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transformed) population rate as a covariate to a more typical model of direction tuning, we find 353 

that population activity may lead to omitted variable bias in models of direction tuning alone. 354 

As in the case studies above, there do not appear to be any consistent or systematic effects on the 355 

preferred stimulus direction at the population level (Kuiper’s test, p=0.1). However, the modulation 356 

depth (measured using SD of the tuning curve) decreases substantially 15±2% when population 357 

rate is included in the model, and there is again high variability across neurons (SD 20±2%). In this 358 

case, model accuracy increases substantially when the omitted variable is included. The cross-359 

validated (10-fold) pseudo-R2 is .26±.02 for the original model and .43±.02 for the model including 360 

population activity, with an average increase of 164±31% (Fig 5). 361 

 362 

Figure 4: Population rate as an omitted variable 363 

in primary visual cortex. A) Correlated trial to trial 364 

variability. Population rasters for three trials of 365 

the same drifting grating stimulus (0 deg, red and 366 

30 deg, orange). Neurons are sorted by overall 367 

firing rate. B) Histograms of the population rate 368 

across trials. As a population, the neurons 369 

respond at higher rates to 30 deg stimuli, but 370 

there is high trial-to-trial variability. C) The 371 

responses of 2 V1 neurons show typical tuning for 372 

direction of motion. The tuning curve estimated 373 

using direction covariates alone (black) changes 374 

when the population rate covariate are included 375 

(red). Right panels illustrate the dependence for 376 

the preferred direction and an orthogonal 377 

direction. Dark lines denote the estimated effect 378 

of speed under the full model. Data points show 379 

single trial data, along with the mean count and 380 

rate (big data point). Light lines show linear trends 381 

(OLS) using only the trials from each specific 382 

stimulus. 383 

 384 

 385 

 386 

 387 

 388 

Unlike in M1 where the effect of speed was highly diverse for different neurons, in this case study 389 

the effect of the population rate is largely consistent. Higher population rates are associated with 390 
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higher firing rates, and, for most neurons, the effect of the population rate is stronger in the 391 

preferred direction(s), consistent with a multiplicative effect. Note that here, we do not include the 392 

neuron whose rate we are modeling in the calculation of the population rate. However, using the 393 

population rate as an omitted variable requires some interpretation. The population rate will 394 

certainly be affected by the tuning of the, relatively small, sample of neurons that we observe. If 395 

we have a disproportionate number of neurons tuned to a specific preferred direction, the 396 

population rate in those directions will be higher. This suggests that in a different recording, the 397 

covariation between the stimulus and the population rate could very likely be different. However, 398 

it appears that the omitted variable biases in this case are mostly driven by noise correlations, 399 

where neural activity is correlated on single trials even within the same stimulus condition, rather 400 

than stimulus correlations, where neural activity is correlated due to similar tuning. When we 401 

shuffle the data within each stimulus condition (removing noise correlations) the average change 402 

in the modulation depth is -1±2% (SD 18±3%), and the effect of the omitted variable becomes 403 

negligible. 404 

 405 

 406 

Figure 5: For each of the case studies, 407 

on average, the model accuracy 408 

increases when omitted variables are 409 

included (top) and the modulation due 410 

to the original variables decreases 411 

(bottom). Scatter plots indicate cross-412 

validated pseudo-R2 values for each 413 

neuron under the two models. 414 

Modulation denotes the standard 415 

deviation of the tuning to the original 416 

variable(s) under each model. Here, 417 

modulation values are normalized by 418 

the average rate of each neuron. Black 419 

lines denote equality. Red dashed 420 

lines denote linear fit with 0 intercept. 421 

 422 

 423 

 424 

 425 

 426 
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 427 

Figure 6: Estimated post-spike history filters can be heavily biased when the input is not included in the 428 

model. A) Here we simulate from an inhomogeneous Poisson model with sinusoidal input (no post-spike 429 

history effects). The input and spike responses from 20 trials are shown. Although there are no history 430 

effects in the generative model, a GLM with history effects that is missing the correct input covariate will use 431 

the history terms to capture the structure in the autocorrelation (C). Traces denote the estimated rate for 432 

the 20 trials shown above. When the history term is included in the model, but the input is not, the GLM can 433 

still reconstruct PSTH responses using the post-spike history alone. B) Post-spike filters for the models in (A) 434 

with 95% confidence bands. Note that when input is included in the model the filters correctly reconstruct 435 

the true (lack of) filter, and that there is higher uncertainty around the regions where the ISI distribution 436 

does not constrain the model. 437 

 438 

Omitted Variable Bias in the Estimation of Post-Spike History Effects 439 

In addition to modeling spike counts over trials or on relatively slow (>100ms) behavioral 440 

timescales, GLMs are also often used to describe detailed, single-trial spike dynamics on fast 441 

