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Summary 

The purpose of this study is to identify a global and robust signature characterizing 

Alzheimer’s Disease (AD). Two public GWAS datasets were analyzed considering a 3-

fold kernel approach, based on SNPs, Genes and Pathways analysis, and two binary 

classifications tasks were addressed: cases@controls and APOE4 task. In the SNP 

signature of the ADNI-1 and ADNI-2 datasets, chromosome 19 and 20 reached high 

classification accuracy. In addition, the functional characterization of ADNI-1 and ADNI-

2 SNP signatures found enriched the same pathway (i.e., Neuroactive ligand-receptor 

interaction), with GRM7 gene in common with both. TOMM40 was confirmed linked to 

AD pathology by SNP, gene and pathway-based analyses in ADNI-1.  Using this 3-fold 

kernel approach, a peculiar signature of SNPs, genes and pathways has been highlighted 

in both datasets.  Based on these significant results, we retain such approach a valuable 

tool to elucidate the heritable susceptibility to AD but also to other similar complex 

diseases. 
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1. Introduction 

Alzheimer’s disease (AD) is the predominant form of dementia (50-75%) in the elderly 

population. Two forms of AD are known: an early-onset (EOAD) that affects the 2-10% 

of the patients and is inherited in an autosomal dominant way, with the three genes 

APP, PS1 and PS2 mainly involved;  and a late-onset form (LOAD) that affects the vast 

majority of the patients in the elderly over 65s, whose causes remain still unknown 

(Van Cauwenberghe, Van Broeckhoven and Sleegers, 2016). Although LOAD has been 

defined as a multifactorial disease and its inheritance pattern has not been clarify yet, it 

is coming out the idea that it could be likely caused by multiple low penetrance genetic 

variants (Naj, Schellenberg and Alzheimer’s Disease Genetics Consortium (ADGC), 

2017), with a genetic predisposition for the patients and their relatives estimated of 

nearly 60-80% (Naj, Schellenberg and Alzheimer’s Disease Genetics Consortium 

(ADGC), 2017).   

The first well known gene associated to LOAD was APOE (Pericak-Vance et al., 1997). It 

encodes three known isoforms proteins (ApoE2, ApoE3 and), with APOE4 known to 

increase risk in familial and sporadic EOAD. This risk is estimated to be 3-fold and 15-

fold for heterozygous and homozygous carriers respectively, with a dose-dependent 

effect on onset age (Naj, Schellenberg and Alzheimer’s Disease Genetics Consortium 

(ADGC), 2017).  

Large-scale collaborative GWAS and the International Genomics of Alzheimer’s Project 

have significantly advanced the knowledge regarding the genetics of LOAD (Van 

Cauwenberghe, Van Broeckhoven and Sleegers, 2016). Anyways, none of the new 

identified loci reached the magnitude of APOEε4, as predisposing risk factors for AD, 
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with the majority of the hereditable component of AD remaining unexplained (Gandhi 

and Wood, 2010). Several different but not mutually exclusive explanations of such 

failure could coexist: AD could be caused by the concerted action of independent genetic 

factors, each having a small effect size that require to adopt multivariate methods and 

increased sample size (Moore, Asselbergs and Williams, 2010); or it could be caused by 

the concerted actions of multiple genes (again characterized by low effect size) that act 

inter-dependently in still undefined pathways, that would need a pathway-based 

approach, as done for other complex diseases (Frazer et al., 2009).  Alternatively, AD 

could be caused by vary rare but highly penetrant mutations that might be identified 

through DNA sequencing (Ng et al., 2008). 

In order to explore the first two possible scenarios, in this study we proposed a GWAS 

analysis based on multivariate methods and on a telescope approach, in order to 

guarantee the identification of correlated variables, and reveal the possible connections 

existing among the identified relevant variables at the different, but biologically 

connected, SNPs, genes and pathways levels.  

