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(amino-acid encoding regions, CDS), non-coding RNAS (ncRNAs), with lines coloured 277	

according to the legend at right. C) HDEs fell closest to a variety of annotations. The pie 278	

chart shows the proportions of nearest annotations, indicating a bias towards defining 5’UTR 279	

edges. There were subtle differences between S1, S2 and S3 states in this respect (not 280	

shown). (D) Density plots describe various characteristics of HDEs, from left showing S1, S2 281	

and S3 HDEs. Conservation (y axis, top row) levels are mean phyloP measures from four 282	

Schizosaccharomyces species. HDE lengths (y axis, middle row) are shown on a log10 scale. 283	

Expression levels (x axes) are RNA-Seq RPKMs from proliferating cells. Dashed horizontal 284	

and vertical lines show the 5th and 95th percentiles of conservation, expression levels or 285	

lengths. The positions of symbols (circle, triangle etc.) indicate the median positions within 286	

each state for essential transcripts (ESS/T), coding regions (CDS), and 5’/3’ UTRs. For 287	

example, the few conserved S3 sites are coding regions. The bottom row shows the 288	

proportion of HDEs that are annotated as essential transcripts (ESS/T), protein-coding 289	

sequence (CDS), 5’ UTR and 3’ UTR. 290	

 291	

Discussion 292	

Dense transposon-insertion libraries can identify genes whose disruption affects fitness (in 293	

particular conditions) within bacterial genomes with high resolution [11-15]. However, 294	

similarly high-resolution descriptions of eukaryotic genomes are more limited, and have not 295	

yet achieved nucleotide-level definitions of fitness landscapes [18,19]. Studies with 296	

eukaryotic genomes are also more challenging, because they are larger and contain 297	

nucleosomes, which bias integration rates. With the density of our insertions in libraries from 298	

proliferating cells (26.7 million insertions, 1 unique insertion site/13 nt), and the application 299	

of a HMM to account for insertion bias, we analysed functional importance at near single-300	

nucleotide resolution.  301	
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The	findings	of	the	HMM	are	validated	by	the	demonstration	that	continuous 302	

single-state genome sections (HMM-defined elements, HDEs) are closely aligned to existing 303	

annotations, and define elements with different properties (fig. 4). As the Hermes insertion 304	

data recapitulates signals of genetic diversity and divergence within different annotation 305	

categories, we can be confident that insertion density reflects functional constraint (fig. 1). 306	

The application of a hidden Markov Model robustly accounted for insertions biases, since 307	

HMM states strongly depended on insertion density but only weakly correlated with 308	

nucleosome density and nucleotide motif (supplementary fig. 6). 309	

 Our HMM analysis of transposon insertions assigned 91% of the fission yeast to 310	

HMM S1 or S2 (which were trained on essential and non-essential coding regions, 311	

respectively). Based on this, we conclude that 91% of the genome contains functional 312	

elements that are affected by transposon insertions. These likely functional regions of the 313	

genome include 80% of the currently un-annotated genome, consistent with the presence of 314	

many unrecognised functional elements in non-coding regions of this model organism. This 315	

is the first near nucleotide-level study of fitness consequences in a eukaryote genome, so 316	

there are no clear expectations. In theory, species with larger population sizes are expected to 317	

maintain smaller genomes with larger proportions of functional DNA [27]. Consistent with 318	

this prediction, analysis of comparative genomics data has estimated that 5-15% of the 319	

human genome shows signals of conservation [28-30], whereas increasingly larger 320	

proportions of the Drosophila (~50%), Caenorhabditis (37%), and Saccharomyces yeast (up 321	

to 68%) genomes are conserved [31]. Our estimate of functional regions is likely larger due 322	

to the limitation of comparative genomics, that is it only able to detect regions that have 323	

continuously subject to purifying selection throughout the phylogeny of the species aligned 324	

