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Abstract 
Motivation: Data visualization is an important tool for exploring and communicating findings 

from genomic and healthcare datasets. Yet, without a systematic way of organizing and 

describing the design space of data visualizations, researchers may not be aware of the breadth of 

possible visualization design choices or how to distinguish between good and bad options.  

Results: We have developed a method that systematically surveys data visualizations using the 

analysis of both text and images. Our method supports the construction of a visualization design 

space that is explorable along two axes: why the visualization was created and how it was 

constructed. We applied our method to a corpus of scientific research articles from infectious 

disease genomic epidemiology and derived a Genomic Epidemiology Visualization Typology 

(GEViT) that describes how visualizations were created from a series of chart types, 

combinations, and enhancements. We have also implemented an online gallery that allows others 

to explore our resulting design space of visualizations. Our results have important implications 

for visualization design and for researchers intending to develop or use data visualization tools. 

Finally, the method that we introduce is extensible to constructing visualizations design spaces 

across other research areas.  

Availability: Our browsable gallery is available at http://gevit.net and all project code can 

be found at https://github.com/amcrisan/gevitAnalysisRelease 
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1.0 Introduction 

Genome sequencing is becoming an integral part of modern infectious disease diagnostics 

(Pankhurst et al., 2016) and epidemiology (Faria et al., 2016; Quick et al., 2016). When genomic 

and/or phylogenetic data are combined with clinical and epidemiologic data routinely generated 

by public health laboratories and programs, the resulting analyses support a variety of public 

health professionals, including clinicians, epidemiologists, researchers, and policymakers, in 

their real-time decision-making around treatment, surveillance, and outbreak response. However, 

this new data-driven approach to public health also introduces interpretability challenges – it is 

difficult to succinctly and accurately represent such multivariate and high-dimensional data, 

particularly when many stakeholders do not routinely work with the genomic or phylogenetic 

data these analyses rely upon. These challenges arise not only late in an investigation, when 

attempting to communicate the results of an analysis, but also in the early phases of a project, 

such as initial data exploration and model-building (Grolemund and Wickham, 2014). 

 

Data visualization is an important means to address interpretability challenges, and one which is 

increasingly being used in genomic epidemiology. Tools including nextstrain (Hadfield et al., 

2018) and Microreact (Argimón et al., 2016) use developments in web technologies to produce 

sophisticated, interactive data visualizations that allow users to explore and interact with public 

health phylogenetic data in an epidemiological context. Other tools, such as treeviewer (Huerta-

Cepas et al., 2016), GenGIS (Parks et al., 2013), or libraries such as PhyloCanvas, 

(http://phylocanvas.org/) also allow researchers varying degrees of freedom to generate 

visualizations blending phylogenetic trees with other metadata. As more and more visualization 

tools and libraries are being developed for genomic epidemiology, it is an appropriate moment at 
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which to assess the type of visualizations being generated and used in public health genomic 

studies in order to inform the design of future visualization tools. 

 

When analyzing existing data visualizations, the concept of a visualization design space becomes 

important. This design space is defined as the combinatorial space of data visualizations afforded 

by graphical marks (points, lines, and areas) that convey information through their aesthetic 

properties (position, color, size, shape, texture), which are also referred to as channels in the 

information visualization research literature (Munzner, 2014). There have been explicit attempts 

to describe visualization design spaces and share them via web galleries, such as SetVis 

(Alsallakh et al., 2014), TreeVis (Schulz, 2011), Visualizing Health (https://www.vizhealth.org), 

and BioVis Explorer (Kerren et al., 2017), but these were not created through a process as 

systematic as what we propose and thus do not serve to provide insight into current practice in a 

specific research community. Collections of visualizations also arise implicitly from search 

engine results, including Google, PubMed, or Semantic Scholar image searches, but these lack a 

systematic taxonomy and ontology describing the visualizations themselves. It is only through 

organizing the visualizations created by a research community with a design space that trends or 

common practices within that community become apparent and better practices can be suggested.  

