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ABSTRACT 13 

Multi-omics datasets quantify complementary aspects of molecular biology and thus pose 14 

challenges to data interpretation and hypothesis generation. ActivePathways is an 15 

integrative method that discovers significantly enriched pathways across multiple omics 16 

datasets using a statistical data fusion approach, rationalizes contributing evidence and 17 

highlights associated genes. We demonstrate its utility by analyzing coding and non-18 

coding mutations from 2,583 whole cancer genomes, revealing frequently mutated 19 

hallmark pathways and a long tail of known and putative cancer driver genes. We also 20 

studied prognostic molecular pathways in breast cancer subtypes by integrating genomic 21 

and transcriptomic features of tumors and tumor-adjacent cells and found significant 22 

associations with immune response processes and anti-apoptotic signaling pathways. 23 

ActivePathways is a versatile method that improves systems-level understanding of 24 

cellular organization in health and disease through integration of multiple molecular 25 

datasets and pathway annotations.   26 
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Introduction 27 

Pathway enrichment analysis is an essential step for interpreting high-throughput (omics) data 28 

that uses current knowledge of genes and biological processes. A common application 29 

determines statistical enrichment of molecular pathways, biological processes and other 30 

functional annotations in long lists of candidate genes1,2. Genomic, transcriptomic, proteomic and 31 

epigenomic experiments emphasize distinct and complementary aspects of underlying biology 32 

and are best analyzed integratively, as is now routinely done in large-scale projects such as The 33 

Cancer Genome Atlas (TCGA)3, Clinical Proteome Tumor Analysis Consortium (CPTAC), 34 

International Cancer Genome Consortium (ICGC)4, Genotype-Tissue Expression (GTEx)5 and 35 

others. Thus, simultaneous analysis of multiple candidate gene lists for characteristic pathways 36 

is increasingly needed. Numerous approaches are available for interpreting single gene lists. For 37 

example, the GSEA algorithm can detect up- and down-regulated pathways in gene expression 38 

datasets6. Web-based methods such as Panther7, ToppCluster8 and g:Profiler9 detect significantly 39 

enriched pathways amongst ranked or unranked gene lists and are generally applicable to genes 40 

and proteins from various analyses. Some approaches allow analysis of multiple input gene lists 41 

however these primarily rely on visualization rather than data integration to evaluate the 42 

contribution of distinct gene lists towards each detected pathway8,9. Finally, no methods are 43 

available for unified pathway analysis of coding and non-coding mutations from whole-genome 44 

sequencing (WGS) data, or integrating these with other types of DNA aberrations such as copy 45 

number changes and balanced genomic rearrangements. We report the development of the 46 

ActivePathways method that uses data fusion techniques to address the challenge of integrative 47 

pathway analysis of multi-omics data. We demonstrate the method by analyzing known and 48 

candidate cancer driver genes with coding and non-coding somatic mutations in 2,583 whole 49 

cancer genomes of the ICGC-TCGA PCAWG project10,11, prognostic pathways in breast cancer 50 

subtypes, and regulatory networks of tissue transcriptomes using the GTEx5 compendium.  51 

Characterization of genes and somatic mutations that drive oncogenesis is a central goal of 52 

cancer genomics research. Cancer genomes are characterized by few frequently mutated pan-53 

cancer drivers such as TP53, less-frequent drivers with primarily tissue-specific effects and 54 

numerous infrequently mutated genes often referred to as the long tail.  The majority of currently 55 

known driver mutations affect protein-coding sequence12 and only few high-confidence non-56 

coding drivers have been found, such as the mutation hotspots in the TERT promoter13. Discovery 57 

of non-coding driver mutations is a major goal of large cancer whole genome sequencing efforts 58 

such as PCAWG10,11. Pathway and network analysis of cancer mutations is a powerful approach 59 
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that uses knowledge of coding driver genes and their pathway annotations as priors to assist in 60 

detection of weak driver variants including those in the non-coding genome1. The PCAWG project 61 

has produced a consensus dataset of predicted protein-coding driver genes (CDS) and non-62 

coding regions of 5’ and 3’ untranslated elements (UTRs), promoters and enhancers of protein-63 

coding genes across 2,583 whole cancer genomes of multiple cancer types14. Driver gene p-64 

values in the dataset reflect the frequency and functional impact of somatic single nucleotide 65 

variants (SNVs) and small insertions-deletions (indels) in these protein-coding and non-coding 66 

genomic regions. Here we used our ActivePathways method to interpret these driver predictions 67 

with pathway information including biological processes of Gene Ontology15 and molecular 68 

pathways defined by Reactome16. Two further case studies focused on prognostic molecular 69 

pathways of breast cancer through integration of genomic and transcriptional alterations, and 70 

gene regulatory networks associated with organ growth control in healthy human tissues.  71 

 72 

Results 73 

Multi-omics pathway enrichment analysis with ActivePathways 74 

ActivePathways is a simple four-step method that extends our earlier work9 (Figure 1). It requires 75 

two input datasets. First, a table of gene p-values contains multiple p-values for every gene 76 

representing different types of evidence such as gene significance in distinct omics experiments. 77 

These could include p-values evaluating the significance of differential gene expression in tissues 78 

of interest, gene essentiality, mutation or copy number alteration burden, and many others. 79 