[4]. It is also possible that in some cases transposon insertions can disrupt the function of 325	

larger neighbouring regions, although the sites of insertions themselves are not functional.  326	
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 A limitation of our study is that the transposon method does not reveal how non-327	

coding genomes elements function. Future work will reveal whether these elements function 328	

as the widespread non-coding transcripts [22] and/or as regulatory elements controlling the 329	

expression of coding genes.  330	

 331	

Conclusion 332	

Our analysis indicates that the fission yeast genome is densely packed with functional 333	

elements, including many uncharacterised non-protein-coding elements. We estimate that 334	

90% of the genome contains functional elements that are impaired by transposon insertions, 335	

including 80% of the non-protein-coding regions. We expect that saturating transposon 336	

mutagenesis data has potential to define functional non-protein-coding elements within 337	

eukaryote genomes that would be difficult to detect with any other contemporary method.  338	
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Methods 339	

Creating Hermes Insertion Libraries. Hermes insertion libraries were constructed as 340	

described [16] using the pHL2577 and pHL2578 plasmids, except that the transposition 341	

frequency was calculated by dividing the number of colonies on YES 5-FOA+G418 plates by 342	

the number of colonies on YES plates. All experiments were performed in an S. pombe strain 343	

with the genotype ura4–D18 leu1–32 h–. Typically, <0.2% of cells in libraries contained 344	

genomic Hermes insertions, so we expect that most insertion mutants contain a single 345	

insertion. 346	

 347	

Generating DNA Libraries for Sequencing. Genomic DNA was extracted from insertion 348	

libraries using phenol/chloroform extraction. All DNA extracted from a library was 349	

processed. DNA was sheared to an average size of 200 bp using a Covaris S2 ultrasonicator 350	

(Covaris, Woburn, Massachusetts). Sheared DNA was end repaired using the NEBNext® 351	

End Repair Module (NEB, Hitchin, UK). Linker1-Random10mer and Linker2 352	

(supplementary table 4) were ligated using the NEBNext® Quick Ligation Module (NEB, 353	

Hitchin, UK). In Linker1-Random10mer, the random 10 nt sequence acted as a UMI to 354	

distinguish unique chromosomal insertions from PCR amplifications. DNA was then digested 355	

with KpnI-HF (NEB, Hitchin, UK) to exclude residual Hermes pHL2577 donor plasmid from 356	

PCR amplification (as the plasmid contains a unique KpnI site). NEBNext® modules were 357	

used according to manufacturer’s instructions. To enrich for fragments containing the 358	

Hermes transposon, DNA was amplified with BIOTAQ™ DNA polymerase (Bioline, Essex, 359	

UK) using a primer that complimentary to the Hermes transposon (1-Transposon-4NNNN), 360	

and to the linker (Linker1-Amp, supplementary table 4). Ultimately, a second PCR attached 361	

the multiplex oligonucleotides for Illumina MiSeq sequencing; the MS-102-2022 MiSeq 362	

reagent kit v2 (300 cycles) (Illumina, Cambridge, UK) was used to sequence the libraries. To 363	
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increase the complexity of the libraries, for each library, ligation and PCR reactions were 364	

performed in multiple reactions (in 96-well plates), using a maximum of 1 µg of DNA per 365	

well and then re-pooled before sequencing. Detailed protocols are available in the Figshare 366	

project Hermes Transposon Mutagenesis of the Fission Yeast Genome (will be made publicly 367	

available upon manuscript acceptance). Sequence data are available at European Nucleotide 368	

Archive in study accession number PRJEB27324. Sample accessions are listed in 369	

supplementary table 5. 370	

 371	

Computational Processing of Sequencing Data.  372	

Bioinformatic processing filtered the sequence data to retain only reads derived from Hermes 373	

insertions, removed reads with duplicate UMIs, and filtered for correctly-paired high-374	

confidence read-mapping, and ultimately located the positions and orientation (strand) of 375	

genomic insertions. Details are as follows. Read 1 architecture was 376	

[random4mer][Hermes][Genome] (with random 4mer added to increase 5’ Read 1 end 377	

complexity to allow Illumina cluster calling). The 4mer was trimmed with fastx_trimmer 378	