 

Here, we present a method for the systematic analysis of a visualization design space. By 

employing this structured approach to both generating and analyzing a suite of visualizations 

within the context of public health genomic epidemiology, we reveal current data visualization 

practices common to the field. We are able to identify those visualization designs that could be 

better supported through new software tools or improved to make them more effective, as well as 
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areas of the design space that are currently underused. This methodological contribution can be 

applied to visualization design spaces in domains beyond public health genomic epidemiology; 

here we describe its application in a specific domain as an additional contribution. We present 

the Genomic Epidemiology Visualization Typology (GEViT), and we provide a web-based 

platform for exploring GEViT that researchers, bioinformaticians, and software developers can 

use to inform their own genomic epidemiology data visualization practice.  

 

2.0 Materials & Methods 

2.1 Developing a Method for the Systematic Analysis of Data Visualizations 

Data visualizations are often challenging to analyze because, unlike images of real-world objects, 

visualizations in the scientific literature are abstractions devised by researchers to convey a 

combination of concepts. For example, phylogenetic trees display genomic data in an 

evolutionary context, and can be further enriched to show metadata about the sampled sequences 

and/or organisms and the underlying evolutionary processes. Visualizations vary across research 

contexts, and can be described using the nested model for visualization design and analysis 

(Munzner, 2009), which deconstructs a data visualization into four layers: the why – a research 

or domain problem that a data visualization supports; the what – the data that needs to be 

visualized and the specific tasks performed using the data and visualization, such as finding 

trends or communicating a specific finding; the how – the visual design and interactivity; and the 

algorithmic implementation of the visualization.  

We have constructed a method for the systematic analysis of data visualizations that specifically 

articulates and then attempts to connect the visualization research problem (why) with the 

visualization design (how) –  this goal is possible because we can meaningfully capture and label 
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these elements of a data visualization through a systematic analysis based on image and textual 

analysis. 

Our method consists of an initial literature analysis phase followed by a visualization analysis 

phase, resulting in a visualization design space in which images are classified according to their 

why and their how. The literature analysis phase (Figure 1) automatically analyzes text from a 

corpus of research articles to identify the topic of a data visualization – why it was created – as 

we assume that different topics are likely to yield different visualization designs.  In the current 

instantiation of this method, we also use the literature analysis phase to perform a random 

stratified sampling of articles to select a reasonable subset of visualizations for the subsequent 

visualization analysis phase, which requires a human-curated inventory of each image. In this 

phase, we iteratively apply open and axial qualitative coding techniques to the set of images 

harvested from the sampled articles.  The iterative qualitative coding phases (Charmaz, 2006) 

ultimately yield a set of hierarchical taxonomies that we collectively refer to as a visualization 

typology and that allows us to articulate how visualizations are created (Figure 1). Further detail 

around the methods employed during both phases are provided below and in Supplementary 

Figure S1. 

Our specific application of this method to articles and images from the infectious disease 

genomic epidemiology context resulted in the Genomic Epidemiology Visualization Typology 

(GEViT) – a structured way of describing a collection of visualizations that together form a 

visualization design space. As a research community publishes new data visualizations, these can 

be annotated using the typology and added to the design space, and may even result in the 

addition of new terms to the typology if the image includes new elements of visual design.  
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2.2 A Systematic Analysis of Data Visualizations from the Infectious Disease 
Genomic Epidemiology Research Literature 

 

All analysis notebooks and datasets are available online at: 

https://github.com/amcrisan/gevitAnalysisRelease 

 

2.2.1 Literature Analysis  
 

We developed an R package called Adjutant (Crisan et al. 2018b), described in detail elsewhere, 

to support our literature analysis. 

