of pregnancy for good-

quality and poor-quality classes, respectively), we wondered if STORK nonetheless 

produced relevant predictions within the fair-quality class. A closer look showed that 

embryos with fair-quality images that were classified as poor-quality by STORK had a 

lower likelihood of positive live birth (50.9%) as compared to those classified as good-

quality (61.4% positive live birth, p <0.05 by the two-tailed Fisher’s test). 

In addition, we found that fair-quality embryos predicted to be good-quality by STORK came 

from younger patients (33.98 years old on average) than those predicted to be poor-quality 

(34.25 years old on average; p-value < 0.01). Interestingly, these numbers are similar to the 

patients age with good-quality and poor-quality embryos: 33.86 and 34.72 years old on average, 

respectively. This suggests that STORK finds sufficient structure within embryos classified as 

fair-quality to make clinically relevant predictions. 

 

The robustness of STORK 

To evaluate STORK’s robustness, we tested its performance by using additional datasets 

of embryo images obtained from two other IVF centers, Universidad de Valencia and 

IRDB-IC, comprising 127 (74 good-quality, 53 poor-quality) and 87 (61 good-quality, 26 
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poor-quality) embryos, respectively (Supplementary Table 3). Our experimental results (See 

Figure 2b) demonstrate that although the scoring systems used for these centers are 

different from the system used to train our model, STORK can successfully identify and 

register score variations and robustly discriminate between them, with an accuracy of 77% 

(average precision = 0.8, AUC = 0.9) and 70% (average precision = 0.66, AUC = 0.76) for 

the IRDB-IC and Universidad de Valencia, respectively (Supplementary Table 3). 

It is well known that embryo scoring frequently varies among embryologists23, mainly due 

to the subjectivity of the scoring process and different interpretations of embryo quality. 

We therefore sought to create a small but robust benchmark embryo dataset that would 

represent the consensus of several embryologists. We asked five embryologists from three 

different clinics to provide scores for each of 394 embryos generated in different labs. 

Note that these images were not used in the training phase of our algorithm. The embryo 

images were scored using the Gardner scoring system24 and then mapped onto our 

simplified three groups (good-quality, fair-quality, and poor-quality; see Supplementary 

Table 5 and Supplementary Table 2 for the mapping method). 

As expected we found a low level of agreement among the embryologists, with only 89 

embryos out of the 394 classified as the same quality by all five embryologists 

(Supplementary Figure 3). Therefore, to create a larger and more accurate gold standard 

dataset, we used an embryologist majority voting procedure (i.e., the quality of each image 

was determined by the score given by at least three out of the five embryologists) to 

classify 239 images (32 good-quality and 207 poor-quality). 

When we applied STORK to these 239 images, we found that it predicted the 

embryologist majority vote with high accuracy (90.4%) and average precision (95.7%). In 

comparison, STORK agreed with the individual embryologists slightly less often (89.6%, 

85.8%, 80.8%, 85.8%, and 88.3% accuracy; 92.1%, 89.5%, 97.4%, 88.3%, and 96.3% 

average precision). These results indicate that STORK is at least as reliable as any 

individual embryologist when classifying embryo image quality (Figure 2d). 

 

Predicting pregnancy likelihood using the trained algorithm for embryo outcome 

It is known that factors such as embryo quality, maternal age, the patient’s genetic 

background, clinical diagnosis, and treatment-related characteristics can affect 
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pregnancy outcome25, 26. Because embryo quality is one of the most important of these 

factors, the ultimate aim of any embryo-assessment approach is to identify embryos that 

have the highest implantation potential, resulting in live birth24, 27, 28. 