(http://hannonlab.cshl.edu/fastx_toolkit/). The Reaper tool [32] was used to detect reads with 379	

5’ ends matching the expected Hermes sequence, and excluding those within the pHL2577 380	

donor plasmid. Read 2 architecture was [10mer][Linker][Genome]. We used a custom Perl 381	

script to exclude duplicate reads with exactly matching 10mers. Processed Reads 1 and 2 382	

were re-paired using Tally [32], and the 10mer and Linker were trimmed with fastx_trimmer. 383	

Paired-end reads were aligned to the reference genome [33] and the donor plasmid using 384	

BWA-MEM (Li and Durbin 2009). SAMtools [34] was used to select correctly paired reads 385	

with a mapping score ≥30 (flags 83 and 99). Finally, we applied custom scripts to identify the 386	

location and strand of insertions from the filtered BAM outputs with SAMtools. Insertions 387	

found on the same chromosome but on different strands were considered as unique events. 388	
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Command lines for this procedure and scripts are available in the Figshare project Hermes 389	

Transposon Mutagenesis of the Fission Yeast Genome, as well as all insertion data, and 390	

HMM model fitting results. 391	

 392	

Nucleosome Density Data. The generation of the nucleosome density data has been 393	

described in Atkinson et al. [22] and are available at the European Nucleotide Archive under 394	

accession number PRJEB21376.  The median nucleosome density from two repeats was 395	

transformed to a normal distribution. This normalised nucleosome density showed a stronger 396	

correlation with insertion density than the raw nucleosome density and was used as a 397	

predictor in the HMM. 398	

 399	

Insertion Motif Similarity Score. In vitro Hermes insertion data [18] was used to identify a 400	

sequence motif corresponding to insertion events in non-nucleosome bound DNA. Strings of 401	

41 nt, centred upon each in vitro insertion event were taken from the S. pombe reference 402	

sequence. The percentage of each nucleotide present at each of the 41 positions was 403	

measured and compared to percentage nucleotide compositions calculated across the entire 404	

genome. A window of 20 positions was identified for which the composition differed from 405	

the genome-wide composition by at least 1% for at least one of the four nucleotides. For each 406	

position i, we denote the probability of observing the nucleotide a as 407	

p"(a):	1 ≤ i ≤ 20, 𝑎 ∈ {A, G, C, T} 408	

and denote the genome-wide probability of observing the nucleotide a as pgw(a). 409	

A genome-wide scan was then conducted of strings of 20 consecutive nt in the genome 410	

sequence, calculating a likelihood measure of the extent to which each string matched the 411	

insertion motif, as compared to the genome-wide base composition. Where a string is given 412	

by the nucleotides {a1, a2, …, a20} we calculate the insertion motif similarity score as follows: 413	
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𝐼𝑀𝑆𝑆 = 	 log 𝑝" 𝑎" − log 𝑝?@ 𝑎"

AB

"CD

	 414	

Here a positive score indicates a greater similarity to the insertion motif than to the genome-415	

wide sequence propensity. This likelihood measure was used as a predictor in the HMM. 416	

 417	

Hidden Markov Model. We developed a hidden Markov model using the R package 418	

depmixS4 (Visser and Speekenbrink 2010b). These models assume that sequences of 419	

observed response variables are dependent on underlying sequences of discrete hidden states. 420	

The sequence of hidden states is assumed to follow a first-order Markov process, such that 421	

the probability of a state at position t depends only on the hidden state at the immediately 422	

preceding position t-1. The observed responses are assumed conditionally independent given 423	

the sequence of hidden states (i.e., correlations between nearby positions are completely 424	

accounted for by the hidden states. This model used log2-transformed insertion numbers as 425	

the observed state. Sites with zero insertions were set to observed state = 0. Each hidden state 426	

defined a (zero-inflated) Poisson regression model, with log2 insertion count as dependent 427	

variable, and the normalised nucleosome density (median of two replicates) and nucleotide 428	

preference score as predictors. Missing data for nucleosome density was set to the median.  429	

