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transformed) population rate as a covariate to a more typical model of direction tuning, we find
that population activity may lead to omitted variable bias in models of direction tuning alone.

As in the case studies above, there do not appear to be any consistent or systematic effects on the
preferred stimulus direction at the population level (Kuiper's test, p=0.1). However, the modulation
depth (measured using SD of the tuning curve) decreases substantially 15+2% when population
rate is included in the model, and there is again high variability across neurons (SD 20+2%). In this
case, model accuracy increases substantially when the omitted variable is included. The cross-
validated (10-fold) pseudo-R?is .26+.02 for the original model and .43+.02 for the model including
population activity, with an average increase of 164+31% (Fig 5).

Figure 4: Population rate as an omitted variable
in primary visual cortex. A) Correlated trial to trial
variability. Population rasters for three trials of
the same drifting grating stimulus (0 deg, red and
30 deg, orange). Neurons are sorted by overall
firing rate. B) Histograms of the population rate
across trials. As a population, the neurons
respond at higher rates to 30 deg stimuli, but
there is high trial-to-trial variability. C) The
responses of 2V1 neurons show typical tuning for
direction of motion. The tuning curve estimated
using direction covariates alone (black) changes
when the population rate covariate are included
(red). Right panels illustrate the dependence for
the preferred direction and an orthogonal
direction. Dark lines denote the estimated effect
of speed under the full model. Data points show
single trial data, along with the mean count and
rate (big data point). Light lines show linear trends
(OLS) using only the trials from each specific
stimulus.

Unlike in M1 where the effect of speed was highly diverse for different neurons, in this case study
the effect of the population rate is largely consistent. Higher population rates are associated with
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higher firing rates, and, for most neurons, the effect of the population rate is stronger in the
preferred direction(s), consistent with a multiplicative effect. Note that here, we do not include the
neuron whose rate we are modeling in the calculation of the population rate. However, using the
population rate as an omitted variable requires some interpretation. The population rate will
certainly be affected by the tuning of the, relatively small, sample of neurons that we observe. If
we have a disproportionate number of neurons tuned to a specific preferred direction, the
population rate in those directions will be higher. This suggests that in a different recording, the
covariation between the stimulus and the population rate could very likely be different. However,
it appears that the omitted variable biases in this case are mostly driven by noise correlations,
where neural activity is correlated on single trials even within the same stimulus condition, rather
than stimulus correlations, where neural activity is correlated due to similar tuning. When we
shuffle the data within each stimulus condition (removing noise correlations) the average change
in the modulation depth is -1+2% (SD 18+3%), and the effect of the omitted variable becomes
negligible.

Figure 5: For each of the case studies,
on average, the model accuracy
increases when omitted variables are
included (top) and the modulation due
to the original variables decreases
(bottom). Scatter plots indicate cross-
validated pseudo-R? values for each
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Figure 6: Estimated post-spike history filters can be heavily biased when the input is not included in the
model. A) Here we simulate from an inhomogeneous Poisson model with sinusoidal input (no post-spike
history effects). The input and spike responses from 20 trials are shown. Although there are no history
effects in the generative model, a GLM with history effects that is missing the correct input covariate will use
the history terms to capture the structure in the autocorrelation (C). Traces denote the estimated rate for
the 20 trials shown above. When the history term is included in the model, but the input is not, the GLM can
still reconstruct PSTH responses using the post-spike history alone. B) Post-spike filters for the models in (A)
with 95% confidence bands. Note that when input is included in the model the filters correctly reconstruct
the true (lack of) filter, and that there is higher uncertainty around the regions where the ISl distribution
does not constrain the model.