(<10ms) timescales. One common covariate used in these types of models is a post-spike history 442 

effect where the probably of spiking at a given time depends on the recent history of spiking. 443 

Modeling these effects allows us to describe refractoriness, bursting (Paninski, 2004; Truccolo et 444 

al., 2005), and a whole host of other dynamics (Weber and Pillow, 2017). Conceptually, the goal of 445 

these models is to disentangle the sources of rate variation based only on observations of a 446 

neuron’s spiking, with history effects, ideally, reflecting intrinsic biophysics. However, since the full 447 

synaptic input is typically not known with extracellular spike recordings there is potential for 448 

omitted variable biases. 449 

To illustrate the potential pitfalls of omitting the input to a neuron, consider using the GLM to 450 

capture single neuron dynamics in the complete absence of external covariates 451 

𝜆(𝑡) = exp(𝜇 + 𝛼ℎ(𝑡)) 452 

where the rate 𝜆 is determined by a baseline parameter 𝜇 along with a filtered version of the 453 

neuron’s past spiking with ℎ𝑖(𝑡) = ∑ 𝑓𝑖(𝜏)𝑛(𝑡 − 𝜏)𝜏>0 . This is a perfectly acceptable model of intrinsic 454 

dynamics, but for most spike data that we observe this isolated neuron model may not provide a 455 

realistic description of a neuron receiving thousands of time-varying synaptic inputs. If we fit this 456 

model to data where the input to the neuron did vary over time, 457 
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𝜆(𝑡) = exp(𝜇 + 𝛼ℎ(𝑡) + 𝛽ℎ𝑥ℎ(𝑡)) 458 

then the history filter in the first model will attempt to capture variation in spiking due to the time-459 

varying input, in addition to any intrinsic dynamics. For example, when 𝑥ℎ  is periodic, the 460 

estimated history filters of the original model will attempt to capture this periodic structure (Fig 461 

6A-B). Just as in the tuning curve examples above, the fact that history effects covary with the input 462 

and the fact that the input modulates the neuron’s firing leads to omitted variable bias. When the 463 

input is omitted from the model, the biased history effects simply provide the best (maximum 464 

likelihood) explanation of the observed spiking (Fig 6C). 465 

These examples with strong, periodic input are not necessarily biologically realistic, but they make 466 

it apparent how the post-spike history can be biased by omitted input variables. In vivo, neurons 467 

instead appear to be in a high-conductance state, where membrane potential fluctuations have 468 

approximately 1/𝑓  power spectra (Destexhe et al., 2001, 2003). When these naturalistic input 469 

statistics are used to drive the GLM, omitted variable bias can occur, as well. Here we simulate a 470 

GLM receiving 1/𝑓𝛼 noise input with 𝛼 = 0 (white noise) 1 and 2 (Fig 7). For white noise input, the 471 

MLE accurately recovers the simulated post-spike history filter when the input is omitted from the 472 

model, but when 𝛼 = 1 or 2 the estimates become increasingly biased (Fig 7A,C). With the full 473 

model, where the input is included as a covariate, the history is recovered accurately no matter 474 

what the input statistics are. Just as in the periodic case, however, these different input statistics 475 

alter the auto-correlation, and, when the input is omitted from the model, the maximum likelihood 476 

history filter simply aims to capture these patterns.  477 

 478 

Figure 7: Post-spike filters can show 479 

omitted variable bias even in a more 480 

realistic scenario. Here we simulate from a 481 

GLM with a refractory post-spike filter and 482 

drive the neurons with 1/𝑓𝛼  noise. 483 

Excepting the case of white noise (𝛼 = 0), 484 

the post-spike filters estimated for the 485 

GLM without input are heavily biased (A). 486 

C) Even when the effect of the true post-487 

spike filter is to strictly decrease the firing 488 

rate, the estimated filters can increase the 489 

firing rate. B,D) Approximate transfer 490 

functions from a quasi-renewal 491 

approximation. When the true filter is 492 

stable, the estimated filters can result in 493 

fragile dynamics. 494 

 495 

In GLMs for single-neuron dynamics, one effect of omitted variable bias is that it may lead us to 496 