 

Figure 1 Method and Application Overview. a) Constructing and systematically analyzing a 
visualization design space requires analysis of both the literature and visualizations themselves, using 
qualitative and quantitative approaches. b)  Automated steps, as indicated by the robot icon, are used in 
literature analysis to identify articles in genomic epidemiology and the topics those articles address. 
Manual steps, as indicated by the human icon, are used in the analysis of visualizations derived from 
those articles, followed by further quantification with automated statistical approaches. More details are 
also presented in Figure S1. 
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Search Terms. We searched for articles related to infectious disease genomic epidemiology that 

were published within the past ten years. We used two queries, 1) (genome AND (outbreak OR 

pandemic OR epidemic)) OR "genomic epidemiology" and 2) (genomic epidemiology 

OR molecular epidemiology) AND (bacteri* OR vir* OR pathogen) AND Genome, 

combining their results and retaining only unique records for further analysis. We also manually 

included cancer genomics articles that were known to us to use phylogenetic trees in their 

analysis.  

 

Data Preparation. The resulting document corpus included PubMed IDs, year of publication, 

authors, article titles, article abstract, and any associated Medical Subject Heading (MeSH) terms. 

Titles and abstracts were decomposed into single terms, stemmed, and filtered by Adjutant. We 

calculated the term frequency inverse document frequency (td-idf) metric for each term, and 

created a sparse Document Term Matrix (DTM) for further analysis. A separate dataset of 

bigram terms was also prepared and was used only to link articles to a priori concepts (see 

below). 

 

Unsupervised Topic Clustering. We used the t-SNE and hdbscan algorithms to perform an 

unsupervised clustering using the DTM. We used the Barnes-Hut implementation of t-SNE (van 

der Maaten, 2014), which allows for some acceleration at the cost of accuracy, with the 

perplexity parameter set to 100; otherwise default parameters of the R package implementation 

were used (Krijthe, 2015). We then used hdbscan (Campello et al., 2013) on the t-SNE co-

ordinate to derive the topic clusters; we show in our earlier work on Adjutant  (Crisan et al., 

2018b) that this order of operations yields relevant results. Clusters are sensitive to the minimum 

number of cluster points (minPts) parameter supplied to the hdbscan, thus we tried different 
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minPts values (50, 75, 100, 125, 150, 250, 500, 1000), observing how the cluster compositions 

changed. We observed that some articles never held membership in any cluster irrespective of 

the parameter settings and labelled those as “never clustered”, in contrast to articles that were 

simply not clustered with our specific final parameter settings that are labeled as “currently 

unclustered”. The final set of clusters combined results from the minPts 75 and 150 analyses. 

Each cluster is assigned a topic by using the two most frequent terms within the cluster. 

Following topic clustering, we validated our clusters using an external list of human pathogens 

(Table S1), assessing the correspondence between pathogen names and cluster topics. 

 

Linking To A Priori Concepts. Before conducting the unsupervised clustering, we discussed 

what results we might expect given our knowledge of research activities in the public health 

genomic epidemiology community. This initial discussion produced a set of 23 a priori concepts 

that we categorized into three groups: genomic concepts, including drug resistance, genome, 

genotype, molecular biology, pathogen characterization, phylogeny, and population diversity; 

epidemiology concepts, including clusters, disease reservoirs, geography, outbreaks (at 

international, community, and hospital levels), surveillance, transmission, vaccine, and vectors, 

and medical concepts (clinical, cancer, diagnosis, outcome, and treatment).  

 

Following the clustering, we identified bigrams that occurred in at least ten articles within a 

pathogen topic cluster and between at least 10% of the other pathogen topic clusters, and 

manually assigned those bigrams to an a priori concept (Table S2) – for example, the bigram 

“vancomycin resistance” was assigned to the a priori concept of “drug resistance”. Assignments 
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were validated by internal discussion among the research team, including a genomic 

epidemiology expert. 