We explored the possibility of directly predicting the likelihood of pregnancy based on 

embryo images labeled as “positive” or “negative live birth”. To address this question, we 

used WCM-NY images associated with 1,620 embryos for which we had the pregnancy 

outcome (live birth) information (Supplementary Table 1). We allocated 85% of the 

embryos (1,377 embryos, 9,639 images) to build two classes-“negative live birth” (603 

embryos) and “positive live birth” (774 embryos)-as training. There were good- and 

poor-quality embryos that were assessed by embryologist, in both the “negative live birth” 

(embryos ‘a’ and ‘b’ in Supplementary Figure 4) and “positive live birth” classes 

(embryos ‘c’ and ‘d’ in Supplementary Figure 4). Thus, we had embryo images with 

four different characteristics in two classes (Supplementary Figure 4). 

We built a new training algorithm, different from STORK, called DCNN (deep 

convolutional neural network) to fine-tune the Inception-V1 algorithm using two classes 

(positive and negative live birth) with 50,000 steps. 

Finally, we tested DCNN with 243 randomly selected embryos as a blind test comprising 

136 and 107 “positive live birth” and “negative live birth” embryos (1,701 images), 

respectively (Supplementary Table 1). 

We obtained only a 51.85% accuracy for discretization of positive and negative live 

birth. This suggests that discretization of images based on live birth outcome using 

embryo morphology alone cannot be useful since other important characteristics, such 

as the patient’s age and genetic or clinical variations, can affect the pregnancy rate. We 

refer the reader to Appendix B for a detailed discussion. 

Therefore, in the next section we present an alternative method for predicting pregnancy 

probability based on a state-of-the-art decision tree method that integrates clinical 

information and embryo quality. 

 

Decision tree reveals the interaction between clinical information 

As we showed in the previous section, embryo quality alone is not enough to accurately 

determine the pregnancy probability. Therefore, we wondered if we could assess the 
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pregnancy rate by using a combination of embryo quality and patient age, as age is one of 

the most important clinical variables. For this purpose, we used a hierarchical decision 

tree method known as a chi-squared automatic interaction detection (CHAID) 

algorithm29. 

We designed a CHAID30, 31 decision tree using all 2,182 embryos from the WCM-NY 

database with available clinical information (Figure 3). We then investigated the 

interaction between patient age (consisting of seven classes: ≤30, 31–32, 33–34, 35–36, 

37–38, 39–40, and >41) and embryo quality (consisting of two classes: good-quality and 

poor-quality), and their effect on live birth outcome. The CHAID algorithm can project 

interactions between variables and non-linear effects, which are generally missed by 

traditional statistical techniques. CHAID builds a tree to determine how variables can 

explain an outcome in a statistically meaningful way30, 31. CHAID uses χ2 statistics 

through the identification of optimal multi-way splits, and identifies a set of 

characteristics (e.g., patient age and embryo quality) that best differentiates individuals 

based on a categorical outcome (here, live birth) and creates exhaustive and mutually 

exclusive subgroups of individuals. It chooses the best partition on the basis of statistical 

significance and uses Bonferroni-adjusted p-values to determine significance with a 

predetermined minimum size of end nodes. We used a 1% Bonferroni-adjusted p-value, a 

maximum depth of the tree (n = 5), and a minimum size of end nodes (n = 20) as the 

stopping criteria. The application of a tree-based algorithm on the embryo data would 

help to more precisely define the effect of patient age and embryo quality (good-quality 

or poor-quality) on the live birth outcome, and to better understand any interactions 

between these two clinical variables (patient age and embryo quality). 

Note that while several other classification algorithms could have been employed for the 

prediction, CHAID was the best fit in terms of model quality criteria, and it enabled a 

more proper visualization of the decision tree diagram32, 33. 

As Figure 3 shows, patients were classified into three age groups: (i) ≤36, (ii) 37 and 38, 

and (iii) ≥39 years old. For each age group, embryos were classified in good- and poor-

quality groups.  

The results confirm the association between pregnancy probability and patient age. The 

pregnancy probability for patients with good-quality embryos is significantly (1% 
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Bonferroni-adjusted p-value) higher than that for patients with poor-quality embryos across 

different ages. Figure 3 indicates that patients ≤36 years old have a higher pregnancy rate 

compared to patients in the other two age groups. The CHAID decision tree analysis also 

indicates that the chance of pregnancy varies from 13.8% (e.g., when the embryo is of poor-

quality as assessed by STORK and the patient is >41 years old) to 66.3% (e.g., when the 

embryo is of good-quality and the patient is <37 years old) using IVF (Figure 3). 
 