 Figure 1 depicts the workflow that we defined “3-fold kernel approach”: the term 3-fold 

underlines the analyses at the SNP, gene and pathway level, and the word “kernel” is a 

synonymous of machine learning methods. The final purpose is to identify lists or 

signatures of possible causal SNPs, genes and pathways that considered together might 

provide a convincing picture of heritable factors in the LOAD pathogenesis. 

 

2. Results 

2.1 SNP-based analysis 

SNP-based analysis performed on ADNI-1 dataset identified a signature of 14 SNPs 

relevant for cases@controls task (Fig. 2 and Table S3). These SNPs, mapped on 14 genes 
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or intergenic regions, are located on chromosomes 6 and 2/0. In particular, 

chromosome 6 showed higher performance values, considering both balanced accuracy 

and MCC (0.61± 0.06 and 0.21±0.13) (Fig. 2A). In addition, the higher distance between 

the regular (light blue) and the permutation (red) distributions of the calculated 

balanced accuracies reinforced the robustness of the obtained results. While for 

chromosome 20, the partial overlapping between the regular and permutation batch 

gave less reliability, still maintaining a good performance in term of balanced accuracy 

and MCC (0.55±0.06 and 0.11±0.12)  (Fig.2B).   

It is well recognized that APOE polymorphic alleles are the main genetic determinants of 

AD risk, being the individuals carrying one or two ε4 alleles at higher risk to develop AD 

(Pericak-Vance et al., 1997). Thus, a further SNP based analysis was performed basing 

on the binary classification 1 or 2 APOEε4 vs 0 APOEε4 presence (APOEε4 task). 39 

SNPs, which map to 47 genes or intergenic regions, have been identified in the APOEε4 

task (Fig. 2A and Table S3). Chromosomes 19 and 20 were associated with the highest 

balanced accuracy and MCC results (Fig. 2A) and the distribution plots underlines this 

result (Fig. 2C). 

Interestingly, the two classification tasks had in common the 20orf196 gene on 

chromosome 20. This gene is the closest to different SNPs found discriminant in the two 

tasks: in cases@controls task rs6053572 is located in the intergenic region between 

GPCPD1 and 20orf196 while in the APOEε4 task rs236137 and rs6041271 are located 

in the intergenic region between 20orf196 and CHGB (Table S3). 

SNP-based analysis on ADNI-2 dataset identified for cases@controls task a signature of 

138 SNPs, which map to 183 genes or intergenic regions harbored on 19 different 

chromosomes, with a balanced accuracy and MCC values ranging from 0.63 to 0.81 and 

0.26 to 0.63 respectively (Fig. 3A and Table S4). In particular chromosomes 9, 10, 14, 20 
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and 21 are the most reliable since they showed a higher distance between the two 

distribution measures (Fig. 3B).  

When we considered the APOEε4 task, only chromosome 19 was found statistically 

significant with very high values of both balanced accuracy (0.94) and MCC (0.90) (Fig. 

3A and Table S4) and with very high distance between the two distributions (Fig. 3B). 

The derived SNP signature harbored only four SNPs located in three genes: rs367209 

in LOC101928063, rs383133 in ZNF221, rs415499 in ZNF155 and rs365745 that 

causes a missense mutation in ZNF221 gene. None of these genes are known to be 

associated to AD but the AlzGene database (Bertram et al., 2007) confirmed that these 

SNPs are located in a linkage region (i.e., 19q13.31) known to be associated to AD.  

2.2 Functional characterization of SNPs signature 

In order to biologically characterize the gene lists derived from the SNPs signatures, we 

further performed a functional characterization in KEGG and in DISEASE database (see 

Supplementary Materials) for both datasets (Table 1). For ADNI-1 dataset, only APOEε4 

task SNP signature was used, since cases@controls task did not allow this kind of 

analysis for the shortness of SNPs list identified. Interestingly, only the “Neuroactive 

ligand-receptor interaction” pathway, that includes the genes P2RY13, GRIN3A, 

LEPR, GRM7, P2RY14, reached a significant adjusted P value (Adj-P value = 5.99e-06) 

(Table 1). In addition, the enrichment in the DISEASE database highlighted the 

association of CHGB, TOMM40, APOC1 and NGF genes with AD (Table 1). On the other 

hand, others diseases were found associated with the list of genes related to the ADNI-1 

SNP signature: in particular, CHGB, TOMM40, APOC1 and NGF were in common with 

Tauopathies; GRIN3A, and KALRN genes were found associated with Schizophrenia; 

GRM7 was found associated to both Bipolar Disorder and Schizophrenia (Table 1). 