 

Document Sampling. To produce a manageable, diverse, and systematically derived dataset for 

the human-curated visualization analysis step, we performed random stratified sampling on our 

document corpus, sampling one document for each a priori concept within each of the 

automatically derived topic clusters. Each sampled article was examined and either considered 

acceptable for further analysis or rejected. Most articles were rejected because they did not 

contain any figures; other reasons for rejection included: full text article not accessible; article 

not in English; article was about a laboratory or bioinformatics technique and not an 

epidemiological scenario; no human data; or the article was a review rather than original research. 

For each rejected article, we resampled two additional articles, choosing one for further analysis. 

Based upon the analysis of the first round of sampling, the second round only sampled articles 

from 2011 onwards to increase the chance of sampling articles containing figures, and also 

attempted to sample underrepresented a priori concepts from the first round. Table S3 contains a 

list of all the articles, which round they were sampled in, whether they were included or rejected, 

and the reason for rejection. 

 

Figure and Table Extraction. To properly capture the figures and their captions, we manually 

extracted them from PDFs of the sampled articles. Images were only excluded if they were 

CONSORT diagrams, flow diagrams, or illustrations without underlying data. We also included 

a small number of “missed opportunity” tables – stand-alone tables that we felt could have been 
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visualized, most frequently matrices of numbers or large tables of patient metadata where each 

row consisted of a patient.  

 

2.2.2 Visualization Analysis 
 

Extracted figures and tables were analyzed using iterative open and axial qualitative coding 

techniques. Originally derived from the use of Grounded Theory in sociology, psychology, and 

anthropology (Charmaz, 2006), qualitative coding methods are now being used in human-

computer interaction (Jacko, 2012) and information visualization research (Carpendale, 2008). 

Qualitative coding involves iteratively examining data and assigning it to some category. The 

categories themselves are refined and can take on hierarchical relationships through different 

cycles of the coding process (see Supplemental Methods), and were informed here by concepts 

from visualization theory and terminology (Munzner, 2014). 

 

Here, we analyzed whole figures separately – we did not decompose multi-part figures in order 

to understand the potential interplay between panels within a figure.  We began by creating a 

taxonomic code describing the types of charts present in different figures. We next examined 

how different types of images were combined to show different aspects of the data and thus 

created a chart combination taxonomy. Finally, we created a taxonomy that captured how basic 

chart types were enhanced to encode additional information. We refer to the collection of 

taxonomic code sets for chart types, combinations, and enhancements that were derived from this 

document corpus of genomic epidemiology research articles as GEViT. We conducted three 

rounds of qualitative coding, in which we reviewed figures and made additions or changes to 
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GEViT; by the third round of coding, there were too few additional modifications to warrant a 

subsequent round.  

2.2.3 Creating an Explorable Visualization Design Space 

We used the results of the literature and the visualization analysis phases to produce an 

explorable visualization design space, which is freely available at http://gevit.net. The images 

presented gallery are used under Fair Use copyright terms and we provide links back to the 

original source publications.  

3.0 Results 

3.1 Literature Analysis 
 

 

Figure 2 Summary of literature analysis steps and document sampling. 
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3.1.0 Literature mining identified article clusters according to disease pathogen 

We assembled a document corpus of 17,974 articles pertaining to infectious disease genomic 

epidemiology research published in the past 10 years (Figure 2). Using article titles and abstracts 

we derived topic clusters in an unsupervised manner, and classified articles as either belonging to 

a named topic cluster, not belonging to a cluster under current parameter settings, or never being 

clustered under any parameter settings (Figure 3a). Articles that never formed part of a cluster 

were removed from further analysis, leaving 15,315 documents of which 11,416 (75% of the 

initial document corpus) formed 32 topic clusters (Figure 3b). Clusters were assigned topics via 

the top two most frequent terms within the cluster, revealing that infectious disease genomic 

epidemiology literature is primarily structured around pathogens. We validated our results by 

comparing our automatically derived cluster naming to the distribution of pathogen terms from 

an external list (Table S1, Figure 3c), and found there to be a strong correspondence between the 

automatically derived cluster topics and the propensity for pathogen terms to appear within 

clusters of the same name (for example, the term “influenza virus” occurs primarily within the 