 

 

Figure 3. The decision tree shows the interactions between IVF patient ages and embryo quality using CHAID. 

 

Discussion 

Computational embryology is a rapidly evolving field. There is enormous potential for 

using computational approaches to supply prognostic information that cannot be 

provided by embryologists alone. The STORK framework presented here provides a 

novel method that can be easily implemented for a wide range of applications, 

including embryo grading.  

Recently, there have been several studies utilizing classical machine learning approaches, 

such as support vector machine (SVM) and RF, and deep learning methods, such as 
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CNN-basic17, 18, 34, for outcome prediction or grade classification. To date, several AI 

methods have been used to assess blastocysts35. Image segmentation and advanced 

image analysis techniques using neural networks with textured descriptors, level set, 

phase congruency, and fitting of ellipse methods have been demonstrated in mouse36, 

bovine17, and human blastocysts19, 37. Studies on human embryos are still very limited 

and they often involve low numbers of embryos (51–394) from single centers and lack 

validations in independent cohorts. Furthermore, publications to date have relied on images 

that were captured using inverted microscopes. However, time-lapse images have the 

advantage of being consistent in terms of size, lighting, contrast, and quality, and in terms 

of capturing the timing of embryo development, which is particularly important when 

quantifying blastocyst expansion. 

The aim of this project was to evaluate the utility of DNNs to automatically identify 

embryo quality. To the best of our knowledge, this is the first study to use higher-level 

architecture of a DNN algorithm. The advantage of this technique is that instead of only 

focusing on the predetermined, segmented features that embryologists are trained to analyze, 

the entire image of the embryo is assessed, allowing for quantification of all the available 

data. Convolution, therefore, allows the AI to identify patterns in morphological features 

that we do not know how to assess. 

We have demonstrated that deep learning approaches can provide accurate quality 

assessments in various clinical conditions. Our results show that the accuracy of a DNN 

primarily depends on the labels that we use to train the algorithm.  

Our method yields a cutting-edge sensitivity when performing the challenging task of 

assessing embryo quality using multi-focal embryo images. Notably, our STORK 

framework is fully automated and does not require any manual augmentations or pre-

processing on the input images. In fact, it provides embryologists or medical technicians a 

straightforward platform to use without requiring sophisticated computational knowledge. 

Finally, we designed a decision tree using the CHAID algorithm to investigate the 

interaction between embryo quality and patient age, and their effect on the pregnancy rate 

(live birth likelihood). 

We also showed that our study raises several important issues regarding embryo clinical 

conditions, as different deep learning responses could be caused by clinical situations. 
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Further studies are required to clarify the efficiency of the deep learning application in 

predicting pregnancy outcome. 

 

Methods 

In this section, we present our AI-based method for classifying embryo morphologies. We 

also discuss how we assessed the accuracy and consistency of the AI classifier in 

comparison to human classification. 

 

Embryo images 

This study included 10,148 de-identified embryos from our Center for Reproductive 

Medicine at Weill Cornell Medicine (2012/05 - 2017/12). This study used fully de-

identified data and was approved by the Institutional Review Board (IRB) at Weill Cornell 

Medicine (IRB no. 1401014735). We refer to this dataset as WCM-NY throughout this 

manuscript. The images were captured using the following technique: EmbryoScope® 

time-lapse system (Vitrolife, Sweden); built-in microscope: Leica 20x, 0.40 LWD Hoffman 

modulation contrast objective specialized for 635 nm illumination; camera resolution: 

1280×1024 pixels, three pixels per µm, monochrome, 8-bit; embryo illumination: 0.032s 

per image using single red LED (635nm) gives 34µW cm-2 for image acquisition; time 

between acquisitions: 15-min. cycle time for seven focal planes representing a total of 

50,392 images (stored in jpg, 500×500 pixels) with about seven focal depths (+45, +30, 

+15, 0, -15, -30, and -45) captured precisely 110 hpi (Supplementary Figure 5). The 

standardization of images by the EmbryoScope software was consistent, and the images 

were labeled using the Veeck and Zaninovic grading system38. In addition, these images 

contain 130 various grades, of which most comprise a few image numbers (Supplementary 

Table 4). We eliminated from the dataset images that were either very dark or missing an 

embryo picture, and we selected a balanced set of images for both good-quality and poor-

quality classes. 