Second, a collection of gene sets represents molecular pathways, biological processes and other 80 

gene annotations we refer to as pathways. Depending on the hypothesis, pathways may also 81 

include other types of gene sets such as targets of transcription factors or microRNAs. In the first 82 

step of ActivePathways, we derive an integrated gene list that aggregates significance from all 83 

types of evidence for each input gene. The integrated gene list is compiled by fusion of gene 84 

significance from different types of evidence using the Brown’s extension17 of the Fisher’s 85 

combined probability test, which conservatively adjusts for overall correlations of p-values in 86 

estimating the overall significance of every gene. The integrated input gene list is then ranked by 87 

decreasing significance and filtered using a lenient cut-off to capture a long tail of candidate genes 88 

and to filter the bulk of insignificant ones (unadjusted Pgene<0.1). The integrated gene list is 89 

analyzed with a ranked hypergeometric test for each pathway to capture smaller pathways tightly 90 

associated with few top-ranking genes and broader processes with abundant albeit weaker 91 

signals from larger subsets of input genes. The stringent family-wise multiple testing correction 92 
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method by Holm18 is applied across pathways to reduce false positives (Qpathway<0.05). In the third 93 

step, candidate gene lists corresponding to distinct types of evidence are separately evaluated 94 

using the above procedure. This step determines which pathways are significantly supported by 95 

each of the input omics datasets and also reveals corresponding genes in each pathway. 96 

Importantly, the step also highlights pathways that are only found through data integration and 97 

are not apparent in any single type of omics evidence alone. In the fourth step, the method 98 

provides input files for Enrichment Map19 for visualizing and reducing the redundant set of all 99 

detected pathways to a narrower, focused network of biological themes.  100 

 101 

Figure 1: Method overview. (a) ActivePathways requires as input (i) a matrix of gene P-values for different omics 102 
datasets, and (ii) a collection of gene sets corresponding to biological pathways and processes. Gene p-values are 103 
merged and filtered to produce an integrated gene list that combines evidence from omics datasets and is ranked by 104 
decreasing significance with a lenient threshold. (b) Pathway enrichment analysis is conducted on the integrated gene 105 
list as well as lists from individual omics datasets using the ranked hypergeometric test that determines the optimal 106 
level of enrichment in the ranked gene sub-list for every pathway. (c) Pathways enriched in the integrated gene list are 107 
corrected for multiple testing and significant findings are reported as results. Pathways enriched in individual omics 108 
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datasets are labelled by supporting evidence (colored nodes), and pathways only enriched in the integrated gene list 109 
are highlighted separately. Pathway genes with significant signals in different omics data are also shown. Finally, 110 
datasets of enriched pathways provided by ActivePathways are visualized as enrichment maps in Cytoscape where 111 
nodes correspond to pathways and pathways with many shared genes are connected into networks representing 112 
broader biological themes. 113 

 114 

Pathway analysis of coding and non-coding mutations in 2,500 whole cancer genomes  115 

We performed integrative pathway analysis of coding and non-coding driver predictions across 116 

29 cancer patient cohorts of histological tumor types and 18 meta-cohorts combining multiple 117 

types of tumors, with 47 cohorts in total (Supplementary Table 1). ActivePathways found at least 118 

one significantly enriched process or pathway in the majority of these cohorts (42/47 or 89%, 119 

Qpathway<0.05) (Figure 2a). We analyzed the omics evidence supporting predictions of enriched 120 

pathways and found that most cohorts showed enrichments in pathways supported by protein-121 

coding driver scores of genes (37/47 or 79%). This serves as a positive control since the majority 122 

of currently known cancer driver genes have frequent protein-coding mutations.  123 

Non-coding mutations in genes also contributed to the discovery of frequently mutated biological 124 

processes and pathways: 24/47 cohorts (51%) showed significantly enriched pathways that were 125 

apparent when only analyzing non-coding driver scores separately for UTRs, promoters or 126 

enhancers. The majority of cohorts (41/47 or 87%) revealed enriched pathways that were 127 

apparent in the integrated gene list but not in any gene lists ranked by element-specific driver 128 

scores, emphasizing the value of our integrative approach. As expected, cohorts with more patient 129 

tumor samples generated more significantly enriched pathways (Spearman ρ=0.74, P=2.3x10-9; 130 

Supplementary Figure 1), suggesting that larger datasets are better powered to distinguish 131 

rarely mutated genes involved in biological pathways and processes. Discovery of pathways 132 

enriched in non-coding mutations suggests that pathway analysis is an attractive strategy for 133 

illuminating the dark matter of the non-coding cancer genome.  134 
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Figure 2. Pathway enrichment analysis of cancer driver genes with ActivePathways. (a) We analyzed consensus 136 
driver genes with frequent somatic mutations by integrating mutation scores of protein-coding and non-coding 137 
sequences (promoters, enhancers, and untranslated regions) across 47 cohorts of cancer patients with whole genome 138 
sequencing data from tumors. Bar plot shows number of significantly enriched pathways (Q<0.05) stratified by 139 
supporting evidence from driver predictions. The majority of pathways detected by ActivePathways are supported by 140 
protein-coding mutations, as expected (dark green bars), while non-coding mutations (orange, red) reveal additional 141 
pathways. Pathways shown in dark red are found only in the integrated gene list of coding and non-coding mutations 142 
but not in gene lists of individual mutation scores. (b) Enrichment map shows groups of statistically significant pathways 143 
characteristic of mutated genes in the adenocarcinoma cohort of 1,773 tumors. Nodes in the network diagram represent 144 
pathways that are connected with edges if the pathways are similar and share many genes. Groups of similar pathways 145 
were annotated manually. Nodes are colored by supporting evidence from coding and non-coding cancer mutations. 146 
(c) The group of enriched kidney developmental processes is apparent from integrated evidence of coding and non-147 
coding mutations but is not found among coding or non-coding candidate genes separately (indicated with arrow in 148 
enrichment map). (d) P-value heatmap shows driver scores of genes involved in kidney developmental processes 149 
ranked by combined p-values of the integrated gene list (rightmost column). Top genes are expectedly detected as 150 
significantly mutated driver genes in the PCAWG consensus list while additional pathway-derived genes of the long tail 151 
of infrequent mutations are highlighted as well. Genes listed in the Cancer Gene Census (CGC) database are indicated 152 
with @-symbol. (e) Integrated list of adenocarcinoma candidate driver genes used in the pathway enrichment analysis 153 
includes the majority of driver genes detected in the gene-focused consensus analysis by PCAWG (orange asterisks) 154 
and a long tail of infrequently mutated genes ranked by decreasing significance. Additional known cancer genes 155 
detected in the pathway analysis are indicated with green dots and occur more frequently than expected from chance 156 
alone. (f) Comparison of ActivePathways with six additional pathway and network analysis methods used in the 157 
PCAWG project. ActivePathways best recovers the consensus lists of pathway-implicated driver (PID) genes with 158 
coding and non-coding mutations. The consensus lists are shown in the leftmost bars of the plot and have been 159 
compiled through a majority vote of the seven methods in the PCAWG pathway and network analysis working group. 160 