Other examples of diseases categories that reached significance (P value < .05) were 
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mental disorders, dementia, and eating disorders, suggesting that the same genes might 

participate in the heritable susceptibility of different pathological conditions. 

In ADNI-2 the functional characterization in KEGG and in DISEASE databases was 

allowed only for the cases@controls SNP signature, that reported a long SNPs’ list. From 

this analysis the most important pathways related to AD were: “Chemokine signaling”, 

“Calcium Signaling”, “Axon Guidance” and “Neuroactive ligand-receptor 

interaction” (Table 1). The latter pathway involved GRIN2A, GRM7, GABRG3 and 

CYSLTR2 genes . The result of the enrichment in DISEASE highlighted several relevant 

diseases or disease categories such as Bipolar Disorder, mood disorders, anxiety 

disorders, Schizophrenia (Table 1).  

Bipolar Disorder, mood and eating disorders, Schizophrenia, nervous system diseases 

and mental disorders were in common with those found in the ADNI-1 functional 

characterization (APOEε4 task). Interestingly, Bipolar Disorder was the disease most 

enriched in ADNI-2, harboring ten genes (GRM7, GRIN2A, RBFOX1, GABRGB, PCDH17, 

ADCY9, PLCB4, SORCS2, AGAP1, MPPE1) of the cases@controls SNP signature. 

 

2.3 Gene-based analysis 

In order to identify a gene signature for cases@controls and APOEε4 tasks, ADNI-1 and 

ADNI-2 datasets were analyzed by using three different tests included in the SKAT 

software (see Methods).  In ADNI-1 dataset, TOMM40, with its three SNPs, rs2075650, 

rs157580 and rs8106922, was found significantly associated to AD, applying all the 

tests; while TEF gene, harboring the three SNPs, rs738499, rs2073167 and rs17365991, 

was found significant in distinguishing cases@controls only with SKAT test (Table 2). 

When the ADNI-1 dataset was analyzed considering the APOEε4 task, we obtained very 

similar results using the three tests (Table 2).  In particular, the genes or intergenic 
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regions found significantly associated with the AD risk were: TOMM40, the intergenic 

region between LOC100129500 and APOC1, and the intergenic region between 

TOMM40 and APOE. Specifically three SNPs were located in the introns of TOMM40, the 

same found in the cases@controls task, while other two and one SNPs were located in 

the two just mentioned intergenic regions. 

In the analysis of ADNI-2 dataset, considering both classification tasks, no genes or 

intergenic regions reaching the significance level were found (data not shown). 

 

2.4 Pathway-based analysis 

In REACTOME database (Fabregat et al., 2018) we selected 9 pathway groups (Table 

S2), whose relevance in neurodegenerative processes were well recognized (Rosenthal 

and Kamboh, 2014) and we analyzed the SNPs mapped to the gene lists involved in 

these pathways. With ADNI-1_cases@controls task no groups reaching statistical 

significance were found. At variance, different pathway groups, associated with AD risk 

(APOEε4 task), achieved a good test score. These pathways and their relative groups 

were reported in Table 3.  