misinterpret how stable a neuron’s dynamics are. Even if the true history filter only reduces the 497 
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neuron’s firing rate following a spike (as in Fig 7C), the estimated filter can be biased upwards when 498 

the input is omitted. If we were to simulate the activity of this neuron based on the biased filter, 499 

the bias could cause the neuron’s rate to diverge if the rate becomes high enough. To assess the 500 

stability of the estimated post-spike history effects quantitatively, here we make use of an quasi-501 

renewal approximation analysis introduced in (Gerhard et al., 2017). Given a history filter, this 502 

approach finds an approximate transfer function describing the neuron’s future firing rate (output) 503 

given its recent (input) firing rate (see Methods). For all estimated models, the transfer function 504 

has a stable fixed point near the neuron’s baseline firing rate. When the true input is omitted and 505 

𝛼 > 0, the estimated history filters also have an unstable fixed point where the neuron’s firing rate 506 

will diverge if the rate exceeds this point (Gerhard et al., 2017). Here we find that omitted variable 507 

bias leads to apparent fragility (Fig 7B,D). The stable region shrinks as 𝛼 increases, and even when 508 

the true dynamics are strictly stable (as in Fig 7C,D), omitted variable bias can lead us to mistakenly 509 

conclude that the neuron has fragile dynamics. 510 

With most extracellular spike recordings, the synaptic input that the neuron receives is unknown. 511 

However, there may also be omitted variable bias when history effects are estimated from real 512 

data. In this case, the input to a neuron can be approximated by stimulus or behavioral variables, 513 

local field potentials, or the activity of simultaneously recorded neurons (Harris et al., 2003; 514 

Truccolo et al., 2005, 2010; Pillow et al., 2008; Kelly et al., 2010; Gerhard et al., 2013; Volgushev et 515 

al., 2015). Just as in the simulations above, including or omitting these variables can then alter the 516 

estimated history effects, even though they are not as directly related to spiking as the synaptic 517 

input itself. Here we consider total population spiking activity as a proxy for synaptic input and 518 

consider how including population activity alters the history filters when compared to a model of 519 

history alone. 520 

We examine two datasets: spontaneous activity from primary visual cortex of an anesthetized 521 

monkey with n=62 simultaneously recorded neurons and activity from dorsal hippocampus of a 522 

sleeping rate with n=39 simultaneously recorded neurons. To model population covariates we 523 

sum the spiking of all neurons, excepting the one whose spiking we aim to predict, and low-pass 524 

filter the signal (see Methods). Similar to previous results (Okun et al., 2015), we find that, since 525 

neurons often have correlated fluctuations in their spiking (Fig 8A,D), the population rate is a good 526 

predictor for single neuron activity. Moreover, when we add population covariates to a GLM with 527 

post-spike history effects the history filter changes. 528 

In the V1 dataset, the post-spike gain decreases by 7.8±0.5% on average when population 529 

covariates are included, and 14.9±0.8% when considering only the first 50ms after a spike (Fig 8B). 530 

The effects of adding population covariates are less pronounced in the hippocampal dataset. The 531 

post-spike gain decreases by 2.5±0.3% on average, and 9.5±1.2% when considering only the first 532 

50ms after the spike (Fig 8E). Based on the quasi-renewal approximation, all neurons in both the 533 

V1 and hippocampal datasets have fragile transfer functions where there is a stable fixed point 534 

(near the neuron’s average firing rate) and an unstable fixed point where the neuron’s rate 535 

diverges if the input becomes too strong. For V1, the average upper-limit of the stable region is 536 
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80±3Hz for the models with history only and 143±7Hz for the models with population covariates 537 

(Fig 8C). In the hippocampal data, the average upper-limit of the stable region is 38±6Hz for the 538 

models with history only and 75±13Hz for the models with population covariates (Fig 8F). Each 539 

neuron is, thus, apparently, more stable after the population covariates are included.  540 