The Veeck and Zaninovic grading system38 (Supplementary Table 5) is a slightly modified 

version of the Gardner system24, classifying embryos based on blastocyst expansion 

(grades 1 to 6), cell abundance, and conformity in the ICM (grades A, B, and C) and TE 

(grades A, B, and C) (Supplementary Table 5). In addition to our WCM-NY data, we 
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used two other datasets from the Universidad de Valencia and the Institute of 

Reproduction and Developmental Biology of Imperial College (IRDB-IC). The data from 

the Universidad de Valencia was graded based on a slightly different of the Gardner 

scoring system known as Asebir39. Compared to the Gardner system, Asebir uses five 

rather than six expansion categories and changes the ICM and TE rating terminology to 

single A, B, C, and D letters (Supplementary Table 5). The IRDB-IC data was graded 

using the Gardner scoring system. 

 

Classification and diagnostic framework 

This study presents a framework (see Figure 1) to classify different embryo images based 

on Veeck and Zaninovic grades (Supplementary Table 4) and map those grades to good- 

and poor-quality blastocyst grades. Here, we used the WCM-NY embryos and clinical 

information from a subset of these embryos, such as grades and patient age. 

We divided the images into training, validation, and test groups. We allocated 70% of 

the images to the training group and the remaining 30% to the validation and test 

groups (Supplementary Table 1). The training, validation, and test sets did not overlap. 

 

Algorithm architectures and training methods 

We employed a DNN for embryo image analysis based on Google’s Inception-V140 

architecture, which offers a very effective run-time and computational cost41, 42. To 

train this architecture, we used transfer learning. We employed a pre-trained network 

and fine-tuned all outer layers43 using the WCM-NY images. We also compared this 

transfer learning approach to training the network from scratch. 

 

Evaluation of method and implementation details 

To implement the STORK framework, we used the Tensorflow version 1.4.044  and the Python 

library TF-Slim for defining, training, and evaluating models in TensorFlow. All training of our 

deep learning methods were performed on a server running the SMP Linux operating system. This 

server is powered by four NVIDIA GeForce GTX 1080 GPUS with 8 GB of memory for each 

GPU and 12 1.7-GHz Intel Xeon CPUs. 

To evaluate the performance of our methods, we used an accuracy measure, which is 
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the fraction of correctly identified images21. The accuracy is formally defined as TNu 

/(TNu + FNu), where TNu (true number) and FNu (false number) are the number of 

correctly and incorrectly classified images. 

To assess the performance of different algorithms, precision-recall curves (PRCs) were 

used. Here, precisions and recalls are presented by average for multi-class datasets. 

Additionally, receiver operating characteristics (ROCs) were estimated. The ROC curve is 

depicted by plotting the true positive rate (TPR) versus the false positive rate (FPR) at 

various threshold settings. The accuracy is measured by the area under the ROC curve 

(AUC)45, 46. 
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Supplementary Information 

 

Appendix A: Embryologists split and merge the quantity grades 

In this project, skilled embryologists determined the quantitative scores based on the 

grading system of Veeck and Zaninovic38. This grading system has three components: 

The first is a number showing the level of blastocyst expansion (CM, 1, 2, 3, 4, and 5), 

the second is a letter indicating the cell abundance and conformity in the ICM (grades 

A, B, C, and D), and the third is a letter quantifying the quality of TE cells (grades A, B, 

C, and D), which are extra-embryonic tissues that support the embryo proper (see 

Supplementary Table 5).  