We studied the adenocarcinoma meta-cohort with 1,773 samples of 16 tumor types whose 161 

integrated list of 432 candidate genes (unadjusted Pgene<0.1) associated with 526 significantly 162 

enriched pathways (Qpathway<0.05) (Figure 2b). As expected, the majority of pathways were only 163 

supported by genes with frequent coding mutations (328/526 or 62%). However, 101 pathways 164 

were supported by both coding and non-coding gene mutations, 72 were only apparent in the 165 

integrated analysis of all evidence, and 25 were only found among genes with significant non-166 

coding mutations, thus expanding the set of candidate driver mutations in the non-coding cancer 167 

genome and demonstrating the value of integrative pathway analysis.  168 

The major biological themes with frequent protein-coding mutations included hallmark cancer 169 

processes like apoptotic signaling pathway (24 genes; Qpathway=4.3x10-5) and mitotic cell cycle (8 170 

genes; Qpathway=0.0026), and additional biological processes such as chromatin modification and 171 

RNA splicing that are increasingly recognized in cancer biology. Thus, our method captures the 172 

expected cancer pathways among driver genes with protein-coding mutations as positive controls. 173 
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In contrast to these solely protein-coding driver associations, a large group of developmental 174 

processes and signal transduction pathways was enriched in genes with coding as well as non-175 

coding mutations; for example embryo development process was supported by mutations in 176 

exons, 3’UTRs and gene promoters (68 genes; Qpathway=2.9x10-12), while repression of WNT target 177 

genes was only apparent in the integrated analysis of coding and non-coding mutations but not 178 

in either alone (5 genes, Qpathway=0.016; REAC:4641265). Thus, our method evaluates 179 

contribution of omics evidence towards pathway enrichments and finds additional associations 180 

that are not apparent in any provided dataset.  181 

 182 

ActivePathways highlights pathway-associated cancer genes in the long tail of infrequent 183 

non-coding mutations 184 

We focused on a group of processes involved in kidney development that were only detected in 185 

the integrated analysis (Figure 2c-d). ActivePathways found 18 genes involved in these 186 

processes, only five of which were predicted as driver genes in the consensus driver analysis of 187 

the PCAWG project14. Additional known cancer genes included the oncogene MYC with 13 188 

patients with 3’UTR mutations (PUTR3=4.8x10-4; QUTR3=0.42), the transcription factor SMAD3 of 189 

the TGF-β pathway with 14 patients with protein-coding mutations (PCDS=4.0x10-4; QCDS=0.37) 190 

and the growth inhibitory tumor suppressor gene TSC1 with 23 patients with protein-coding 191 

mutations (PCDS=1.4x10-4; QCDS=0.17) as well as candidate cancer genes such as IQGAP1 with 192 

10 patients with promoter mutations (Ppromoter=8.2x10-4; Qpromoter=0.62) that encodes a signaling 193 

protein that regulates cell motility and morphology. The additional genes remained below the 194 

FDR-adjusted significance cut-off in the gene-focused consensus driver analysis, however were 195 

found by ActivePathways due to pathway associations with frequently mutated developmental 196 

genes. These results highlight the potential of our method to find known and candidate cancer 197 

genes with rare coding and non-coding driver mutations through pathway-driven data integration. 198 

We evaluated 333 candidate driver genes from the pathway analysis of the adenocarcinoma 199 

cohort (Figure 2e). These included as positive controls 60/64 significantly mutated genes 200 

identified in the PCAWG consensus driver analysis14, and an additional 47 genes of the COSMIC 201 

Cancer Gene Census database12, significantly more than expected by chance alone (seven 202 

genes expected, Fisher’s exact P=4.0x10-24), including MYC, IDH1, NF1, and BCL9. Additional 203 

genes were detected for several reasons. First, the integrated gene list was filtered using a lenient 204 

statistical cut-off (Pgene<0.1) compared to a more stringent gene-focused driver analysis 205 

(Qgene<0.05). This resulted in 273/333 pathway-associated genes of the long tail that remained 206 
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below the significance threshold in the driver analysis. Second, the integration procedure 207 

combined multiple weaker p-values (coding regions, promoters, UTRs, enhancers) to a single 208 

stronger p-value for 17/333 pathway-associated genes including six cancer genes (HNRNPA2B1, 209 

STAG2, TCF7L2, SUZ12, CLTC, ZNF521) and improved the overall ranking of 220/333 genes 210 

among the input data, better explaining their membership in pathways and processes. However, 211 

a majority of all genes showed reduced significance after the integration procedure and were 212 

excluded from the pathway analysis, as the Brown combined p-value remained below the 213 

significance cut-off compared to any individual p-values of mutations in coding and non-coding 214 

regions of genes (3,112/3,543 or 88% genes with unadjusted min(Pgene)<0.1 showed unadjusted 215 

Brown Pgene>0.1). Fourth, the evidence evaluation step of the method identified pathway 216 

enrichments in gene lists ranked by individual sources of evidence and highlighted additional 217 

genes that did not pass significance cut-offs of the integration procedure. Thus, ActivePathways 218 

finds additional cancer genes in the long tail of mutations that are highlighted due to their pathway 219 

associations but remain below the significance cut-off in the gene-by-gene analysis. 220 