Omitted Variable Bias in the Estimation of Post-Spike History Effects

In addition to modeling spike counts over trials or on relatively slow (>100ms) behavioral
timescales, GLMs are also often used to describe detailed, single-trial spike dynamics on fast
(<10ms) timescales. One common covariate used in these types of models is a post-spike history
effect where the probably of spiking at a given time depends on the recent history of spiking.
Modeling these effects allows us to describe refractoriness, bursting (Paninski, 2004; Truccolo et
al., 2005), and a whole host of other dynamics (Weber and Pillow, 2017). Conceptually, the goal of
these models is to disentangle the sources of rate variation based only on observations of a
neuron’s spiking, with history effects, ideally, reflecting intrinsic biophysics. However, since the full
synaptic input is typically not known with extracellular spike recordings there is potential for
omitted variable biases.

To illustrate the potential pitfalls of omitting the input to a neuron, consider using the GLM to
capture single neuron dynamics in the complete absence of external covariates

A(t) = exp(u + ah(d))

where the rate 1 is determined by a baseline parameter u along with a filtered version of the
neuron’s past spiking with h;(t) = Y. fi(¥)n(t — 7). This is a perfectly acceptable model of intrinsic
dynamics, but for most spike data that we observe this isolated neuron model may not provide a
realistic description of a neuron receiving thousands of time-varying synaptic inputs. If we fit this
model to data where the input to the neuron did vary over time,
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A(t) = exp(u + ah(t) + Brxp(t))

then the history filter in the first model will attempt to capture variation in spiking due to the time-
varying input, in addition to any intrinsic dynamics. For example, when x;, is periodic, the
estimated history filters of the original model will attempt to capture this periodic structure (Fig
6A-B). Just as in the tuning curve examples above, the fact that history effects covary with the input
and the fact that the input modulates the neuron’s firing leads to omitted variable bias. When the
input is omitted from the model, the biased history effects simply provide the best (maximum
likelihood) explanation of the observed spiking (Fig 6C).

These examples with strong, periodic input are not necessarily biologically realistic, but they make
it apparent how the post-spike history can be biased by omitted input variables. In vivo, neurons
instead appear to be in a high-conductance state, where membrane potential fluctuations have
approximately 1/f power spectra (Destexhe et al.,, 2001, 2003). When these naturalistic input
statistics are used to drive the GLM, omitted variable bias can occur, as well. Here we simulate a
GLM receiving 1/f% noise input with « = 0 (white noise) 1 and 2 (Fig 7). For white noise input, the
MLE accurately recovers the simulated post-spike history filter when the input is omitted from the
model, but when @ =1 or 2 the estimates become increasingly biased (Fig 7A,C). With the full
model, where the input is included as a covariate, the history is recovered accurately no matter
what the input statistics are. Just as in the periodic case, however, these different input statistics
alter the auto-correlation, and, when the input is omitted from the model, the maximum likelihood
history filter simply aims to capture these patterns.
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In GLMs for single-neuron dynamics, one effect of omitted variable bias is that it may lead us to
misinterpret how stable a neuron’s dynamics are. Even if the true history filter only reduces the
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neuron’s firing rate following a spike (as in Fig 7C), the estimated filter can be biased upwards when
the input is omitted. If we were to simulate the activity of this neuron based on the biased filter,
the bias could cause the neuron’s rate to diverge if the rate becomes high enough. To assess the
stability of the estimated post-spike history effects quantitatively, here we make use of an quasi-
renewal approximation analysis introduced in (Gerhard et al., 2017). Given a history filter, this
approach finds an approximate transfer function describing the neuron’s future firing rate (output)
given its recent (input) firing rate (see Methods). For all estimated models, the transfer function
has a stable fixed point near the neuron’s baseline firing rate. When the true input is omitted and
a > 0, the estimated history filters also have an unstable fixed point where the neuron’s firing rate
will diverge if the rate exceeds this point (Gerhard et al., 2017). Here we find that omitted variable
bias leads to apparent fragility (Fig 7B,D). The stable region shrinks as a increases, and even when
the true dynamics are strictly stable (as in Fig 7C,D), omitted variable bias can lead us to mistakenly
conclude that the neuron has fragile dynamics.