As in the case studies using tuning curves, adding covariates also improves spike prediction 541 

accuracy. In the V1 dataset, the average log likelihood ratio relative to a homogeneous Poisson 542 

model is 2.2±0.3 bits/s for the history model and 3.3±0.3 bits/s for the model with population 543 

covariates. In hippocampus, the log likelihood ratio is 0.9±0.3 bits/s for the history model and 544 

2.0±0.5 bits/s for the model with population covariates. The larger effects in V1 are likely explained 545 

by the fact that the population rate is predictive for many more neurons here than for the 546 

hippocampal data. In the hippocampus, only 26% of the neurons have an increase of over 0.5 547 

bits/s when the population covariates are included, compared to 85% of neurons in V1. Altogether 548 

these results demonstrate how omitted variable bias could affect estimates of post-spike history 549 

filters in vivo. In both datasets we find that when population covariates are included in the GLM 550 

spike prediction accuracy increases, post-spike gain decreases, and apparent stability increases. 551 

 552 

 553 

Figure 8: Post-spike filters estimated from real data decrease when population activity is included as a 554 

covariate. Segments of spontaneous activity are shown for V1 (A) and during sleep for hippocampus (D). 555 

Neurons are sorted by firing rate. B and E show estimated post-spike filters. Black lines denote the average 556 

filter (thick) and standard deviation (thin). For clarity, only filters for neurons with firing rates >1Hz are 557 

shown. C and F show average quasi-renewal transfer functions for the same set of neurons. All neurons 558 

appear to have fragile dynamics with one stable fixed point near the neuron’s average firing rate and an 559 

unstable fixed point, beyond which the neuron’s firing rate diverges. Including population covariates 560 

increases the region of stability.  561 
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Discussion 562 

When the goal of modeling is causal inference or understanding of biological mechanisms, the 563 

potential for biases due to omitted variables is often clear. The statistical effects of confounders 564 

(Wasserman, 2004), as well, as the limits that they place on neuroscientific understanding are 565 

widely appreciated (Jonas and Kording, 2017; Krakauer et al., 2017; Yoshihara and Yoshihara, 566 

2018). However, when the goal of modeling is to create an abstract, explanation or summary of 567 

observed neural activity, the fact that omitted variables can bias these explanations is not always 568 

widely acknowledged. Here we have illustrated the potential for omitted variable bias in two types 569 

of commonly used GLMs for neural spiking activity: tuning curve models using spike counts across 570 

trials and models that capture single-neuron dynamics with a post-spike history filter. In each 571 

model, adding a previously omitted variable, as expected, improved spike prediction accuracy. 572 

However, what we emphasize here is that, when omitted variables were included, the estimates 573 

of the original parameters changed. For three case studies using tuning curves we found that by 574 

adding a traditionally omitted variable tuning curves showed less modulation due to the originally 575 

included variables. In models of single neuron dynamics, adding omitted variables led to 576 

decreased post-spike gain and greater apparent stability. Importantly, omitted variables can arise 577 

in GLMs in any situation where an omitted variable affects neural activity and the effect of the 578 

omitted variable is not independent of the included variables. 579 

The case studies here are not unique, and many studies have described how adding additional 580 

variables to a tuning curve or single neuron model can improve prediction accuracy. In M1, in 581 

addition to movement speed, joint angles, muscle activity, end-point force, and many other 582 

variables also appear to modulate neural responses (Fetz, 1992; Kalaska, 2009). In addition to 583 

speed and head direction in the hippocampus, theta-band LFP, sharp-wave ripples, and 584 

environmental features, such as borders, appear to modulate neural activity (Hartley et al., 2014). 585 

And in V1, there is growing evidence that population activity (Lin et al., 2015) and non-visual 586 

information (Ghazanfar and Schroeder, 2006) modulates neural responses. In each of these 587 

systems, neural responses are affected by many, many factors. Responding to many task variables 588 

may even be functional, allowing downstream neurons to more effectively discriminate inputs 589 