“influenza-viru” cluster). Some notable exceptions are Escherichia coli, Helicobacter pylori, and 

Human Immunodeficiency Virus – in addition to having their own defined cluster, these terms 

also appeared in other clusters, suggesting co-infections or another phenomenon. We also found 

that clusters with more generic names (for example “viru-sequenc”, or “geno-sequenc”) contain 

pathogens that likely had too few articles to form their clusters, possibly reflecting recently 

emerged pathogens (i.e., Zika, Ebola) with a less extensive research history. We filtered the 

corpus by limiting to pathogens with 40 or more articles, resulting in 6,350 articles within 35 

pathogen clusters, then further simplified to 18 clusters: a final set of 17 pathogen clusters that 

had 100 or more documents and one “other” cluster (Table S4). 
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3.1.1 Clusters were manually mapped to a priori concepts 

The findings from the literature mining were at odds with our own a priori assumptions that 

articles would cluster according to more general, pathogen-agnostic concepts, such as drug 

resistance, surveillance, and outbreak investigation. In order to allow researchers to investigate 

the connections between these familiar a priori concepts and the literature-derived clusters, we 

linked them together manually. We mapped a total of 23 a priori concepts to 404 bigrams. We 

found that a priori concepts did not occur uniformly across pathogen clusters (Figure S2A) and a 

variable number of bigrams mapped to individual a priori concepts, with 143 bigrams mapped to 

“drug resistance” and only one bigram mapped to “disease reservoirs” (Figure S2B).  

 

3.1.2 Document sampling was stratified according to pathogen and a priori concepts 

We then performed two rounds of stratified sampling using pathogens and a priori concepts as 

strata. The sampling resulted in 204 unique articles, to which we manually added 17 additional 

articles that we deemed contained interesting data visualizations mainly from cancer research  – 

these are clearly tagged in our analysis – for a total of 221 articles (Table S1) from which we 

extracted a total of 770 figures, including a small number (45) of ‘missed opportunity’ tables. 
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Figure 3 Summary of literature analysis results. a) Documents were classified according to whether 
they were part of a cluster (green), unclustered under current parameter settings (purple), or never 
clustered (orange). The 32 cluster boundaries were automatically determined and are shown as light grey 
ovals. b) Clustered documents and their topics, which are automatically assigned based upon top two 
terms with the cluster. c) Verification of cluster topics against an external list of pathogens. The small 
multiples show the distribution across the clusters of the pathogen named in the panel header, for the 35 
pathogens with 40 or more matching documents.   
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3.2 Visualization Analysis 
 

3.2.0 Developing GEViT – A Genomic Epidemiology Visualization Typology 

Using the analysis set of figures from the sample documents, we used iterative open and axial 

coding techniques to devise a systematic way to describe how data visualizations are constructed 

(see Supplemental Methods). We began by classifying the types of charts in figures, then 

classified how charts were combined, and then classified how charts were enhanced. We found 

that these three descriptive axes allowed us to sufficiently describe all visualizations in our 

dataset of figures. For each of these descriptive axes, we also derived a hierarchical taxonomy. 

Collectively, we refer to this result of the descriptive axes and their associated taxonomies as 

GEViT (Genomic Epidemiology Visualization Typology). Below, we describe each of GEViT’s 

descriptive axes and interleave descriptive statistics to show the distribution of taxonomic codes 

across these axes to provide an overview of the variance in the resulting visualization design 

space.  

3.2.1 Chart Types in GEViT 

We identified eight classes of chart types that form the basis of the data visualizations in our 

dataset (Figure 4): Common Statistical; Color (statistical charts that intrinsically depend on hue 

or brightness to convey data); Relational; Temporal; Spatial; Tree; and Genomic.  We compiled 

a taxonomy of common chart names to classify specific instances of chart types within each class. 