Also in ADNI-2 dataset, several significant pathways associated with both classification 

tasks were identified (Table 3). Interestingly,   “cellular senescence” and “detoxification 

of reactive oxygen species” pathways included in group 1c were in common between 

the two classification tasks. In addition, the “detoxification of reactive oxygen species” 

pathway of 1c group was also in common with the ADNI-1 pathway signature, while 

groups 5a and 9a of the ADNI-2_APOEε4 task were in common with ADNI-1_ APOEε4 

task.   
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3. Discussion 

Despite the promise of GWAS to reveal the genetic contribution to AD susceptibility, the 

majority of its heritable component remains unexplained. The major factor contributing 

to hamper the identification of genetic burden, lies in the cumulative contribution of 

multiple genes of small effect size that act inter-dependently in unidentified pathways. 

In addition, the need to adopt highly stringent statistical correction to avoid false-

negative and false-positive results requires to increase the number of cases/controls in 

the initial study and then to reproduce the association across independent replicative 

studies. This study showed a new approach to analyze GWAS datasets in order to 

contribute in uncovering a robust and global AD signature.  Here we discussed the data 

obtained by SNP, gene and pathway based analysis of two ADNI datasets (ADNI-1 and 

ADNI-2). 

3.1 SNP-based analysis 

From ADNI-1 dataset analysis, chromosome 20 and in particular the 20orf196 gene 

appeared relevant in the AD context. Although the genes and SNPs located in the locus 

20p12.3, are not included in known linkage regions associated to AD, according to 

AlzGene database (Bertram et al., 2007),  the identification of SNPs nearby the same 

gene in both binary classification tasks (SNP rs6053572 mapped on the intergenic 

region GPCPD1- 20orf196 in cases@controls; and SNPs rs236137 and rs6041271 on 

the intergenic region 20orf196-CHGB in  APOEε4 task) strengthened its implication in 

AD. In addition, within the ADNI-2 dataset, the gene LOC101928063 and its SNP 

rs367209 on chromosome 19 was strongly associated to AD cases@controls and 

APOEε4 task (Table S2). Chromosome 19 was also in common with ADNI-1 SNP 

signature, considering the APOEε4 task, although the related SNPs identified harbored 

on different genes and intergenic regions.   
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Considering that the demographic and clinical characteristics of the subjects enrolled in 

the two studies were similar, a possible explanation of the low reproducibility between 

the two SNP signatures could be due to the different Illumina GWAS platforms used.  

ADNI-1 and ADNI-2 datasets reported 620901 and 730523 SNPs respectively, of which 

only 300000 were in common. Therefore, the use of different platforms might be a 

critical point in the context of data validation. On the other hand, the functional 

characterization of the ADNI-1 and ADNI-2 SNP signatures found enriched the same 

KEGG pathway  “Neuroactive ligand-receptor interaction” in which some genes 

encoded for glutamate receptors were found in both datasets. For example the GRM7 

gene, that encodes for the glutamate metabotropic receptor 7 and plays an important 

role as neurotransmitter in the cerebral cortex, hippocampus, and cerebellum (Makoff 

et al., 1996). Epidemiologic studies have identified associations between variation in 

GRM7 and depression, anxiety, schizophrenia, bipolar disorder, and epilepsy (Haenisch 

et al., 2015; Chen et al., 2018). Recently it has also been demonstrated that 3xTg-AD 

mice showed lower GRM7 protein expression in hippocampus, associated with an 

increased anxiety behavior, compared with the wild-type mice (Zhang et al., 2016). The 

significance of such results was confirmed by a genome-wide gene and pathway-based 

analyses on depressive symptom burden in the three independent cohort (Nho et al., 

2015). Genes encoding for NMDA glutamate ionotropic receptor subunits, the major ion 

channel that participates in neuronal development and synaptic plasticity (Kehoe, 

Bernardinelli and Muller, 2013) were also identified in the two datasets. In particular, 

the GRIN3A, found in ADNI-1, is located within 9q21.31-q32, that is linkage region 

associated to AD (Bertram et al., 2007). Deregulations of GRIN3A activity has been 

associated with abnormalities in dendritic spine density, turnover, formation and 

elimination observed in different neurological conditions, including AD (Kehoe, 
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Bernardinelli and Muller, 2013). While, GRIN2A, interacting with GRIN3A, are globally 

involved in the modulation of episodic memory consolidation (Papenberg et al., 2014) 

and of the response to antipsychotic treatment (Stevenson et al., 2016) .  