With most extracellular spike recordings, the synaptic input that the neuron receives is unknown.
However, there may also be omitted variable bias when history effects are estimated from real
data. In this case, the input to a neuron can be approximated by stimulus or behavioral variables,
local field potentials, or the activity of simultaneously recorded neurons (Harris et al., 2003;
Truccolo et al., 2005, 2010; Pillow et al., 2008; Kelly et al., 2010; Gerhard et al., 2013; Volgushev et
al., 2015). Just as in the simulations above, including or omitting these variables can then alter the
estimated history effects, even though they are not as directly related to spiking as the synaptic
input itself. Here we consider total population spiking activity as a proxy for synaptic input and
consider how including population activity alters the history filters when compared to a model of
history alone.

We examine two datasets: spontaneous activity from primary visual cortex of an anesthetized
monkey with n=62 simultaneously recorded neurons and activity from dorsal hippocampus of a
sleeping rate with n=39 simultaneously recorded neurons. To model population covariates we
sum the spiking of all neurons, excepting the one whose spiking we aim to predict, and low-pass
filter the signal (see Methods). Similar to previous results (Okun et al., 2015), we find that, since
neurons often have correlated fluctuations in their spiking (Fig 8A,D), the population rate is a good
predictor for single neuron activity. Moreover, when we add population covariates to a GLM with
post-spike history effects the history filter changes.

In the V1 dataset, the post-spike gain decreases by 7.8+0.5% on average when population
covariates are included, and 14.9+0.8% when considering only the first 50ms after a spike (Fig 8B).
The effects of adding population covariates are less pronounced in the hippocampal dataset. The
post-spike gain decreases by 2.5+0.3% on average, and 9.5+1.2% when considering only the first
50ms after the spike (Fig 8E). Based on the quasi-renewal approximation, all neurons in both the
V1 and hippocampal datasets have fragile transfer functions where there is a stable fixed point
(near the neuron’s average firing rate) and an unstable fixed point where the neuron’s rate
diverges if the input becomes too strong. For V1, the average upper-limit of the stable region is
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80+3Hz for the models with history only and 143+7Hz for the models with population covariates
(Fig 8C). In the hippocampal data, the average upper-limit of the stable region is 38+6Hz for the
models with history only and 75+13Hz for the models with population covariates (Fig 8F). Each
neuron is, thus, apparently, more stable after the population covariates are included.

As in the case studies using tuning curves, adding covariates also improves spike prediction
accuracy. In the V1 dataset, the average log likelihood ratio relative to a homogeneous Poisson
model is 2.2+0.3 bits/s for the history model and 3.310.3 bits/s for the model with population
covariates. In hippocampus, the log likelihood ratio is 0.9+0.3 bits/s for the history model and
2.0£0.5 bits/s for the model with population covariates. The larger effects in V1 are likely explained
by the fact that the population rate is predictive for many more neurons here than for the
hippocampal data. In the hippocampus, only 26% of the neurons have an increase of over 0.5
bits/s when the population covariates are included, compared to 85% of neurons in V1. Altogether
these results demonstrate how omitted variable bias could affect estimates of post-spike history
filters in vivo. In both datasets we find that when population covariates are included in the GLM
spike prediction accuracy increases, post-spike gain decreases, and apparent stability increases.
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Figure 8: Post-spike filters estimated from real data decrease when population activity is included as a
covariate. Segments of spontaneous activity are shown for V1 (A) and during sleep for hippocampus (D).
Neurons are sorted by firing rate. B and E show estimated post-spike filters. Black lines denote the average
filter (thick) and standard deviation (thin). For clarity, only filters for neurons with firing rates >1Hz are
shown. C and F show average quasi-renewal transfer functions for the same set of neurons. All neurons
appear to have fragile dynamics with one stable fixed point near the neuron’s average firing rate and an
unstable fixed point, beyond which the neuron’s firing rate diverges. Including population covariates
increases the region of stability.
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Discussion