(Fusi et al., 2016). In any case, it seems clear that our models do not yet capture the full complexity 590 

of neural responses (Carandini et al., 2005). By omitting relevant variables, current models are 591 

likely to be not just less accurate but also biased. 592 

Parameter bias may be problematic in and of itself. However, omitted variable bias may also have 593 

an important effect on generalization performance. As noted in (Box, 1966), in a new context, the 594 

effect of the omitted variables and the relationship between the omitted and included variables 595 

may be different. Since the parameters of the included variables are biased, this change can 596 

reduce generalization accuracy. This phenomena may explain, to some extent, why tuning models 597 

fit in one condition often do not generalize to others (Graf et al., 2011; Oby et al., 2013). For models 598 

of single-neuron dynamics, omitted variable bias can also have a negative effect on the accuracy 599 

of simulations. Previous work has shown that simulating a GLM with post-spike filters estimated 600 
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from data often results in unstable, diverging simulations. Although several methods for stabilizing 601 

these simulations have recently been developed (Gerhard et al., 2017; Hocker and Park, 2017), 602 

one, perhaps primary, reason for this instability may be that the post-spike filters are biased due 603 

to omitted synaptic input.  Since estimated post-spike filters may reflect not just intrinsic neuron 604 

properties but also the statistics of the input, interpreting and comparing post-spike filters may be 605 

difficult. Different history parameters may be different due to intrinsic biophysics (Tripathy et al., 606 

2013) or due to differing input, and resolving this ambiguity will likely involve more accurately 607 

accounting for the input itself (Kim and Shinomoto, 2012). 608 

The possibility of omitted variable bias does not mean that estimated parameters, predictions, 609 

and simulations from simplified model are useless, but it may mean that we need to be cautious 610 

in interpreting these models and their outputs. When reporting the results of regression, in 611 

addition to avoiding describing associations with causal language, it may be generally useful to 612 

discuss known and potential confounds. Previous studies have already identified several specific 613 

cases of omitted variable bias where careful interpretation is necessary. For instance, omitted 614 

common input can bias estimates of interactions between neurons (Brody, 1999), and omitted 615 

history effects can bias receptive field estimates (Pillow and Simoncelli, 2003). In estimating peri-616 

stimulus time histograms, omitting variables that account for trial-to-trial variation may cause 617 

biases (Czanner et al., 2008) or issues with identifiability (Amarasingham et al., 2015). Similarly, 618 

biases due to spike sorting errors (Ventura, 2009) could be framed as a result of omitting variables 619 

related to missing/excess spikes. Since we typically do not model or observe all the variables that 620 

affect neural activity, omitted variable problems are likely to be pervasive in systems neuroscience 621 

far beyond these specific cases. 622 

Although we have focused on GLMs here, omitted variable bias can affect any model and other 623 

types of model misspecification can also result in biased parameter estimates. Adding input 624 

nonlinearities (Ahrens et al., 2008; David et al., 2009), interaction effects (McFarland et al., 2013), 625 

or higher-order terms to the GLM (Berger et al., 2010; Park et al., 2013) may fix certain types of 626 

model misspecification, but any model that omits relevant variables is still likely to suffer from the 627 

same problems. This includes both machine learning methods that may provide better prediction 628 

accuracy than GLMs (Benjamin et al., 2017) and single neuron models aiming to describe greater 629 

biophysical detail (Herz et al., 2006). Unlike over-fitting or non-convergence (Zhao and Iyengar, 630 

2010), omitted variable bias will generally not be resolved by including additional data or by adding 631 

regularization. Moreover, adding one omitted variable, as we have done with the case studies here, 632 

is no guarantee that there are not other relevant variables being omitted. 633 

One approach that could potentially reduce omitted variable bias is latent variable modeling, 634 

where the effects of unknown covariates are explicitly included (constrained by simplifying 635 

assumptions). Recent work has introduced latent variables for neural activity with linear dynamics 636 

(Smith and Brown, 2003; Kulkarni and Paninski, 2007; Paninski et al., 2010), switching dynamics 637 

(Putzky et al., 2014), rectification (Whiteway and Butts, 2017), and oscillations (Arai and Kass, 2017). 638 