Others genes of ADNI-1 and ADNI-2 signature, such as P2RY13, P2RY14, GABRG3 

associated to the “Neuroactive ligand-receptor interaction” pathway, might also have a 

relevance in AD pathology. For example two members of the G-protein coupled 

receptors family named P2RY13 and P2RY14: the first gene is known to be involved in 

the axonal elongation (del Puerto et al., 2012), while the second gene has been reported 

to play a role in neuroimmune function (Sesma et al., 2012; Barrett et al., 2013). Both 

these genes are located within 3q12.3-q25.31, a linkage region known to be associated 

to AD (Bertram et al., 2007). Furthermore, gamma3-aminobutyric acid (GABA) receptor, 

encoded by GABRG3 gene, could have a relevance in protecting neurons against 

neurofibrillary pathology in AD (Iwakiri et al., 2009). 

 3.2 Gene-based analysis  

Surprising, a gene signature was successfully found only for ADNI-1. Again, this 

difference in ADNI-1 and ADNI-2 results could be due to the low overlap of SNP 

measured in the two different platforms. 

The gene-based analysis of ADNI-1 dataset confirmed the association of TOMM40 gene 

with AD pathology, according with different other studies (Linnertz et al., 2014; Goh et 

al., 2015; Chiba-Falek, Gottschalk and Lutz, 2018). In particular, TOMM40, with its three 

SNPs was found in common between cases@controls and APOEε4 tasks.  TOMM40 is 

located in 19q13.32 locus, a known linkage region for AD (Bertram et al., 2007).  Its 

encoded protein plays a key role in the mitochondria functionality being essential for 

import of protein precursors into mitochondria. Furthermore, one of the three SNPs 

mapped to this gene, rs2075650, is also known to be a contributing factor for AD 
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(Huang et al., 2016) (Potkin et al., 2009). In addition, in the cases@controls task, SKAT 

analysis identified also TEF gene, a member of the PAR subfamily of the basic 

region/leucine zipper (bZIP) family. The rs738499 SNP mapped to TEF and identified in 

ADNI-1, has been found to be associated to sleep disturbances in Parkinson’s (Hua et al., 

2012) and in Alzheimer’s diseases (Gast et al., 2012).  

Interestingly, comparing the SNP and the gene signatures, the TOMM40 gene with its 

two SNPs, rs2075650 and rs8106922, and the intergenic region LOC100129500-APOC1 

with rs439401 SNP (Fig. S2) were found in common with the two signatures. 

3.3 Pathway-based analysis  

Many statistically significant pathways were found in common between ADNI-1 and 

ADNI-2. Specifically for APOEε4 task, the common groups in the two datasets were 5a, 

1c and 9a, related to the metabolism of proteins (e.g., amyloid fiber formation, unfolded 

protein response, and mitochondrial protein import), to the cellular response to stress 

(e.g., detoxification of reactive oxygen species) and to the signaling by NOTCH and GPCR 

pathways respectively (Table 2). It is noteworthy that the “mitochondrial protein 

import” pathway, related to group 5a, in common with both datasets, involved TOMM40 

gene, resulting also from SNP and gene-base analysis of ADNI-1 dataset. A pathway in 

common to both datasets, belonging to group 9a was “GPCR ligand binding” in which 

GRM7, and the GRIN2A and GRIN3A (the two NMDA glutamate receptor subunits) were 

involved.   

 

In conclusion, this study pointed out a promising approach to get more insight in 

studying heritable susceptibility of a complex disease like AD.  What has been raised by 

this approach was the difficulty to reproduce and validate the specific signatures on 

different datasets, since the validation procedure truly succeeded just for the APOEε4 
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signature identified in ADNI-1 (Fig. S2). Nevertheless, considering the telescope 

approach with multivariate analysis, some promising candidate, such as TOMM40 and 

GRM7, was confirmed in the two datasets. In future, this list might be increased 

analyzing additional GWAS datasets, thus contributing to obtain a robust global 

signature of AD susceptibility.  