 221 

Benchmarking demonstrates the robustness and sensitivity of ActivePathways 222 

We carefully benchmarked ActivePathways using multiple approaches. First, we compared its 223 

performance with six diverse methods used in the PCAWG pathway and network analysis working 224 

group20 (Hierarchical HotNet21,22, SSA−ME23, NBDI24, induced subnetwork analysis22, 225 

CanIsoNet[Kahraman et al, in prep], and hypergeometric test). The methods used molecular pathway and 226 

network information to analyze the PCAWG dataset of predicted cancer driver genes14, and a 227 

subsequent consensus procedure derived pathway-implicated driver (PID) gene lists with coding 228 

(PID-C) and non-coding (PID-N) mutations based on a majority vote. Our method recovered PID-229 

C and PID-N gene lists with the highest accuracy: 100% of coding driver genes (87/87) and 85% 230 

of non-coding candidates (79/93) were detected (Figure 2f).  231 

We evaluated the robustness of ActivePathways to parameter variations and missing data. We 232 

varied the parameter Pgene that determines the ranked gene lists used in the pathway enrichment 233 

analysis (default threshold Pgene<0.1). The majority of cohorts (40/47 or 85%) retrieved 234 

significantly enriched pathways even with a considerably more stringent threshold (Pgene<0.001), 235 

however 67% fewer pathways were found compared to the default threshold in the median cohort 236 

(Supplementary Figure 2). We then evaluated the robustness of ActivePathways to missing data 237 

by randomly removing subsets of driver scores from the initial dataset. Even when removing 50% 238 

of gene driver scores with P<0.001, the majority of cohorts (37/47 or 79%) were found to have at 239 
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least one significantly enriched pathway however 66% fewer pathways were found on average 240 

(Supplementary Figure 3).  241 

We tested ActivePathways with data simulations through 1,000 datasets for each of 47 patient 242 

cohorts and found no significant pathways in 92% of simulations (Supplementary Figure 4). 243 

Simulated data were obtained by randomly reassigning driver scores to different genomic 244 

elements, a conservative approach that disrupts gene and pathway annotations while retaining 245 

strong scores in the data. The median family-wise false discovery rate across cohorts (7.2%) 246 

slightly exceeded the applied multiple testing correction (Q<0.05). Higher rates were observed in 247 

cohorts including melanoma tumors, potentially due to abundant promoter mutations caused by 248 

impaired nucleotide excision repair in protein-bound genomic regions25. We evaluated quantile-249 

quantile (QQ) plots of pathway-based p-values from ActivePathways and found that p-values from 250 

observed gene scores often deviated from the expected uniform distribution and appeared 251 

statistically inflated (Supplementary Figure 5). However, p-values derived from simulated gene 252 

scores showed no inflation in our simulations. Anticipating that the strongest cancer driver scores 253 

associate with protein-coding sequence, we studied datasets with simulated protein-coding gene 254 

scores and true non-coding scores. As expected, these partially simulated datasets expectedly 255 

showed less p-value inflation, suggesting that highly significant known cancer genes involved in 256 

many different pathways are responsible for inflation. Statistical testing of highly redundant 257 

pathways and processes violates the independence assumption of statistical tests and multiple 258 

testing procedures, a known caveat of pathway enrichment analysis1,2, which likely explains the 259 

observed distribution of significance values of our method.  260 

Collectively, these benchmarks show that ActivePathways is a sensitive and robust method for 261 

detecting significantly enriched pathways and processes through integrative analysis of 262 

multivariate omics data.  263 

 264 

Clinical analysis of genomic and transcriptional alterations of breast cancer subtypes 265 

reveals prognostic value of apoptotic, immune response and ribosomal genes 266 

To demonstrate an integrative analysis of patient clinical information with multiple types of omics 267 

data , we then studied the pathways and processes associated with patient prognosis in breast 268 

cancer. We leveraged the METABRIC dataset26 using 1,780 breast cancer samples drawn from 269 

all four subtypes (HER2-enriched, basal-like, luminal-A, luminal-B) and evaluated all genes using 270 

three types of prognostic evidence. Gene expression profiles were deconvolved as mRNA 271 
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abundance levels in tumor cells (TC) and tumor-adjacent cells (TAC) using the ISOpure 272 

algorithm27 and associated with these data with patient survival using median dichotomization and 273 

log-rank tests. Gene copy number alterations (CNA) were included as the third type of evidence 274 

and associated with patient survival using log-rank tests.  275 

ActivePathways highlighted 192 significantly enriched GO biological processes and Reactome 276 

pathways across the four subtypes, of which nine were enriched in multiple subtypes and 33 were 277 

only apparent through the integrative pathway analysis but not in any omics evidence alone. 278 

Enrichment maps of significant results revealed immune response, apoptosis, ribosome 279 

biogenesis and chromosome segregation as the major groups of prognosis-associated pathways 280 

(Figure 3a).  281 

Immune activity was associated with prognostic genes in basal-like and HER2-enriched breast 282 

cancers with significant enrichment of GO processes such as immune system development 283 

(Qbasal=3.0x10-4, 113 genes; QHER2=0.035, 61 genes) and lymphocyte differentiation 284 

(QHER2=6.8x10-4, 46 genes; Qbasal=8.4x10-4, 45 genes). The majority of genes of immune system 285 

development were associated with improved patient prognosis upon increased gene expression 286 

in tumor cells or tumor-adjacent cells, comprising 50/61 genes in the HER2-enriched subtype and 287 

78/113 genes in the basal subtype (Figure 3b). Interestingly, only a minority of these genes (10) 288 

were significant in both of the two subtypes, suggesting different modes of immune activity in 289 

subtypes and emphasizing the power of our pathway-based approach. Basal-like breast cancers 290 

were associated with additional 67 terms involving immune response and blood cells, however 291 

no immune related terms were enriched for luminal subtypes of breast cancers. Prognostic 292 

features of immune-related genes in HER2-enriched and basal-like breast cancers are well 293 

known28,29. Our pathway-based findings indicate that immune activity in breast tumor cells and in 294 

the surrounding microenvironment negatively affect tumor progression and benefits the patient. 295 