When the goal of modeling is causal inference or understanding of biological mechanisms, the
potential for biases due to omitted variables is often clear. The statistical effects of confounders
(Wasserman, 2004), as well, as the limits that they place on neuroscientific understanding are
widely appreciated (Jonas and Kording, 2017; Krakauer et al., 2017; Yoshihara and Yoshihara,
2018). However, when the goal of modeling is to create an abstract, explanation or summary of
observed neural activity, the fact that omitted variables can bias these explanations is not always
widely acknowledged. Here we have illustrated the potential for omitted variable bias in two types
of commonly used GLMs for neural spiking activity: tuning curve models using spike counts across
trials and models that capture single-neuron dynamics with a post-spike history filter. In each
model, adding a previously omitted variable, as expected, improved spike prediction accuracy.
However, what we emphasize here is that, when omitted variables were included, the estimates
of the original parameters changed. For three case studies using tuning curves we found that by
adding a traditionally omitted variable tuning curves showed less modulation due to the originally
included variables. In models of single neuron dynamics, adding omitted variables led to
decreased post-spike gain and greater apparent stability. Importantly, omitted variables can arise
in GLMs in any situation where an omitted variable affects neural activity and the effect of the
omitted variable is not independent of the included variables.

The case studies here are not unique, and many studies have described how adding additional
variables to a tuning curve or single neuron model can improve prediction accuracy. In M1, in
addition to movement speed, joint angles, muscle activity, end-point force, and many other
variables also appear to modulate neural responses (Fetz, 1992; Kalaska, 2009). In addition to
speed and head direction in the hippocampus, theta-band LFP, sharp-wave ripples, and
environmental features, such as borders, appear to modulate neural activity (Hartley et al., 2014).
And in V1, there is growing evidence that population activity (Lin et al., 2015) and non-visual
information (Ghazanfar and Schroeder, 2006) modulates neural responses. In each of these
systems, neural responses are affected by many, many factors. Responding to many task variables
may even be functional, allowing downstream neurons to more effectively discriminate inputs
(Fusi etal., 2016). In any case, it seems clear that our models do not yet capture the full complexity
of neural responses (Carandini et al., 2005). By omitting relevant variables, current models are
likely to be not just less accurate but also biased.

Parameter bias may be problematic in and of itself. However, omitted variable bias may also have
an important effect on generalization performance. As noted in (Box, 1966), in a new context, the
effect of the omitted variables and the relationship between the omitted and included variables
may be different. Since the parameters of the included variables are biased, this change can
reduce generalization accuracy. This phenomena may explain, to some extent, why tuning models
fitin one condition often do not generalize to others (Graf et al., 2011; Oby et al., 2013). For models
of single-neuron dynamics, omitted variable bias can also have a negative effect on the accuracy
of simulations. Previous work has shown that simulating a GLM with post-spike filters estimated
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from data often results in unstable, diverging simulations. Although several methods for stabilizing
these simulations have recently been developed (Gerhard et al., 2017; Hocker and Park, 2017),
one, perhaps primary, reason for this instability may be that the post-spike filters are biased due
to omitted synaptic input. Since estimated post-spike filters may reflect not just intrinsic neuron
properties but also the statistics of the input, interpreting and comparing post-spike filters may be
difficult. Different history parameters may be different due to intrinsic biophysics (Tripathy et al.,
2013) or due to differing input, and resolving this ambiguity will likely involve more accurately
accounting for the input itself (Kim and Shinomoto, 2012).