 

 

4 Star Methods 

4.1 Datasets 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The primary goal of ADNI 

has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment 

(MCI) and early AD. Further information about ADNI can be found here (Weiner et al., 

2010) (http://www.adni-info.org). In this study Genome-wide association studies 

(GWAS) data and APOE genotype obtained in the ADNI-1 and ADNI-2 datasets (Saykin 

et al., 2010) were used (Table S1), considering the  AD and healthy controls (CN) group. 

The genotyping platforms used by ADNI-1 and ADNI-2 were:  Illumina Human 610-

Quad BeadChip that measures 620.901 SNPs and CNV markers for ADNI-1 and Illumina 

Human OminExpress-24v that measured 730.525 SNPs and CNV markers for ADNI-2. 

Differently from ADNI-2, in ADNI-1 APOE genotyping is provided outside the GWAS 

platform. In both datasets, we performed two supervised binary classification analyses: 

AD vs. cognitively healthy subjects  (cases@controls task) and subjects at risk vs. 
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subjects not at risk of developing AD, according with APOE status (1 or 2 alleles vs. 0 

allele of APOEε4) (APOEε4 task) (Table S1).  

 

4.2 Workflow 

A 3-fold kernel approach was devised to analyze the datasets. Considering the two 

classification tasks addressed and the 3-fold analyses, each ADNI dataset was analyzed 

six times (Fig. 1). 

In order to increase the signal over noise ratio, reducing the number of SNPs to analyze, 

we adopted the following strategy: (1) for the SNP and pathway-based analysis we 

employed two sparse methods, designed to identify the SNPs or pathways which are 

most discriminative for the classification tasks while restricting the selection of SNPs 

and pathways, and considered a different representation of the SNP data (see 

Supplementary Materials); (2) for the SNP-based analysis we analyzed each 

chromosome separately while for the gene and pathway-based analyses we grouped the 

SNPs considering genes/intergenic regions or pathways relevant for AD. 

 

4.3 SNP-based analysis 

For the SNP-based analysis, l1l2 feature selection (l1l2FS), a method that belong to sparse 

techniques was chosen (Hastie et al., 2015). This method allows the identification of the 

most discriminative variables for the problem at hand (classification tasks) while 

making feature selection (see Supplementary Materials).  l1l2FS  was used within 

PALLADIO (https://github.com/slipguru/palladio), a machine learning Python library 

that can be customized to consider various combinations of feature selections and 

classification methods (Fig. S1A). In order to ensure the reliability of the results, we 

used PALLADIO to perform two sets of experiments, which we referred to as regular 
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batch and permutation batch (Fig. S1B). The level of distance of the two distributions 

measured the reliability of the obtained results: the higher the distance, more reliable 

are the obtained results (see Supplementary Materials). 

 

4.4 Gene-based analysis 

For the gene-based analysis, three different association tests available in the SKAT 

package were used: Burden, SKAT and SKATO (see Supplementary Methods). SKAT (Wu 

et al., 2011; Ionita-Laza et al., 2013) is a supervised regression method that test the 

association between genetic variants in a region and a dichotomous or a continuous 

trait while adjusting for covariates. The dichotomous traits considered were 

cases@controls and APOEε4 task. Covariates such as age at onset, race, sex were 

excluded from the analysis. Furthermore we chose to consider genes or intergenic 

regions, leveraging on the mapping files SNPs-to-genes provided by the GWAS platform 

manufacturer (i.e., “Human610_Gene_Annotation_hg19.txt” for ADNI-1 and 

“HumanOmniExpress-24v1-1_Annotated.txt” for ADNI-2). 