The models parameters (initial state probabilities, state-transition probabilities, and the 430	

parameters of the state-dependent zero-inflated Poisson regressions, were estimated by 431	

maximum likelihood using the Expectation-Maximisation (EM) algorithm. Initial state 432	

distributions were all 1/n, where n is the number of states. Initial transition matrix was 0.95 433	

for positions remaining in the same state, and 0.05/(n-1) for all other transitions. Initial 434	

parameter values of the Poisson regressions were obtained by pretraining each state-435	

dependent model on a subset of the data (see below). These initial parameters were used to 436	

start the EM algorithm, the final resulting parameter estimates were determined by maximum 437	
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likelihood. Neither annotations nor transcriptome data were supplied as predictors to the 438	

HMM. Models were fit to the insertion data by the EM algorithm, until convergence of the 439	

likelihood (with a tolerance 1x10-8) or with a maximum of 150 iterations (since log likelihood 440	

fit of models improved little after 150 iterations (supplementary fig. 7).	441	

 442	

Choice of Optimal Model. To select an appropriate number of states and state training data 443	

for our HMM, we used ten ‘test data’ subsets of the genome, each a 100 kb fraction as 444	

follows: Chromosome I, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-445	

3200001, Chromosome II, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-446	

3200001 and Chromosome III, 100001-200001, 1100001-1200001 (test data sets A to J). 447	

These regions avoid the chromosome ends, which have unusual properties, such as a high 448	

frequency of pseudogenes and native Tf1 transposon insertions [5]. 449	

We ran each of the following models on all insertion data from proliferating cells 450	

(split into the ten subsets). These models defined the training data in two ways. Firstly, 451	

‘insertion-quantile’ models, where training data was defined solely by the density of unique 452	

insertions, calculated over 100 nt windows. For example, a 3-state model split the data into 453	

the lower, mid and upper third insertion density for states 1-3. We trialled quantile models 454	

from 2 to 10 states. Secondly, annotation-based models. We trialled 2-, 3-, 4-, and 5-state 455	

models where the training data was derived from current genome annotations. The 2-state 456	

model included coding sequences (S1) and other regions (S2). The 3-state model, coding 457	

sequences of essential genes (S1), coding sequences of non-essential genes (S2), introns, 458	

unannotated regions, and UTRs (S3). The 4-state model, coding sequences of essential genes 459	

(S1), coding sequences of non-essential genes (S2), introns and untranslated regions (S3), and 460	

unannotated regions (S4). It differs from the 3-state model in that it differentiates UTRs and 461	

introns from unannotated regions. The 5-state model is as the 4-state model, except that it 462	
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includes a 5th state that contains sites with the highest 10% of unique insertions/100 nt. The 463	

response for this state was a Poisson distribution rather than zero-inflated Poisson. 464	

Each of these 13 models was fit (with tolerance 1x10-8) to the ten fractions of the 465	

genome. Fitting involved optimising the parameter of states at each position, the transition 466	

state matrix, and the slope, intercept and zero-fraction of the state model. A 5-state annotation 467	

model was chosen as a pragmatic the best fit for running large (million position) data sets. 468	

Comparison of the Bayesian information criterion scores (BIC) for 2-5 states indicated that 469	

increasing states improved the fit (supplementary fig. 8), but higher state models suffered 470	

from increased run times and frequent run failure, and/or highly inconsistent fractions of the 471	

subset data assigned to various states (with some states being absent).  472	

Due to the rounding of log2 insertion counts, sites with 1 or 0 insertions were set to 473	

the same observed state. Rounded log2 of insertions+1 (where sites with 0 insertions have 474	

different value from those with 1) resulted in a worse fit to the model (supplementary fig. 475	