The possibility of omitted variable bias does not mean that estimated parameters, predictions,
and simulations from simplified model are useless, but it may mean that we need to be cautious
in interpreting these models and their outputs. When reporting the results of regression, in
addition to avoiding describing associations with causal language, it may be generally useful to
discuss known and potential confounds. Previous studies have already identified several specific
cases of omitted variable bias where careful interpretation is necessary. For instance, omitted
common input can bias estimates of interactions between neurons (Brody, 1999), and omitted
history effects can bias receptive field estimates (Pillow and Simoncelli, 2003). In estimating peri-
stimulus time histograms, omitting variables that account for trial-to-trial variation may cause
biases (Czanner et al., 2008) or issues with identifiability (Amarasingham et al., 2015). Similarly,
biases due to spike sorting errors (Ventura, 2009) could be framed as a result of omitting variables
related to missing/excess spikes. Since we typically do not model or observe all the variables that
affect neural activity, omitted variable problems are likely to be pervasive in systems neuroscience
far beyond these specific cases.

Although we have focused on GLMs here, omitted variable bias can affect any model and other
types of model misspecification can also result in biased parameter estimates. Adding input
nonlinearities (Ahrens et al., 2008; David et al., 2009), interaction effects (McFarland et al., 2013),
or higher-order terms to the GLM (Berger et al., 2010; Park et al., 2013) may fix certain types of
model misspecification, but any model that omits relevant variables is still likely to suffer from the
same problems. This includes both machine learning methods that may provide better prediction
accuracy than GLMs (Benjamin et al., 2017) and single neuron models aiming to describe greater
biophysical detail (Herz et al., 2006). Unlike over-fitting or non-convergence (Zhao and lyengar,
2010), omitted variable bias will generally not be resolved by including additional data or by adding
regularization. Moreover, adding one omitted variable, as we have done with the case studies here,
is no guarantee that there are not other relevant variables being omitted.

One approach that could potentially reduce omitted variable bias is latent variable modeling,
where the effects of unknown covariates are explicitly included (constrained by simplifying
assumptions). Recent work has introduced latent variables for neural activity with linear dynamics
(Smith and Brown, 2003; Kulkarni and Paninski, 2007; Paninski et al., 2010), switching dynamics
(Putzky et al., 2014), rectification (Whiteway and Butts, 2017), and oscillations (Arai and Kass, 2017).
And these models appear to out-perform GLMs on population data in retina (Vidne et al., 2012),
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visual (Archer et al., 2014), and motor cortices (Chase et al., 2010; Macke et al., 2011). Inferring
latent variables requires making (sometimes strong) assumptions about the nature of the
variables and may require observations from multiple neurons or across multiple trials, but, by
approximating some of the effects of relevant omitted variables, latent variables may reduce
omitted variable bias. However, generally determining when relevant variables are omitted from
a model and what those variables are is not a trivial problem.

There is a well-known aphorism from George EP Box that, “All models are wrong, but some are
useful.” The lengthier version of this quip is, “All models are approximations. Essentially, all models
are wrong, but some are useful. However, the approximate nature of the model must always be
borne in mind.” GLMs are certainly useful descriptions of neural activity. They are computationally
tractable, can disentangle the relative influence of multiple covariates, and often provide the core
components for Bayesian decoders. Here we emphasize, however, one ubiquitous circumstance
in systems neuroscience where the “approximate nature” of the models should be “borne in mind.”
Namely, omitted variables can bias estimates of the included effects.

Methods

Neural Data

All data analyzed here was previously recorded and shared by other researchers through the
Collaborative Research in Computation Neuroscience (CRCNS) Data Sharing Initiative (crcns.org).

Data from primary motor cortex is from CRCNS dataset DREAM-Stevenson_2011 (Walker and
Kording, 2013). These data were recorded using a 100-electrode Utah array (Blackrock
Microsystems, 400 mm spacing, 1.5 mm length) chronically implanted in the arm area of primary
motor cortex of an adult macaque monkey. The monkey made center-out reaches in a 20x20cm
workspace while seated in a primate chair, grasping a two-link manipulandum in the horizontal
plane (arm roughly in a sagittal plane). Each trial for the center-out task began with a hold period
at a center target (0.3-0.5 s). After a go cue, subjects had 1.25 s to reach one of eight peripheral
targets and then held this outer target for at least 0.2-0.5 s. Each success was rewarded with juice,
and feedback (1-2cm diam) about arm position was displayed onscreen as a circular cursor. Spike
sorting was performed by manual cluster cutting using an offline sorter (Plexon, Inc) with
waveforms classified as single- or multi-unit based on action potential shape and minimum ISls
greater than 1.6 ms (yielding n=81 single units). Here we take model tuning curves using spike
counts between 150ms before to 350ms after the speed reached its half-max. Average movement
speed for each trial was calculated from 0-250ms after the speed reached its half-max (290 trials
in total). For the details of the surgery, recording, and spike sorting see (Stevenson et al., 2011).