And these models appear to out-perform GLMs on population data in retina (Vidne et al., 2012), 639 
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visual (Archer et al., 2014), and motor cortices (Chase et al., 2010; Macke et al., 2011). Inferring 640 

latent variables requires making (sometimes strong) assumptions about the nature of the 641 

variables and may require observations from multiple neurons or across multiple trials, but, by 642 

approximating some of the effects of relevant omitted variables, latent variables may reduce 643 

omitted variable bias. However, generally determining when relevant variables are omitted from 644 

a model and what those variables are is not a trivial problem. 645 

There is a well-known aphorism from George EP Box that, “All models are wrong, but some are 646 

useful.” The lengthier version of this quip is, “All models are approximations. Essentially, all models 647 

are wrong, but some are useful. However, the approximate nature of the model must always be 648 

borne in mind.” GLMs are certainly useful descriptions of neural activity. They are computationally 649 

tractable, can disentangle the relative influence of multiple covariates, and often provide the core 650 

components for Bayesian decoders. Here we emphasize, however, one ubiquitous circumstance 651 

in systems neuroscience where the “approximate nature” of the models should be “borne in mind.” 652 

Namely, omitted variables can bias estimates of the included effects. 653 

Methods 654 

Neural Data 655 

All data analyzed here was previously recorded and shared by other researchers through the 656 

Collaborative Research in Computation Neuroscience (CRCNS) Data Sharing Initiative (crcns.org). 657 

Data from primary motor cortex is from CRCNS dataset DREAM-Stevenson_2011 (Walker and 658 

Kording, 2013). These data were recorded using a 100-electrode Utah array (Blackrock 659 

Microsystems, 400 mm spacing, 1.5 mm length) chronically implanted in the arm area of primary 660 

motor cortex of an adult macaque monkey. The monkey made center-out reaches in a 20x20cm 661 

workspace while seated in a primate chair, grasping a two-link manipulandum in the horizontal 662 

plane (arm roughly in a sagittal plane). Each trial for the center-out task began with a hold period 663 

at a center target (0.3–0.5 s). After a go cue, subjects had 1.25 s to reach one of eight peripheral 664 

targets and then held this outer target for at least 0.2–0.5 s. Each success was rewarded with juice, 665 

and feedback (1-2cm diam) about arm position was displayed onscreen as a circular cursor. Spike 666 

sorting was performed by manual cluster cutting using an offline sorter (Plexon, Inc) with 667 

waveforms classified as single- or multi-unit based on action potential shape and minimum ISIs 668 

greater than 1.6 ms (yielding n=81 single units). Here we take model tuning curves using spike 669 

counts between 150ms before to 350ms after the speed reached its half-max. Average movement 670 

speed for each trial was calculated from 0-250ms after the speed reached its half-max (290 trials 671 

in total). For the details of the surgery, recording, and spike sorting see (Stevenson et al., 2011). 672 

Hippocampal data is from CRCNS HC-3 (Mizuseki et al., 2013). Here we use recording sessions 673 

ec16.19.272 and ec014.215, where a Long-Evans rat was sleeping and foraging in a 180x180cm 674 

maze, respectively. For both recordings, 12-shank silicon probes (with 8 recording sites each, 20m 675 

separation) were implanted in CA1 (8 shanks) and EC3-5 (4 shanks) (based on histology). Spikes 676 

were sorted automatically using KlustaKwick and then manually adjusted (Klusters) yielding 85 677 
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units for the sleep data and 117 for the open field data. For the sleep data where we model post-678 

spike history effects, the spike trains were binned at 1ms and the recording length was 27min. 679 

Here we model all neurons with firing rates >0.5Hz (n=39). For the open field data where we model 680 

place tuning, spike trains were binned at 250ms and the recording length was 93min. Place cells 681 

(n=68) were selected based on having an overall firing rate <5Hz (to rule out interneurons), a peak 682 

firing rate >2Hz, and a contiguous set of pixels (after smoothing with an isotropic Gaussian 𝜎=8cm) 683 

of at least 200 cm2 where the firing rate was above 10% of the peak rate. For details of the surgery, 684 

recording, and spike sorting see (Diba and Buzsaki, 2008; Mizuseki et al., 2009). 685 

Data from primary visual cortex is from CRCNS dataset PVC-11 (Kohn and Smith, 2016). Here we 686 

use spontaneous activity, during a gray screen, (Monkey 1) and responses to drifting sine-wave 687 

gratings (Monkey 1) both from an anesthetized (Sufentanil - 4-18 microg/kg/hr) adult monkey 688 