9). 476	

 477	

Fitting of Chromosome-Wide Data. Once the 5-state annotation model (model 5A) was 478	

chosen as a pragmatic best model, it was run on all proliferation libraries, fitting data from 479	

five relatively equal portions of the genome separately, to allow runs in a practical time frame 480	

and memory. These fractions were: chromosome I left half (positions 1-2789566), 481	

chromosome I right half (positions 2789567-5579133), chromosome II left half (positions 1-482	

2269902), chromosome II right half (positions 2269903-4539804), and the entirety of 483	

chromosome III (fractions are between 2.26 Mb and 2.79 Mb). The model produced a state 484	

prediction for each position in the genome, and the posterior probability of each state at each 485	

position. We also fit model 5A to the ageing insertion data (pooled Days 0, 2, 4 and 6) with 486	

the same genome subsets. 487	
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Collectively, the proliferation samples have a higher count of insertions than any of 488	

the pooled ageing libraries (proliferation: 31 million insertions; ageing: 4.6 million 489	

insertions). Since training datasets are based on the within-sample insertion densities for each 490	

HMM fit, this should account for different densities. Nevertheless, to examine whether this 491	

large difference in insertion counts produced radically different fits, we produced a down-492	

sampled dataset from proliferation samples with the same insertions as the ageing sample 493	

average (4.5 million insertions). Overall, 85% of sites in this reduced data set were assigned 494	

the same state as the full proliferation data, and 98% of sites were within one step of the full 495	

data (i.e. full proliferation state +/- 1). 496	

These separate fits to the model resulted in similar distributions of states between 497	

chromosome arms for both the coding regions and introns of essential genes, supporting 498	

consistent convergence of the models between these genome subsets (supplementary fig. 10, 499	

13). To examine whether positions were assigned a consistent state using different subsets of 500	

data, and independent fits of the HMM, we made subsets of proliferation (dense data) and 501	

ageing Day 6 (less dense data) for the central half of chromosome I (positions 1394783-502	

4184350), which overlaps both the left and right halves used previously. These data were fit 503	

to model 5A as before. With dense proliferation data, sites that overlapped the 96.7% of 504	

positions were assigned the same state with either left vs middle, or right vs middle 505	

comparisons. For ageing Day 6 data, 97.1% of overlapping positions were assigned the same 506	

state. States 1-5 were all consistently assigned (e.g. > 99% of state 5 positions were the same 507	

within proliferation data, and similar proportions for all other states). This analysis indicates 508	

that these fractions were sufficiently large to preclude fitting to very different local optima. 509	

HMM code is available in the Figshare project Hermes Transposon Mutagenesis of the 510	

Fission Yeast Genome. 511	

  512	
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Filtering Badly Mapped Sites. To ensure accurate placement of reads, our pipeline filtered 513	

reads mapped with mapping quality ≥30. To avoid the tendency to misinterpret regions that 514	

have few insertions due to the loss of low mapping quality, we analysed only sites that had 515	

retained ≥90% of the reads (lost <10%) over 500 nt windows after mapping quality filtering. 516	

This retained 94.6% of the genome for analysis. After filtering, there was only a weak 517	

negative correlation between the HMM state and the proportion of reads filtered (Pearson r = 518	

-0.049). All data presented included only the sites that had retained ≥90% of the reads after 519	

filtering for Q30 mapping (the ‘mappable genome’). 520	

 521	

Annotation Data. Annotations were from PomBase (ASM294v2, 11/02/2016), including 522	

1538 annotated ncRNAs. 523	

 524	

Transcriptome Analysis. Replicated RNA-Seq data from vegetatively growing, early 525	

stationary and deep stationary cultures were retrieved from the European Nucleotide Archive 526	

(ENA; http://www.ebi.ac.uk/ena) using the following accession numbers (dataset: 527	