Apoptosis was associated with patient prognosis in HER2-enriched and luminal-A breast cancers 296 

through enriched GO processes such as negative regulation of apoptotic process (QHER2=0.030, 297 

122 genes; QluminalA=0.015, 228 genes) and programmed cell death (QHER2= 0.015, 125 genes; 298 

QluminalA= 0.016, 231 genes) (Figure 3c). Anti-apoptotic pathways were only detected in the 299 

integrative analysis and not in genomic and transcriptomic gene signatures separately. Among 300 

the genes negatively regulating apoptosis, DUSP1 provided the strongest prognostic signal in 301 

HER2-enriched breast cancers. This was apparent in the molecular stratification of samples by 302 

mRNA of tumor cells (log-rank PTC=0.019, HR=1.5) and tumor-adjacent cells (PTAC=8.3x10-4, 303 

HR=1.83) as well as gene copy number amplifications (PCNA=9.8x10-4, HR=2.8) (Figure 3d). 304 
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DUSP1 encodes a phosphatase signaling protein of the MAPK pathway that is over-expressed in 305 

malignant breast cancer cells and inhibits apoptotic signaling31. HER2 over-expression is known 306 

to suppress apoptosis in breast cancer30. Anti-apoptotic signaling is a hallmark of cancer and 307 

expectedly associated with worse patient prognosis.  308 

ActivePathways also identified prognostic pathway associations in single subtypes of breast 309 

cancer. For example, the prognostic genes for luminal-B subtype were enriched for chromosome 310 

segregation (QluminalB=0.017, 41 genes) and related biological processes of GO. In agreement with 311 

this finding, problems with chromosome segregation have been associated with worse outcome 312 

in breast cancer32. As another example, luminal-A breast cancers were associated with prognosis 313 

in ribosomal and RNA processing genes, such as ribosome biogenesis (QluminalA=6.9x10-10, 60 314 

genes), and rRNA metabolic process (QluminalA=1.8x10-13, 64 genes). Although not described 315 

specifically in the luminal-A subtype, ribosomal mRNA abundance has been shown to be 316 

prognostic in breast cancer as a marker of cell proliferation33,34. In summary, ActivePathways can 317 

be used for integrating clinical data with multi-omics information of molecular alterations. Such 318 

analyses can provide leads for functional studies and biomarker development.  319 
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 320 

Figure 3. Prognosis-associated pathways in four molecular subtypes of breast cancer. (a) Enrichment maps of 321 
prognostic pathways and processes were found in an integrative analysis of mRNA abundance in tumor cells (TC), 322 
tumor-adjacent cells (TAC) and gene copy number alterations (CNA). Multi-colored nodes indicate pathways that were 323 
prognostic according to several types of molecular evidence. Blue nodes indicate pathways that were only apparent 324 
through merging of molecular signals. (b) Hazard ratios (HR) of prognostic genes of immune system development in 325 
basal and HER2-enriched subtypes of breast cancer. Strongest HR of TC, TAC is shown. Genes commonly found in 326 
basal and HER2-enriched tumors are shown. (c) Heatmap shows genes and corresponding p-values of the GO process 327 
“negative regulation of apoptotic process” found as prognostic in HER2-enriched breast cancer. Top row of the heatmap 328 
shows Brown p-values of merged evidence. (d) Kaplan-Meier plots show the strongest prognostic signal of the above 329 
apoptotic process associated with the DUSP1 encoding a protein phosphatase. DUSP1 significantly associates with 330 
reduced patient survival through increased tumor-adjacent mRNA level (left), increased tumor mRNA level (center) and 331 
gene copy number amplification (right). Known cancer genes are shown in boldface letters. 332 
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Co-expression analysis of Hippo master regulators across 54 human tissues recovers 333 

associated biological processes and genes 334 

To study the use of ActivePathways in the context of healthy human tissues, we analyzed the 335 

dataset of 11,688 transcriptomes of 54 tissues from the GTEx project5, focusing on the Hippo 336 

signaling pathway involved in organ size control, tissue homeostasis and cancer35,36. We studied 337 

gene co-expression networks downstream of YAP and TAZ, the two master transcription factors 338 

of Hippo signaling, encoded by YAP1 and WWTR1. YAP and TAZ are the evolutionarily 339 

conserved key effectors of the Hippo signaling in mammals. Inhibition of YAP/TAZ-mediated 340 

transcription regulates organ size control and tissue homeostasis in response to a wide range of 341 

intracellular and extracellular signals including cell-cell interactions, cell polarity, mechanical cues, 342 

ligands of G-protein-coupled receptors, and cellular energy status. We retrieved 2,117 putative 343 

Hippo transcriptional target genes that showed significant positive co-expression with either or 344 

both of the transcripts of YAP and TAZ across the human tissues in the GTEx dataset 345 

(Qgene<0.05). We used a robust rank aggregation method37 and retrieved transcriptional targets 346 

that were co-expressed with YAP or TAZ in a relatively large number of human tissues.  347 

Analysis of the target genes using ActivePathways resulted in 101 significantly enriched pathways 348 

(Qpathway<0.05), including 39 supported by both sets of target genes, 37 supported by YAP1 349 

targets, 18 supported by TAZ targets, and seven only apparent in the integrated list of target 350 

genes (Figure 4). The major biological themes of pathways and processes included regulation of 351 

cell polarity and cell junction, embryonic development, EGFR signaling, maintenance of stem cell 352 

population, actin cytoskeleton, and rho GTPase signaling that are all directly or indirectly related 353 

to Hippo signaling. We validated our analysis using 207 Hippo-related genes from review 354 

papers35,36 and confirmed that 83/101 pathways found by ActivePathways contained at least one 355 

of 59 Hippo-related genes, while 41 pathways were significantly enriched in Hippo-related genes 356 