For the first step of this project, the embryologists selected 13,931 images of embryos 

with good- and poor-quality based on their pregnancy outcome. The embryologists 

labeled the embryo images to map certain quantitative scores from the grading system 

of Veeck and Zaninovic (e.g., 1BB vs. 3AA) to just two quality grades: good-quality 

and poor-quality (Supplementary Table 5). In this regard, any score that contained B- or 

C and an extension rate equal to or less than three was considered part of the poor-

quality group (<35% pregnancy chance). In addition, any score with two A or A- 

grades, or one A with B, with an extension of 3 or greater could be labeled as good-

quality (>58% pregnancy chance). However, the experts debated about some scores 

(e.g., 3BB, 3BA-), putting them in a separate category (fair-quality) or classifying them 

as good-quality, as their pregnancy likelihood was about 48–50%. The complete list of 

scores and their quality map are shown in Supplementary Table 2. In total, 86 out of 130 

scores had images with clinical information, and 84 scores contained a small number of 

images in their cohorts (Supplementary Table 4). 
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We converted various quantitative grades related to other data resources to the Veeck 

and Zaninovic38 scoring system before testing our trained algorithm with other clinical 

resources (Supplementary Table 3). For instance, the 3AA grade in our WCM-NY 

dataset is equivalent to the BEaa grade in the Universidad de Valencia dataset and the 

4AA grade in the IRDB-IC dataset (Supplementary Table 5), which is based on the 

Gardner system9, 24. Notably, these two datasets are less accurate compared to the 

WCM-NY dataset due to variations in the grading systems. Information about the 

grading systems used for the different datasets is shown in Supplementary Table 5. 

 

Appendix B: Predicting pregnancy rate based on morphological quality of embryos 

We wondered what explained the low accuracy of DCNN in predicting pregnancy rate via 

positive and negative live birth. To find the reason, we looked closer at the results for 

embryos with four different characteristics (Supplementary Figure 4) that we integrated 

into two classes (positive and negative live birth). 

We found that 28.85%, 47.27%, 41.02%, and 71.13% accuracy for a randomly selected 

test set (243 embryos) comprised “negative live birth” with “good-quality” (52 embryos) 

(embryo ‘a’ in Supplementary Figure 4), “negative live birth” with “poor-quality” (55 

embryos) (embryo ‘b’ in Supplementary Figure 4), “positive live birth” with “poor-

quality” (39 embryos) (embryo ‘c’ in Supplementary Figure 4), and “positive live birth” 

with “good quality” (97 embryos) (embryo ’d’ in Supplementary Figure 4), respectively. 

This suggests that the trained algorithm can classify images based only on their quality (good or 

poor) while disregarding their outcome (positive or negative live birth) (Supplementary Figure 

4). Therefore, the accuracy of DCNN could be increased if we utilized a larger number of images 

with “poor-quality and negative live birth” and “good-quality and positive live birth” in our test 

set. Moreover, the DCNN performance decreased due to the integration of good- and poor-

quality images with, for example, “negative live birth” in a single class (e.g., embryos ’a’ and ’b’ 

in Supplementary Figure 4). 
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Supplementary Table 1. Four datasets showing different images (different number of embryos and 

clinical information) selected from the databases of WCM-NY (three datasets) and the Universidad de 

Valencia (one dataset) to assess the performance of STORK across different conditions. 

Datasets Dataset 

representation 

Labels of inputs and outputs Number of classes and 

images 

Good-Poor 110hpi images of 

embryos (WCM-NY) 

Discrimination of good- and 

poor-quality of embryos 

2 classes: 12,001 images for 

training and 1,930 images for 

test set 

Outcome-

Quality 

110hpi images of 

embryos (WCM-NY) 

Discrimination of positive and 

negative outcome of embryos 

through good- and poor-quality 

of embryos 

2 classes: 9,639 images for 

training and 1,701 images for 

test set 

Five-Experts 110hpi images of 

embryos (WCM-NY 

and Universidad de 

Valencia) 

Discrimination of good- and 

poor-quality of embryos 

2 classes: 12,001 images for 

training (STORK as trained 

algorithm by WCM-NY 

dataset) and 394 embryos for 

test set from Universidad de 

Valencia database 

 
 

 

Supplementary Table 2. The quantity scores that the algorithm is trained for. The embryologists 

categorized the scores into two groups (classes) and labeled them as good-quality and poor-quality. 