PRJEB7403; samples: ERS555567, ERS555607, ERS555570, ERS555612, ERS555571, 528	

ERS555613). [22]. Reads were aligned to the S. pombe genome as described [35]. The 529	

resultant aligned reads were used to compute normalised coverage at the nucleotide level 530	

using the genomecov function in the BEDtools suite [36]. Customised R scripts were used to 531	

define whether a given region is transcribed. 532	

 533	

Comparative Genomics. We used updated genome assemblies of fission yeasts S. 534	

octosporus, S. japonicus, and S. cryophilus [37]. To improve previous full genome 535	

alignments of fission yeast species [38], we incorporated these newly assembled genomes 536	

into an alignment with the S. pombe genome using progressive-cactus [39] (github version 537	
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May 2016), using a guide tree based on Rhind et. al. [38]. We then applied the phyloP 538	

algorithm [40] as implemented in the HAL toolkit [41] to detect constraints. We trained a 539	

neutral model using the four-fold degenerate sites from coding regions from the high-quality 540	

S. pombe annotation. 541	

 542	
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Supplementary Figures 578	
 579	
 580	
 581	

 582	
 583	
Supplementary fig. 1. Percentage of cells with a chromosomal insertion. 584	
For the nine libraries we generated (and others not described here), we show the percentage 585	
of cells with a chromosomal insertion. The proportion was calculated as the number of 586	
colonies present on YES + FOA + G418 plates (chromosomal insertions), divided by the 587	
number of colonies present on YES plates (all cells). 588	
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 592	
 593	
Supplementary fig. 2. The custom Hermes-end primed sequencing strategy. Shows the 594	
end-priming strategy used to sequence Hermes-containing fragments. Initially, genomic DNA 595	
is extracted, sheared, end repaired, and linkers (Linker1-Random10mer and Linker2) ligated 596	
at both terminal ends (1). To enrich for fragments containing the Hermes transposon, DNA 597	
was amplified with using a primer that is complimentary to the Hermes transposon (1-598	
Transposon-4NNNN) (2), and to the linker (Linker1-Amp) (3), to produce fragments that 599	
contain linkers, genomic DNA and the Hermes right terminal inverted repeat (4). A second 600	
PCR attached the multiplex oligonucleotides for Illumina sequencing (5,6), producing the 601	
final product that is sequenced (7). Detailed protocols are available in the Figshare project 602	
Hermes Transposon Mutagenesis of the Fission Yeast Genome. 603	
 604	
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 609	
 610	
Supplementary fig. 3. Properties of insertions in different annotation regions. 611	
Left panel shows average insertion count in coding regions of essential genes, pseudogenes, 612	
other (non-essential) coding regions, introns, canonical non-coding RNAs (snoRNas, tRNAs, 613	
rRNAs, snRNAs), long terminal repeats of transposons,5’ and 3’ untranslated regions, 614	
regions with no annotation and intergenic long non-coding RNAs. Middle panel shows and 615	
average insertion count (all sites, including sites with no insertions) for the same annotation 616	
classes. Right panel shows average insertion density (unique insertion positions/site) for the 617	
same annotations. 618	
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 621	
 622	
Supplementary fig. 4. Insertions in the mitochondrial genome. 623	
Unique insertions per site in the mitochondrial genome showed little difference between 624	
coding and non-coding regions, whereas the nuclear genome showed far fewer insertions in 625	
the coding regions. 626	
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 630	
 631	
Supplementary fig. 5. Relationships between insertion density, nucleosome density and 632	
the insertion motif similarity score. 633	
All plots show relationships with mean insertion count for sites with Hermes insertions (left 634	
panels) or mean insertions/site. In each case, the genome was divided into 100 partitions 635	
according to the measure on the x axis, and the insertion counts or insertion densities were 636	
calculated from these partitions. A) insertion counts plotted against normalised nucleosome 637	
density (nucsome.norm). B) insertion density plotted against normalised nucleosome density. 638	