(Q<0.05). However, the majority of genes documented in the literature (148/207) were not 357 

detected in the pathway analysis, potentially due to their post-transcriptional regulation or tissue-358 

specific roles. Our analysis highlights known and candidate genes and pathways related to Hippo 359 

signaling and showcases the use of ActivePathways for functional analysis of transcription 360 

regulatory networks. 361 
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 362 

Figure 4. Pathway enrichment analysis of Hippo co-expression targets across human tissues. Enrichment map 363 
of pathways characteristic of genes co-expressed with transcription factors YAP and TAZ of the Hippo pathway across 364 
human tissues in the GTEx dataset. The Hippo pathway is involved in organ growth control and its predicted target 365 
genes are enriched in related biological processes and pathways. Nodes represent significantly enriched pathways that 366 
are colored by supporting evidence from co-expression targets of YAP or TAZ (red, blue), both transcription factors 367 
(green) or only the integrated list of target genes (yellow). We validated the detected pathways using a list of Hippo-368 
related genes compiled from recent review papers and found that the majority of detected pathways included Hippo-369 
related genes and 40% of pathways were enriched in these genes (indicated with dotted circles, enrichment p-values 370 
shown in nodes). 371 

 372 

Discussion 373 

Integrative pathway enrichment analysis helps distill thousands of high-throughput measurements 374 

to a smaller number of pathways and biological themes that are most characteristic of the 375 

experimental data, ideally leading to mechanistic insights and novel candidate genes for follow-376 

up studies. The primary advantage of our method is the fusion of gene significance across multiple 377 
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omics datasets. This allows us to identify additional pathways and processes that are not apparent 378 

individually in any analyzed dataset. In our example of cancer driver discovery, pathway analysis 379 

is complementary to gene-focused driver discovery as it also focuses on sub-significant genes 380 

with coding and non-coding mutations clustered into known and novel biological processes of 381 

cancer. In the clinical analysis of breast cancer subtypes, we find prognostic genes and pathways 382 

active in tumor cells, the microenvironment, or both. A subset of these findings, such as anti-383 

apoptotic signaling, is only apparent through data integration.  384 

Our general pathway analysis strategy is applicable to diverse kinds of omics datasets where 385 

well-calibrated p-values are available for the entire set of genes or proteins. One may study a 386 

series of genomic, transcriptomic, or proteomic experiments or combine these into a multi-omics 387 

analysis. Data from epigenomic experiments and genome-wide association studies can be 388 

analyzed after genome-wide signals have been appropriately mapped to genes. Clinical and 389 

phenotypic information of patients can be also included through association and survival statistics. 390 

Our method is expected to work with unadjusted as well as multiple-testing adjusted p-values, 391 

however it is primarily intended for un-adjusted p-values for increased sensitivity. P-value 392 

adjustment for multiple testing is conducted at the pathway level rather than at a gene level. P-393 

values from omics datasets are easier to interpret than raw signals as gene-based p-values are 394 

expected to account for experimental and computational biases specific to each analyzed dataset, 395 

while accounting for multi-omics factors comprehensively in a single generally applicable 396 

pathway-based model would be likely impossible. In our example of cancer driver discovery, 397 

appropriately computed p-values account for confounding factors of somatic mutations such as 398 

gene sequence length and nucleotide content, mutation signatures active in different types of 399 

tumors38 and biological cofactors of mutation frequency such as transcription and replication 400 

timing39, while pathway analysis of mutation counts or frequencies would maintain such biases in 401 

results.  402 

Our analysis comes with important caveats. First, we only evaluate genes annotated in pathway 403 

databases that have variable coverage, rely on frequent data updates40 and may miss novel 404 

sparsely annotated candidate genes. The most general pathway enrichment analysis considers 405 

biological processes and molecular pathways however many kinds of gene sets available in 406 

resources such as MSigDB41 can be used to expand the scope of ActivePathways. Second, 407 

pathway information is highly redundant and analysis of rich omics datasets often results in many 408 

significant results reflecting the same underlying pathway. We address this redundancy by 409 

visualizing and summarizing pathway results as enrichment maps2,19 that help distill general 410 
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biological themes comprised of multiple similar pathways and processes. Statistical inflation of 411 

results accompanied by biological redundancy is addressed by a stringent multiple testing 412 

correction. Third, the analysis treats pathways as gene sets and does not consider their 413 

interactions. This expands the scope of our analysis to a wider repertoire of pathways and 414 

processes as reliable mechanistic interactions are often context-specific and limited to a small 415 

subset of well-studied signaling pathways. Several methods such as HotNet21, PARADIGM42 and 416 

GeneMania43 model pathways and omics datasets through gene and protein interactions.  417 

Translation of discoveries into improved human health through actionable mechanistic insights, 418 

biomarkers, and molecular therapies is a long-standing goal of biomedical research. Next-419 

generation projects such as ICGC-ARGO (https://www.icgcargo.org/) aim to collect multi-omics 420 

datasets with detailed clinical profiles of patients and thus present novel challenges for pathway 421 

and network analysis techniques. In summary, ActivePathways is integrative pathway analysis 422 

method that improves systems-level understanding of cellular organization in health and disease.  423 

Methods 424 

Integrated and evidence-based gene lists. The main input of ActivePathways is a matrix of p-425 

values where rows include all genes of a genome and columns correspond to omics datasets. To 426 

interpret multiple omics datasets, a combined p-value was computed for each gene using a data 427 

fusion approach, resulting in an integrated gene list. The integrated gene list was computed gene-428 

by-gene by merging all p-values of a given gene into one combined p-value using the Brown’s 429 

extension17 of the Fisher’s combined probability test that accounts for overall co-variations of p-430 

values from different sources of evidence. The integrated gene list of Brown p-values was ranked 431 

in order of decreasing significance and filtered using a lenient threshold of unadjusted P<0.1. 432 