 
The list of grades The quality map 

3-4AA, 4A-A, 4A-A-, 5AA-, 4AB, 5A-A-, 4AA-, 4AA, 3A-A, 3AA, 3AA-, 

3AB, 3A-A- 

good-quality 

1-2B-/CB, 1-2B-/CB-/C, 1-2B-C, 1B-/CB-/C, 1BC, 1CB-/C, 1CC, 2-2B-C, 2-3BC, 

3B-B-/B, 3BC, 3CA-, 3CB, 3CB-, 3CC, 1-2B-/CB-, 1B-/CB, 1B-/CB-, 1B-/CC, 2-

3B-/CB, 2-3B-/CB-, 2B-/CB, 3B-/CB-/C, 3B-/CC, 1-2BB-/C, 2B-/CB-/C, 3B-C, 

1BB-/C, 1BB-/C, 1-2B-B-/C, 1B-C, 2-3BB-/C, 2-3B-B-/C, 2B-/CB-, 3B-/CB-, 3B-

/CB, 2BB-/C, 1B-B-/C, 2B-B-/C, 3BB-/C, 3B-B-/C, 1-2B-B, 1-2B-B-, 2-3B-B-, 1-

2BB-, 2-3B-B, 1B-B, 1BB-, 2-3BB-, 1-2BB, 1B-B-, 2B-B, 2B-B-, 2BB-, 3B-B-, 

1BB, 2BB, 3B-B, 3BB- 

poor-quality 
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Supplementary Table 3. The results of applying STORK on various datasets to discriminate two 

classes of embryo quality. WCM-NY: The Center for Reproductive Medicine and Infertility at Weill 

Cornell Medicine of New York; Universidad de Valencia: Institute Valenciano de Infertilidad, Universidad 

de Valencia; IRDB-IC: Institute of Reproduction and Developmental Biology of Imperial College. 

 

Datasets Grades Number of 

test embryos 

STORK 

accuracy 

WCM-NY 3AA, 3AA-, 3AB, 3A-A-, 5AA-, 3A-A, 3-4AA, 4AA 

(good-quality), 3BB-, 2BB-, 2BB, 1BB, 1B-B, 2B-B-, 

1BB-, 1B-B-, 2B-B, 1-2BB, 3B-B, 1-2B-B-, 1-2BB-, 1BB-

C, 1-2B-B, 3CB (poor-quality) 

283 97.53% 

Universidad 

de Valencia 

BEab, BEaa, BHiaa, BHiab, BHab (good-quality), BCbb, 

BCbc, BEcc, BEbc, BCcc, BEcb, BCcb (poor-quality) 

127 70.08% 

IRDB-IC 4Aa, 4Ab, 5Ab, 5Aa (good-quality), 2Cb, 4Bc, 2Bc, 4Cc, 

3Bc, 2Cc, 1Bb, 3Cc (poor-quality) 

87 77.01% 

 
Supplementary Table 4. Characteristics of 130 various grades and their image numbers. 

 