(Macaca fascicularis). Recordings were made in parafoveal V1 (RFs within 5 degrees of the fovea) 689 

using a 96-channel multi-electrode array (Blackrock Microsystems), 400 mm electrode spacing, 690 

1mm depth. After automatic spike sorting and manual cluster adjustment, 87 and 106 units were 691 

recorded during spontaneous activity and grating presentation, respectively. Only neurons with 692 

waveform SNR>2 and firing rates >1Hz were analyzed, n=62 for spontaneous and n=90 for grating 693 

data. For the spontaneous activity we bin spike counts at 1ms and the recording length was 20min. 694 

For the drifting grating data, we analyzed spike counts from 200ms to 1.2s after stimulus onset on 695 

each trial – 12 directions, 2400 trials total. Gratings had a spatial frequency of 1.3 cyc/deg, temporal 696 

frequency of 6.25Hz, size of 8-10 deg (to cover receptive fields of all recorded neurons) and were 697 

presented for 1.25s with a 1.5s inter-trial interval between stimuli. For surgical, stimulus, and 698 

preprocessing details see (Smith and Kohn, 2008; Kelly et al., 2010). 699 

Tuning Curve Models 700 

For the M1 data we use a circular, cubic B-spline basis with 5 equally spaced knots 701 

𝜆(𝜃) = exp(𝜇 +∑ 𝛽𝑖𝑔𝑖(𝜃)
𝑖

) 702 

where 𝑔(⋅) are the splines that depend on the reach direction 𝜃, weighted by parameters 𝛽 and 703 

the parameter 𝜇 defines a baseline firing rate. To include the effect of speed, we then add three 704 

covariates 705 

𝜆(𝜃, 𝑠) = exp(𝜇 +∑ 𝛽𝑖𝑔𝑖(𝜃)
𝑖

+ 𝛼1𝑠 + 𝛼2𝑠 cos(𝜃) + 𝛼3𝑠sin(𝜃)) 706 

where 𝑠 indicates the speed, and the parameters 𝛼 allow for a multiplicative speed effect as well 707 

as possible cosine-tuned speed x direction interactions as in (Moran and Schwartz, 1999). 708 

For place fields in hippocampus we use isotropic Gaussian radial basis functions 𝑓(⋅)  equally 709 

spaced (30cm) on an 6x6 square lattice with a standard deviation of 30cm 710 

𝜆(𝑥) = exp(𝜇 +∑ 𝛽𝑖𝑓𝑖(𝑥)
𝑖

) 711 
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We find that the effect of speed is well modeled using the log-transformed speed 𝑠, and to model 712 

head direction-dependence we use circular, cubic B-splines 𝑔(⋅) with 6 equally spaced knots 713 

𝜆(𝑥, 𝑠, 𝜃) = exp(𝜇 +∑ 𝛽𝑖𝑓𝑖(𝑥)
𝑖

+ γlog 𝑠 +∑ 𝛼𝑗𝑔𝑗(𝜃)
𝑗

) 714 

For the V1 data we again use a circular, cubic B-spline basis for the direction of the sine-wave 715 

grating (7 equally spaced knots). 716 

𝜆(𝜃) = exp(𝜇 +∑ 𝛽𝑖𝑔𝑖(𝜃)
𝑖

) 717 

We find that the effect of population activity is well modeled using the total log-transformed firing 718 

rate of all neuron’s excepting the one being modeled 719 

𝜆(𝜃, 𝑧) = exp(𝜇 +∑ 𝛽𝑖𝑔𝑖(𝜃)
𝑖

+ 𝛼𝑧) 720 

where 𝑧 = ∑ log(𝑛𝑖 + 1)𝑖≠𝑗 . In all models, to avoid overfitting, especially for low firing rate neurons, 721 

we add a small L2 penalty to the log-likelihood with a fixed hyperparameter of 10-4. 722 