Evidence-based gene lists representing different omics datasets were based on ranked P-values 433 

from individual columns of the input matrix, using the same significance threshold. 434 

Statistical enrichment of pathways. Statistical enrichment of pathways in significance-ranked 435 

lists of candidate genes was carried out with the ranked hypergeometric test. The test considered 436 

one pathway gene set at a time and analyzed increasing subsets of input genes from the top of 437 

the ranked gene list. The same procedure was used for integrated and evidence-based gene lists. 438 

At each iteration, the test computed the hypergeometric enrichment statistic and P-value for the 439 

set of genes shared by the pathway and top sub-list of the input gene list. For optimal processing 440 

speed, only gene lists ending with a pathway-related gene were considered as these most impact 441 

significance of enrichment. The ranked hypergeometric statistic selected the input gene sub-list 442 
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that achieved the strongest enrichment and the smallest p-value as the final result for the given 443 

pathway, as  444 

 445 

where Ppathway stands for the hypergeometric P-value of the pathway enrichment at the optimal 446 

sub-list of the significance-ranked candidate genes, G represents the length of the optimal sub-447 

list, i.e. the number of top genes from the input gene list, N is the number of protein-coding genes 448 

with annotations in the pathway database, i.e., in Gene Ontology and Reactome, K is the total 449 

number of genes in a given pathway, n is the number of genes in a given gene sub-list considered, 450 

and k is the number of pathway genes in the considered sub-list. For a conservative estimate of 451 

pathway enrichment, we considered as background N the universe of genes contained in pathway 452 

databases and ontologies rather than the complete repertoire of protein-coding genes. To obtain 453 

candidate genes involved in the pathway of interest, we intersected pathway genes with the 454 

optimal sub-list of candidate genes. The ranked hypergeometric p-value was computed for all 455 

pathways and resulting p-values were corrected for multiple testing using the conservative Holm-456 

Bonferroni family-wise error rate (FWER) method18. Significant pathways were reported (Q<0.05).  457 

Evaluating omics evidence of enriched pathways. The integrated gene list was analyzed the 458 

using ranked hypergeometric test and enriched pathways were reported as results. Each 459 

evidence-based gene list representing an omics dataset was also analyzed for enriched pathways 460 

with the ranked hypergeometric test. Pathways found in the integrated gene list were labelled for 461 

supporting evidence if they were also found as significant in any evidence-based gene list. A 462 

pathway was considered to be found only through data integration and labelled as combined-only 463 

if it was identified as enriched in the integrated gene list but was not identified as enriched in any 464 

of the evidence-based gene lists at equivalent significance cutoffs (Q<0.05). Each detected 465 

pathway was additionally annotated with pathway genes apparent in the optimal sub-list of 466 

candidate genes, separately for the integrated gene list and each evidence-based gene list.  467 

Gene scores of cancer mutations. We analyzed p-values of genes reflecting their statistical 468 

significance as candidate cancer drivers for multiple cohorts of cancer patients with whole 469 

genome sequencing data. The scores were compiled in the driver discovery analysis of the 470 

PCAWG project as a consensus of multiple independent methods14. The input matrix of gene 471 

scores (P-values) included all protein-coding genes as rows and their genomic elements as 472 

columns (exons, 5’ and 3’ untranslated regions (UTRs), promoters, enhancers). Elements with 473 

missing p-values were assigned P=1. Genes with multiple enhancers were assigned the score of 474 
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the most significant enhancer, and enhancers with more than five associated genes were 475 

excluded prior to selection.  476 

Pathways and processes. We used gene sets corresponding to biological processes of Gene 477 

Ontology15 and molecular pathways of the Reactome database16 downloaded from the g:Profiler 478 

web server9. Large general gene sets with more than a thousand genes and small specific gene 479 

sets with less than five genes were excluded.  480 

Enrichment map visualization. ActivePathways provides input files for the EnrichmentMap 481 

app19 of Cytoscape45 for network visualization of similar pathways and their coloring according to 482 

supporting omics evidence. Enrichment maps for adenocarcinoma driver mutations, breast 483 

cancer prognostics, and Hippo transcriptional networks were visualized with stringent pathway 484 

similarity scores (Jaccard and overlap combined coefficient 0.6) and manually curated for the 485 

most representative groups of similar pathways and processes. Singleton pathways that were 486 

redundant with larger groups of pathways were discarded. Coloring of pathways in the 487 

adenocarcinoma enrichment map was rearranged by merging colors of pathways supported by 488 

non-coding mutation scores of promoters, enhancers and/or UTRs into one group.  489 

Analysis of coding and non-coding mutations of the PCAWG pan-cancer dataset. We used 490 

ActivePathways to analyze driver predictions of coding and non-coding mutations across >2,500 491 

whole cancer genomes of the ICGC-TCGA PCAWG Project. P-values of driver predictions were 492 

computed separately for protein-coding sequences, promoters, enhancers and untranslated 493 

regions (UTR3, UTR5) in the PCAWG driver discovery study by Rheinbay et al14 across multiple 494 

subsets of samples representing histological tumor types and pan-cancer cohorts. We used gene-495 

enhancer mapping predictions provided by PCAWG, excluded enhancers with more than five 496 

target genes, and selected the most significant enhancer for each gene, if any. Unadjusted p-497 

values for coding sequences, promoters, enhancers and UTRs were compiled as input matrices 498 

and analyzed as described above. Missing p-values were interpreted as ones. Results from 499 

ActivePathways were validated with two lists of cancer genes. Predicted drivers from the gene-500 

focused PCAWG driver analysis14 were selected as statistically significant findings (Q<0.05) 501 

following a stringent multiple testing correction spanning all types of elements (exons, UTRs, 502 

promoter, enhancers). The curated list of known cancer genes was retrieved from the COSMIC 503 