When applicable, we also defined special cases of a specific chart – for example, epidemic 

curves are a special case of bar chart. We also defined one ‘Other’ category, which included 

entities that accompanied data visualizations but were not themselves data visualizations, such as 

tables and images, and miscellaneous visualizations that did not fit elsewhere. In total, we 

observed 23 distinct chart types plus one miscellaneous category and found that the most 
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commonly occurring chart types within data visualizations included Phylogenetic Trees (17.7% 

of all data visualizations, although some type of tree was present in 23.7% of all visualizations), 

followed by Tables (9.7%), Bar Charts (8.9%), Genomic Maps (6.9%), Line Charts (6.8%), and 

Images (5.7%, typically a Gel Image of Pulsed Field Gel Electrophoresis) (Supplemental Figure 

S3). The frequency of tables, either alone or in combination with another chart type, is a notable 

finding, indicating missed opportunities for visualization. Our findings also suggest that only a 

small portion of the available design space is typically used.  

3.2.2 Chart Combinations in GEViT 

The majority of figures were composed of a single chart type (40.1%), but we observed distinct 

and common patterns of combining chart types to create more complex, and often linked, multi-

part figures (Figure 5). Composite charts (20.3%) contained multiple chart types that were 

spatially aligned – for example, a heatmap and dendrogram are spatially aligned to jointly 

convey clustering information. A tree and heatmap can also be visualized independently of each 

other, but their combined value is evidently relevant for many researchers. Small Multiples 

(17.3%) showed different aspects of the data through multiple instances of the same chart type. 

Many Types Linked combinations (13.5%) used multiple different chart types that were visually 

linked – for example, using a common color to denote some property of the data across the 

different charts, but not spatially aligned (in contrast to Composite charts). Finally, Many Types 

General combinations (8.8%) comprise multiple chart types, but where there is no spatial or 

visual link between charts – these likely were combined into a single figure due to manuscript 

space restrictions. It was not always straightforward to distinguish between some instances of 

Many Types Linked and Many Types General, and in such cases, we resolved the ambiguity in 

favor of the latter classification. We also observed instances of Complex Combinations (11.9%), 
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in which visualizations used two of the previously described chart combinations. Phylogenetic 

Trees were the chart type mostly commonly combined with other chart types. 

  

 

Figure 4 Chart Types in GEViT. We used common names for chart types and separated them into 
eight main classes and also one ‘Other’ class. Special cases of chart types were defined only when there 
were multiple instances of the same specific chart across our dataset. Chart types with an asterisk mark 
(*) indicate that they were included in the analysis through manually added articles.  
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Figure 5 Chart Combinations in GEViT. The six combination types differ based on the number of chart
types, the number of charts, and the approach to linking them together.  Complex combinations are an 
amalgamation of the above five chart types – for example, a composite visualization that is represented as 
a small multiple and also linked another chart type. 

 
3.2.3 Chart Enhancements in GEViT 

Lastly, we noted that standard chart types were often enhanced to add metadata through the 

addition or changing of graphical marks – the basic graphical element corresponding to a data 

record (e.g. a patient), or derived data value (e.g. the total number of patients). Graphical marks 

are points, lines, areas, and text, which are endowed with the aesthetic properties of size, shape, 

color, and texture that can be modified to encode data (Figure 6a). For example, a phylogenetic 

tree encodes evolutionary relationships inferred from nucleic acid or protein data as lines of 

some calculated length (Figure 6b). These lines are often black; however, they can be re-encoded

to incorporate data from some additional source – for example, coloring lines according to 

geographic regions. It is also possible to add marks to the base chart type – for example, adding 

colored point marks to a tree’s leaf positions (Figure 6b), or adding linear brackets and text to 

delineate or otherwise annotate groups. We did not consider axis text, titles, or data labels to be 

added marks, subsuming them as constituent parts of the base chart type. 