Hippocampal data is from CRCNS HC-3 (Mizuseki et al., 2013). Here we use recording sessions
ec16.19.272 and ec014.215, where a Long-Evans rat was sleeping and foraging in a 180x180cm
maze, respectively. For both recordings, 12-shank silicon probes (with 8 recording sites each, 20um
separation) were implanted in CA1 (8 shanks) and EC3-5 (4 shanks) (based on histology). Spikes
were sorted automatically using Klustakwick and then manually adjusted (Klusters) yielding 85
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units for the sleep data and 117 for the open field data. For the sleep data where we model post-
spike history effects, the spike trains were binned at Tms and the recording length was 27min.
Here we model all neurons with firing rates >0.5Hz (n=39). For the open field data where we model
place tuning, spike trains were binned at 250ms and the recording length was 93min. Place cells
(n=68) were selected based on having an overall firing rate <5Hz (to rule out interneurons), a peak
firing rate >2Hz, and a contiguous set of pixels (after smoothing with an isotropic Gaussian 6=8cm)
of at least 200 cm? where the firing rate was above 10% of the peak rate. For details of the surgery,
recording, and spike sorting see (Diba and Buzsaki, 2008; Mizuseki et al., 2009).

Data from primary visual cortex is from CRCNS dataset PVC-11 (Kohn and Smith, 2016). Here we
use spontaneous activity, during a gray screen, (Monkey 1) and responses to drifting sine-wave
gratings (Monkey 1) both from an anesthetized (Sufentanil - 4-18 microg/kg/hr) adult monkey
(Macaca fascicularis). Recordings were made in parafoveal V1 (RFs within 5 degrees of the fovea)
using a 96-channel multi-electrode array (Blackrock Microsystems), 400 mm electrode spacing,
Tmm depth. After automatic spike sorting and manual cluster adjustment, 87 and 106 units were
recorded during spontaneous activity and grating presentation, respectively. Only neurons with
waveform SNR>2 and firing rates >1Hz were analyzed, n=62 for spontaneous and n=90 for grating
data. For the spontaneous activity we bin spike counts at 1ms and the recording length was 20min.
For the drifting grating data, we analyzed spike counts from 200ms to 1.2s after stimulus onset on
each trial - 12 directions, 2400 trials total. Gratings had a spatial frequency of 1.3 cyc/deg, temporal
frequency of 6.25Hz, size of 8-10 deg (to cover receptive fields of all recorded neurons) and were
presented for 1.25s with a 1.5s inter-trial interval between stimuli. For surgical, stimulus, and
preprocessing details see (Smith and Kohn, 2008; Kelly et al., 2010).

Tuning Curve Models

For the M1 data we use a circular, cubic B-spline basis with 5 equally spaced knots
20) = exp (1 + ) £i9:0))
l

where g(-) are the splines that depend on the reach direction 8, weighted by parameters g and
the parameter u defines a baseline firing rate. To include the effect of speed, we then add three
covariates

A(6,s) = exp (,u + z_ﬁigi(ﬁ) + a15 + ayscos(6) + ass sin(@))

where s indicates the speed, and the parameters a allow for a multiplicative speed effect as well
as possible cosine-tuned speed x direction interactions as in (Moran and Schwartz, 1999).