Post-spike History Simulations and Population Rate Models 723 

In addition to capturing tuning curves, many studies have used GLMs to describe the dynamics of 724 

single spike trains (Brillinger, 1988; Harris et al., 2003; Paninski, 2004; Okatan et al., 2005; Truccolo 725 

et al., 2005; Weber and Pillow, 2017). Here, to account for post-spike history effects, we use a GLM 726 

taking the form 727 

𝜆(𝑡) = exp(𝜇 + 𝛼ℎ(𝑡)) 728 

𝑛(𝑡)~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆(𝑡)Δ𝑡) 729 

where ℎ(𝑡) denotes the vector of spike history covariates representing the recent history of spiking 730 

and 𝜇 determines a baseline firing rate. Here we assume ℎ𝑖(𝑡) = ∑ 𝑓𝑖(𝜏)𝑛(𝑡 − 𝜏)𝜏>0 , and we use 731 

neuron-specific, cubic B-spline bases 𝑓(⋅)whose knots are determined by the quantiles of each 732 

neuron’s ISI distribution. Specifically, we choose knots spaced between 10 and 400ms (HC) or 2 733 

and 200ms (V1), where the spacing follows equal percentile regions of the ISI distribution in that 734 

same range. This gives 6 basis functions, and coefficients 𝛼 to capture the spike-history. To enforce 735 

refractoriness, we fix the coefficient of the fastest basis (which peaks at 0 and ends at 10ms) to be 736 

-5, leaving 5 coefficients to be estimated. 737 

The population rate model simply adds covariates where, for each neuron 𝑖 738 

𝜆𝑖(𝑡) = exp(𝜇𝑖 + 𝛼𝑖ℎ𝑖(𝑡) + 𝛽𝑖𝑔 (∑ 𝑛𝑗≠𝑖(𝑡)
𝑗

)) 739 

𝑛𝑖(𝑡)~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖(𝑡)Δ𝑡) 740 

Here we use a set of acausal Gaussian filters for 𝑔(⋅) with standard deviations 20, 50, and 100ms. 741 

Note that spikes from the neuron being modeled are excluded from the population covariates. 742 
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Stability analysis 743 

Here we make use of a stability analysis proposed in (Gerhard et al., 2017). Briefly, we use a quasi-744 

renewal approximation of the conditional intensity by considering the effect of the most recent 745 

spike, at time 𝑡′, and averaging over possible spike histories preceding this spike 746 

𝜆0(𝑡, 𝑡
′) = exp(𝜇 + 𝐻(𝑡 − 𝑡′)) 〈exp(𝐻 ∗ 𝑆)〉𝑆(𝑡<𝑡′) 747 

where 𝐻(𝑡 − 𝑡′) = 𝛼𝑓(𝑡 − 𝑡′)  and 𝑆  represents the history of spiking. By assuming that 𝑆  is 748 

generated from a homogeneous Poisson process with firing rate 𝐴0 , the second term can be 749 

approximated by 750 

〈exp(𝐻 ∗ 𝑆)〉𝑆(𝑡<𝑡′) ≈ exp (𝐴0∫ (𝑒𝐻(𝑢) − 1)𝑑𝑢
∞

𝑡−𝑡′

) 751 

Given this approximation, we can then estimate the inter-spike interval distribution as we would 752 

for a true renewal process and the steady-state distribution of inter-spike intervals is given by 753 

𝑃(𝜏) = 𝑒𝑥𝑝 (−∫ 𝜆0(𝑢)𝑑𝑢
𝜏

0

)𝜆0(𝜏) 754 

and the predicted steady-state firing rate is 𝑓(𝐴0) = 1/𝐸𝑃(𝜏)[𝜏]. 755 

To assess stability, we can then examine how the predicted steady-state firing rate depends on 756 

the assumed rate of the homogeneous Poisson process 𝐴0. In particular, when 𝑓(𝐴0) = 𝐴0  the 757 

quasi-renewal model has a fixed-point. To allow for external input, we incorporate the average 758 

effect of the covariates 𝑋 into the conditional intensity approximation 759 

𝜆0(𝑡, 𝑡
′) = exp(𝜇 + ℎ(𝑡 − 𝑡′) + 〈𝑋𝛽〉) 〈exp(ℎ ∗ 𝑆)〉𝑆(𝑡<𝑡′) 760 

𝜆0(𝑡, 𝑡
′) = exp(𝜇 + ℎ(𝑡 − 𝑡′))〈exp(𝑋𝛽)〉𝑡 〈exp(ℎ ∗ 𝑆)〉𝑆(𝑡<𝑡′) 761 

Note that, in general, adding inputs 𝑋 will only change the stability of the model to the extent that 762 

these covariates change the estimate of ℎ. 763 

764 
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