The threshold of genome-wide significance we established, was in accordance with 

other studies (Kraft, Zeggini and Ioannidis, 2009; Mukherjee et al., 2014; Fadista et al., 

2016; Kanai, Tanaka and Okada, 2016) (see Supplementary Methods).  

 

4.5 Pathway-based analysis 

We selected 9 groups of pathways more relevant for neurodegenerative processes  

(Table S2) inside REACTOME database (Croft et al., 2013). Each group contained two or 

more pathways and each group represented a SNP matrix that, together with a label 

that characterizes each subject, was given as input to “Group Lasso with overlap” 

(Hastie et al., 2015). This latter is a machine learning method, able to consider the 
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presence of overlapping groups of SNPs mapped to genes, involved in more than one 

pathway inside a group. The goal of “Group Lasso with overlap” is to induce a “sparse” 

selection at the group level, using all the pathways specified in the group. In this way, 

starting from a possibly long list of pathways inside a group, the algorithm selected a 

few (but informative) pathways that could be relevant for the problem at hand. 
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Figure/Tables legends: 

Fig. 1  

Workflow of the study. ADNI-1 and ADNI-2 datasets were analyzed at the SNP, gene 

and pathway level using three kernel approach with machine learning methods. The 

global signature represents the summary of the single integrated signatures identified 

in the 3-fold analyses. 

Fig.2 
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SNP-based results of ADNI-1. A) The classification performance of  SNP based analyses 

performed in ADNI-1 considering two classification tasks: AD vs. healthy controls 

(cases@controls) or 1/2 APOE ε4 vs. 0 APOE ε4 carriers (APOEε4 task). B. ACC, 

Balanced Accuracy; MCC, Matthews Correlation Coefficient; #genes*, number of genes 

or intergenic regions. B) Balanced accuracy distribution plots of the regular (light blue) 

and the permutation batches (red) related to chromosomes 6 and 20 in the 

cases@controls task. C) Balanced Accuracy distribution plots of the regular (light blue) 

and the permutation (red) batches related to chromosomes 1, 3, 9, 19 and 20 in the 

APOEε4 task.  

 

Fig.3 

SNP-based results of ADNI-2. A) The classification performance of SNP based analyses 

performed in ADNI-1 considering two classification tasks: AD vs. healthy controls 

(cases@controls) or 1/2 APOE ε4 vs. 0 APOE ε4 carriers (APOEε4 task). B. ACC, 

Balanced Accuracy; MCC, Matthews Correlation Coefficient; #genes*, number of genes 

or intergenic regions.  B) Balanced accuracy distribution plots of regular (light blue) 

and permutation (red) batches related to chromosomes 9, 10, 14, 20, 21 in the 

cases@controls task. C)  Balanced accuracy distribution plots of regular (light blue) and 

permutation (red) batches related to the chromosome 19 in the APOEε4 task. 

 

Table 1. Functional characterization of ADNI-1 and ADNI-2 SNP signatures. This 

analysis was focused on the gene lists derived from the ADNI-1 SNP signature (APOEε4 

task ) and from the ADNI-2 SNP signature (cases@control task). The number of genes, 

their gene symbols and the Adjusted P value (Adj-P value) is reported for each 
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significant pathway or disease found enriched. The significance level chosen for the 

enrichment analysis was .05. 

 

Table 2. Gene-based signatures identified in ADNI-1. Lists of genes identified by the 

SKAT software in the cases@controls and APOEε4 tasks. The genes with P value < 

1.37×10-6  are considered significant. 

 

Table 3. Pathway-based signatures identified in ADNI-1 and ADNI-2. Lists of the 

groups of pathways found statistically significant in APOEε4 task for ADNI-1 and in both 

tasks (cases@controls and APOEε4) for ADNI-2. The groups 1c, 5a, 9a were in common 

with ADNI-1 and 2. The test score shows the classification performance of “Group Lasso 

with overlap”. See Table S2 for the complete list of all the pathways analyzed inside 

each group.  
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