For place fields in hippocampus we use isotropic Gaussian radial basis functions f(-) equally
spaced (30cm) on an 6x6 square lattice with a standard deviation of 30cm

26 = exp o+ ) Bifi(0)
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We find that the effect of speed is well modeled using the log-transformed speed s, and to model
head direction-dependence we use circular, cubic B-splines g(-) with 6 equally spaced knots

Alx,s,0) = exp <u + Ziﬁifi(x) + vlogs + Zj a;jg; (9)>

For the V1 data we again use a circular, cubic B-spline basis for the direction of the sine-wave
grating (7 equally spaced knots).

1) = exp(u+ ) fi0i(6))

We find that the effect of population activity is well modeled using the total log-transformed firing
rate of all neuron’s excepting the one being modeled

16,2 = exp(n+ )" i0i(0) +az)

where z = ¥ ;log(n; + 1). In all models, to avoid overfitting, especially for low firing rate neurons,
we add a small L2 penalty to the log-likelihood with a fixed hyperparameter of 10,

Post-spike History Simulations and Population Rate Models

In addition to capturing tuning curves, many studies have used GLMs to describe the dynamics of
single spike trains (Brillinger, 1988; Harris et al., 2003; Paninski, 2004; Okatan et al., 2005; Truccolo
et al., 2005; Weber and Pillow, 2017). Here, to account for post-spike history effects, we use a GLM
taking the form

A(t) = exp(u + ah(t))
n(t)~Poisson(A(t)At)

where h(t) denotes the vector of spike history covariates representing the recent history of spiking
and u determines a baseline firing rate. Here we assume h;(t) = Y., fi(t)n(t — 7), and we use
neuron-specific, cubic B-spline bases f(-) whose knots are determined by the quantiles of each
neuron’s ISI distribution. Specifically, we choose knots spaced between 10 and 400ms (HC) or 2
and 200ms (V1), where the spacing follows equal percentile regions of the ISI distribution in that
same range. This gives 6 basis functions, and coefficients a to capture the spike-history. To enforce
refractoriness, we fix the coefficient of the fastest basis (which peaks at 0 and ends at 10ms) to be
-5, leaving 5 coefficients to be estimated.

The population rate model simply adds covariates where, for each neuron i

24(6) = exp (ui +ahi(©) + fig (Z} n]-ﬂ(t)>>

n;(t)~Poisson(4;(t)At)

Here we use a set of acausal Gaussian filters for g(-) with standard deviations 20, 50, and 100ms.
Note that spikes from the neuron being modeled are excluded from the population covariates.
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Stability analysis

Here we make use of a stability analysis proposed in (Gerhard et al., 2017). Briefly, we use a quasi-
renewal approximation of the conditional intensity by considering the effect of the most recent
spike, at time t’, and averaging over possible spike histories preceding this spike

Ao(t,t") = exp(p + H(t — t")) (exp(H * SN sce<t”

where H(t —t') = af(t —t') and S represents the history of spiking. By assuming that S is
generated from a homogeneous Poisson process with firing rate 4,, the second term can be
approximated by

(exp(H = S))S(t<t’) ~ exp <A0 (eH(u) — 1)dU>
t—trs

Given this approximation, we can then estimate the inter-spike interval distribution as we would
for a true renewal process and the steady-state distribution of inter-spike intervals is given by

P(t) = exp <— frlo(u)du> Ao (T)
0

and the predicted steady-state firing rate is f(4y) = 1/Ep[T].

To assess stability, we can then examine how the predicted steady-state firing rate depends on
the assumed rate of the homogeneous Poisson process A,. In particular, when f(4,) = 4, the
quasi-renewal model has a fixed-point. To allow for external input, we incorporate the average
effect of the covariates X into the conditional intensity approximation

Ao(t,t") = exp(u + h(t —t") + (XB)) (exp(h * ))s(e<t’y
Ao(t, ) = exp(y + h(t — t’))(exp(Xﬁ))t (exp(h * )<t

Note that, in general, adding inputs X will only change the stability of the model to the extent that
these covariates change the estimate of h.
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