 

art 

as 

ed 
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It is also possible to add more complex types of marks. Connection marks are a specific instance 

of line marks that connect two other marks. Containment marks are a specific instance of area 

marks that enclose other marks. Finally, a glyph is a complex mark that could itself be a type of 

chart, but that is smaller than the base chart type and embedded within it (in contrast, we define 

that composite chart types have the same frame size and one chart is not embedded within the 

other). The only glyph we identified within our dataset was a pie chart, which was often added to 

geographic maps or node-link graphs (Figure 6b) to communication proportions within the data. 

 

We differentiate between the instances when chart enhancements are added consistently, or just 

as one-off marks. When the addition or re-encoding of marks is applied consistently to the base 

chart type – for example, re-encoding all or many lines in a tree or adding points to all or many 

leaf nodes – we defined these as structured enhancements. Adding one-off marks, even if they 

are driven by the data or the addition of some arbitrary ink, was considered to be an annotation 

and defined as an unstructured enhancement. It was not always easy to differentiate between 

structured and unstructured enhancements, and in such instances, we resolved ambiguities by 

choosing structured enhancement when analyzing figures. 

 

In our dataset, we observed that most base chart types were enhanced (83.8% of all chart types), 

typically through the addition of lines, points, or text (59.6%), while re-encoding of marks was 

less common (45.6%). The use of text as a graphical mark with aesthetic properties that can be 

manipulated to convey information was common in our dataset, either by adding text marks to a 

base chart type, or re-encoding of text labels by manipulating the font face. The text itself ranged 

from the simple case of a single letter or number, to a full word, to a complex concatenated string 
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of metadata such as specimen ID, location, and year. Annotations were also less common 

(33.6%), and were most commonly an arrow to text or a containment mark that highlighted only 

a single group. 

 

 

Figure 6 Chart Enhancements in GEViT. a) Our characterization of marks and their associated 
aesthetic properties is based on longstanding conventions in the visualization literature (Munzner, 2014; 
Meirelles, 2013) with roots in Bertin’s Semiology of Graphics (Bertin, 1983). Illustrative examples are 
shown for b) a tree and c) node-link chart types. 
 
 
3.2.1 The GEViT Gallery – an Interactive Exploration of the Visualization Design Space 

We created a browsable gallery, available at https://gevit.net, that allows others to explore the 

genomic epidemiology visualization design space we created, examine the results of the 
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literature analysis, and browse our GEViT taxonomic code sets. Visitors to the GEViT gallery 

can browse visualizations across different pathogen types, contextual tags derived from a priori 

concepts, and data or arbitrary terms found in the figure captions. Clicking on an individual 

figure within the gallery reveals its construction via GEViT. Users are also able to browse 

visualizations based upon GEViT’s taxonomic codes to see the myriad applications for certain 

chart types, combinations, and enhancements. In our analysis of the data visualizations we also 

identified examples of good and bad visualization design practice.  

 

4.0 Discussion 

Data visualizations are important outputs of many scientific investigations and, when viewed 

collectively, merit close study to reveal common, good or bad, or missed practices in 

visualization design. Here, we describe a method for systematically studying data visualizations 

from the scientific literature, using both text and image data to articulate both why a visualization 

was created and how it was created from various chart types, combinations, and enhancements. 

We applied this method to a literature corpus from the domain of infectious disease genomic 

epidemiology, resulting in the Genomic Epidemiology Visualization Typology (GEViT), and we 

created a web-based GEViT gallery, allowing users to browse the visualization design space 

generated through the application of our methodology and to see how elements of our typology 

can be used to describe a given image. 