The morphological grades Class size 

1-2B-/CB, 1-2B-/CB-/C, 1-2B-C, 1-2BA-, 1B-/CB-/C, 1BC, 1CB-/C, 

1CC, 2-2B-C, 2-3B-A-, 2-3BA, 2-3BC, 2AA, 2AB-/C, 3-4AA, 3A-B-/C, 

3B-/CA, 3B-B-/B, 3BC, 3CA-, 3CB, 3CB-, 3CC, 4A-A, 4A-A-, 4AB-, 

4B-/CB, 4B-/CB-, 5A-B, 5AA-, 5BA, 5BA-, 5BB-, 1-2A-B-, 1-2B-/CB-, 

1B-/CB, 1B-/CB-, 1B-/CC, 2-3AA, 2-3AA-, 2-3B-/CB, 2-3B-/CB-, 2A-

B-/C, 2B-/CB, 2BA, 3A-C, 3B-/CB-/C, 3B-/CC, 4B-B-, 4BB-, 5B-B, 1-

2BB-/C, 1AB, 2B-/CB-/C, 3B-C, 4AB, 4B-B, 5A-A-, 5BB, 6BB, 1BB-/C, 

1BB-/C, 1-2B-B-/C, 1A-B-, 1B-C, 2-3AB-, 2-3BB-/C, 4A-B, 4AA-, 

4BA-, 2-3B-B-/C, 2A-A-, 2B-/CB-, 3B-A, 4AA, 2-3BA-, 1-2A-B, 1A-B, 

2BA-, 3B-/CB-, 2AB, 5B-B-, 2AB-, MOR 

Less than 10 images per 

grade 

2-3A-B-, 3B-/CB, 2A-B-, 2BB-/C, 3B-A-, 4BB, 2-3AB, 2-3A-A-, CM, 

CAVM, 1B-B-/C, 2B-B-/C, 3BB-/C, 3BA, 3B-B-/C, 2A-B, 1-2B-B 

More than 10 and less than 

50 images per grade 

2-3A-B, 1-2B-B-, 2-3B-B-, 3A-A, 1-2BB-, 3AB-, 2-3B-B More than 50 and less than 

100 images per grade 

1B-B, 1BB-, 2-3BB-, 1-2BB, 1B-B-, 3A-B-, 3AA, 2B-B, 3BA-, 3AA-, 

2B-B-, 2-3BB, 3AB, 2BB-, 3B-B-, 1BB, 3A-A- 

More than 100 and less than 

500 images per grade 

2BB, 3B-B, 3BB-, 3A-B, 3BB More than 500 images per 

grade 
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Supplementary Table 5. Information about different grading systems in three clinics. 

 

Objects Veeck and Zaninovic Gardner Asebir 
Expansion    
 CM 1 BT 
 1 2 BT 
 2 3 BC 
 3 4 BE 
 4 5 BHi 
 5 6 BH 
ICM    
 A A A 
 B A/B B 
 C B/C C 
 D C D 
TE    
 A A A 
 B A/B B 
 C B/C C 
 D C D 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Supplementary Figure 1. Inception-V1 via two different training methods (fine-tuning the parameters for all 

layers and training from scratch) in good-quality and poor-quality embryo quality discrimination dataset. 
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Supplementary Figure 2 .  STORK gives each embryo in the fair-quality class a probability score and classifies 

them into two groups: good- and poor-quality. While the score for embryos that are relabeled by STORK as 

good-quality and poor-qulity is 0.98 for good-quality and 0.93 for poor-quality, the average probability score for 

both good-quality and poor-quality classes labeled by embryologists as good-quality and poor-quality is 0.99. 

 

 

 

 

 

 
 

 

 

 

 

 
Supplementary Figure 3 .  This diagram47 demonstrates the agreement among embryologists (Venn 

diagram on left) and the agreement between STORK and five embryologists (Venn diagram on right) 

in the labeling of the same embryo images. The colors indicate different embryologists, and the numbers 

represent the number of embryos. 
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Supplementary Figure 4. The DCNN classifies embryo images with positive and negative live birth 

labels with a focus on their morphological quality. For example, embryos “a” and “d” are recorded 

by the laboratory data manager as negative live birth and positive live birth, respectively. DCNN, 

however, predicted positive live birth for embryos “a” and “d” because they both have good 

morphological quality. Embryos “b” and “c” are recorded as negative live birth and positive live birth, 

respectively. However, the algorithm again classified both embryos “b” and “c” as negative live birth 

because they have poor-quality. 

 

 

 
Supplementary Figure 5 .  This figure shows three examples of Veeck and Zaninovich grades and 

their corresponding quality labels across seven focal depths. 
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