Cancer Gene Census (CGC) database12. One-tailed Fisher’s exact tests were used to estimate 504 

enrichment of these genes using all protein-coding genes as background. 505 

Analysis of prognostic genes in breast cancer. ActivePathways was used to evaluate 506 

prognostic pathways in breast cancer using multiple types of omics data. mRNA gene expression 507 
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data and gene copy number alteration (CNA) data of the were derived from the METABRIC cohort 508 

of 1,991 patients with a single primary fresh frozen breast cancer specimen each26. Curtis et al26 509 

classified the patients into the intrinsic breast cancer subtypes using the PAM50 mRNA-based 510 

classifier44 resulting in 330 basal-like breast cancers, 238 HER2-enriched breast cancers, 721 511 

luminal-A breast cancers, 491 luminal-B breast cancers. Using these data, we computationally 512 

deconvolved tumor cell (TC) mRNA and tumor adjacent cell (TAC) mRNA abundance levels from 513 

the bulk profiled specimens. TC mRNA was deconvolved using ISOpure27 run on MATLAB 514 

release 2010b. TAC mRNA was computed using the ISOpure.calculate.tac function from the R 515 

package ISOpureR v1.1.2. ISOpure was run independently for each breast cancer subtype. The 516 

mRNA univariate survival analysis was conducted as follows. For each gene, patients were 517 

dichotomized based on mRNA abundance. Dichotomization was either based on the median 518 

mRNA abundance for that gene or a fixed value of 6.5. Based on the mRNA abundance 519 

distribution of genes on the Y chromosome in female samples, 6.5 was estimated as the threshold 520 

for noise for non-expressed genes. Median dichotomization was used if the median was above 521 

6.5 or if there were no events in one of the groups when dichotomizing based on 6.5. The high 522 

and low mRNA abundance groups were compared by univariate log-rank tests for overall survival. 523 

TC and TAC mRNA abundance were evaluated independently. Survival modelling was performed 524 

in the R statistical environment (v3.4.3) using the survival package (v2.42-3). The CNA univariate 525 

survival analysis was conducted as follows. For each gene, we assessed whether more gains or 526 

losses were apparent. The copy number status with a higher count was subsequently used to 527 

separate patients into two groups: those with the chosen copy number status and the remaining 528 

patients. The two groups were then used for overall survival modelling with log-rank tests in the 529 

R statistical environment (v3.4.3) using the survival package (v2.42-3). 530 

Co-expression analysis of GTEx transcriptomes. The RNAseq dataset of human tissues was 531 

downloaded from GTEx v7 data portal (https://www.gtexportal.org/home/). The dataset included 532 

transcript abundance values of 21,518 protein-coding genes in 11,688 samples across 54 tissues. 533 

Tissues with less than 25 available samples and low gene expression (mean TPM<1.0) were 534 

excluded from further analysis. Positive pairwise Pearson correlations of gene expression values 535 

of YAP and TAZ (symbols YAP1, WWTR1) and their putative target genes were investigated in 536 

individual tissues and ranked by statistical significance of correlation tests. Tissue-specific ranked 537 

correlations of target genes were then integrated into two master lists of target genes of YAP and 538 

TAZ, respectively, reflecting target genes that were consistently positively co-regulated with 539 

corresponding transcripts across a significant subset of considered human tissues. We used the 540 

robust rank aggregation (RRA) method developed by Kolde et al37 and filtered co-expressed 541 
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genes by significance using the default parameters of RRA (Qgene<0.05). Significantly enriched 542 

pathways among the putative target genes of YAP and TAZ were detected using ActivePathways. 543 

We validated the pathways by investigating their agreement with known Hippo-related genes from 544 

recent review papers35,36. We tested each pathway for enrichment of literature-derived Hippo 545 

genes using Fisher’s exact tests and filtered significant findings after multiple testing correction 546 

(Q<0.05).  547 

Method benchmarking. We benchmarked ActivePathways using multiple approaches, including 548 

simulated datasets, parameter variations, and partial replacement of strong scores with missing 549 

values. Benchmarking was carried out with the PCAWG dataset of coding and non-coding cancer 550 

driver predictions. To evaluate false discovery rates of ActivePathways, we created simulated 551 

datasets by randomly reassigning all observed driver scores to random genes and genomic 552 

elements. Simulations were conducted separately for different tumor cohorts. One thousand 553 

simulated datasets were analyzed with ActivePathways and those with at least one significantly 554 

detected pathway counted towards false discovery rates. Additional simulations maintained the 555 

positions of non-coding driver scores among gene scores and randomly reassigned protein-556 

coding driver scores, expectedly leading to a reduction in detected pathways as the input datasets 557 

primarily included strong scores in protein-coding gene regions. Quantile-quantile analysis and 558 

QQ-plots were used to compare p-value distributions of pathways discovered from true driver 559 

scores, driver scores with shuffled driver scores, and driver scores shuffled entirely. To evaluate 560 

robustness of ActivePathways, we randomly replaced a fraction of significant driver p-values in 561 

input matrices (P<0.001) with insignificant p-values (P=1). We tested different fractions of missing 562 

values (10%, 25%, 50%) across a thousand datasets of driver scores with randomly selected 563 

missing data points and concluded that most cohorts included significantly enriched pathways 564 

even with large fractions of missing data. To further evaluate robustness, we tested different 565 

values of the Brown P-value threshold used to select the integrated gene list for pathway 566 

enrichment analysis. The default parameter value (Pgene<0.1) was compared to alternative values 567 

(0.001, 0.01, 0.05, 0.2). We concluded that ActivePathways found enriched pathways in most 568 

tumor cohorts even at more stringent gene selection levels.  569 

Availability. ActivePathways is freely available as an R package and source code on the GitHub 570 

repository https://github.com/reimandlab/ActivePathways and the Comprehensive R Archive 571 

Network (CRAN).  572 

 573 
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