C) log scale insertion counts plotted against log scale normalised nucleosome density. D) log 639	
scale insertion density plotted against log scale normalised nucleosome density. E) insertion 640	
counts plotted against insertion motif similarity score (IMSS). F) insertion density plotted 641	
against insertion motif similarity score. 642	
 643	
 644	
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 648	
 649	
 650	
Supplementary fig. 6. HMM states strongly depended on insertion density but only 651	
weakly correlated with nucleosome density and nucleotide motif. 652	
Top row; for coding regions we show the relationship between HMM states defined and 653	
insertion density (unique insertions/100 nt) (left panel), normalised nucleosome density 654	
(nsome.norm, middle panel) and the insertion motif similarity score (nt.model, right panel). 655	
Middle row; the same relationships for 5’ and 3’ untranslated regions. Lower row, the same 656	
relationships for regions with no annotations. In all cases Spearman rank correlations are 657	
shown above plots. 658	
 659	
 660	
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 662	
Supplementary fig. 7. Log likelihoods for fits of HMM models improved little after 150 663	
iterations. For sections of chromosomes I, II and III we show the log likelihood of the model 664	
fit to the data with successive iterations of the Viterbi algorithm. Left panels show the entire 665	
range of likelihoods, with red and green dashed lines showing the 95th and 99th percentiles. 666	
Right panels show the upper 5th percentiles. Model fits improved little after 150 iterations. 667	
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 670	
 671	
Supplementary fig. 8. Bayesian information criterion scores (BIC) indicated that the 5-672	
state annotation model was the best fit. For ten 100 kb fractions of the genome (data sets A 673	
– J), we show the BIC scores for model fitting with the depmixS4 package [42,43]. Red 674	
points show the annotation-based models from 2-5 states (see methods for state definitions). 675	
Black points show the quantile models, where training data is defined based on insertion 676	
density quantiles (unique insertions/100 nt). For example a three-state model used the first 677	
third of insertion-dense data to train S1, the second third to train S2, etc. The five-state model 678	
which was used for this analysis was trained on coding sequences of essential genes (S1), 679	
coding sequences of non-essential genes (S2), introns and untranslated regions (S3), and 680	
unannotated regions (S4), and sites with the highest 10% of unique insertions/100 nt (S5). 681	
The ten ‘test data’ subsets of the genome, each a 100 kb fraction as are follows: Chromosome 682	
I, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-3200001, Chromosome 683	
II, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-3200001 and 684	
Chromosome III, 100001-200001, 1100001-1200001 (test data sets A to J). 685	
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 687	
 688	
Supplementary fig. 9. Excluding singleton insertions produced better model fits. 689	
HMM code used log2 of insertion counts (rounded to the nearest integer). Since log2(1) is 690	
zero, this treats sites with one insertion the same as sites with no insertions. Trails of the 691	
HMM code that used log2(insertions+1), where sites with 0 insertions have different value 692	
from those with 1, resulted in a worse fit to the model. For two of the test data sets (A, J), we 693	
show the BIC for models fitted with log2(insertions) and log2(insertions+1). 694	
 695	
 696	
 697	

 698	
 699	
Supplementary fig. 10. Separate fits to the model with different data resulted in similar 700	
distributions of states. Model fitting was performed on five subsets of the data; IL (left arm 701	
of chromosome I), IR (right arm of chromosome I), IIL (left arm of chromosome II), IIR 702	
(right arm of chromosome II), and III (all of chromosome III). The left panel shows the 703	
proportion of essential coding regions for each subset that were assigned to states 1-5, 704	
according to the key. Most were assigned to state 1 or 2. The right panel shows the –log10 of 705	
the proportion, which indicates that the less frequent states are also similarly distributed 706	
between subset model fits, supporting consistent convergence of the model between these 707	
genome subsets. 708	
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