 

The typology aspect of our work is similar in spirit to the Grammar of Graphics proposed by 

Wilkinson (Wilkinson, 2010) and modified and instantiated by Wickham within ggplot2 

(Wickham, 2010). While that prior work focuses on low-level details of chart implementation 
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ours uses a higher level of abstraction, using whole chart types as a basis. This higher level of 

abstraction is more appropriate for exploring and describing the design space used by a 

community. Our work also differs from existing ontology-based efforts to describe a research 

domain, such as GenEpiO (Griffiths et al., 2017). GEViT might be considered as the data 

visualization equivalent to the structured vocabulary that an ontology provides; however, it does 

not describe the relationships among entities as an ontology would. However, with future work, 

incorporating visual typologies into ontologies like GenEpiO is possible.  

 

The present study used data visualizations from articles within the published research literature 

and did not include visualizations intended for public consumption, not published in peer-

reviewed journals. This choice was pragmatic. First, it bounded the search space for our analysis. 

Academic articles are often accessible through specialized literature repositories, whereas 

including public-facing visualizations would have required extensive web scraping. Furthermore, 

research articles are relatively structured, making them an ideal substrate for topic modelling. 

Limiting our analysis to peer-reviewed scientific literature also bounded the content of the 

sampled images. There is shared technical knowledge within a research community, meaning 

that most users can interpret a visualization without additional assistance, whereas visualizations 

designed to communicate a concept to a more general audience often incorporate additional 

explanation or background information (although many of these more general, public-facing 

visualizations likely begin as images created in the academic research context). The typology we 

developed is extensible to more unstructured, non-academic data visualizations used for public 

communication, and it would be interesting to compare such a design space with the one we 

present here. An important limitation imposed by our literature search strategy is that we only 
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included the final data visualization used to communicate some research finding – we do not 

have access to those data visualizations that researchers created during their internal data 

analysis process. Our own experiences in public heath genomics research and developing data 

visualizations to share our research findings suggest that the visualizations used during an 

analysis and those used to communicate final results do not substantially differ, but confirmation 

of this conjecture would be a good subject for future work.   

 

Another limitation of our current method is the requirement for a human to manually carry out 

aspects of the visualization analysis. Although this process was time consuming , this inclusion 

of the human in the loop was crucial to understand what aspects of each visualization were 

necessary to delineate a design space; current machine learning methods are not capable of 

generating such a result. Developing a semi-automatic method that combines some automatically 

created decomposition of visualizations with human judgement as part of the analysis loop 

through future work would accelerate the process of refreshing and maintaining the GEViT 

resource. 

 

Implications of our findings for visualization design 

By creating a visualization design space, we not only capture current common practices in our 

research domain, but we also reveal gaps and areas that require additional attention. While we 

found some instances of bespoke, effective, and aesthetically appealing data visualizations, the 

systematic nature of our method to exploring visualization choices reveals that across pathogens 

and a priori concepts, visualization design choices are quite homogenous, and the quality of 

visualizations varies substantially. We had expected greater variability, given than different 
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pathogens have different transmission routes, are responsive to different interventions, and exist 

in different environmental, zoonotic, and human contexts. However, phylogenetic trees are the 

dominant visualization choice, often with additional contextual data included as tree labels or as 

accompanying tables. This dominance may impact effective knowledge translation in the 

genomic epidemiology domain, as the interpretability and utility of trees is unclear among public 

health decision-makers who have limited experience with genomic data (Crisan et al., 2018b).  

 

Although our finding of design homogeneity is not surprising, it also underscores how a lack of 

awareness of design alternatives leads to ineffective data visualizations. For example, geographic 

data is often encoded as text rather than an alternative mark or an explicit visual representation. 

The pervasive use of text in genomic epidemiology visualizations stands in contrast to 

recommendations from the information visualization research literature, where the use of text as 

a mark type is discouraged. Reading text requires more working memory and thus imposes a 

high cognitive load, whereas the goal of most visualizations is to reduce cognitive load by 

leveraging human perceptual systems to interpret information through the encoding of data as 

marks and aesthetic properties (Munzner, 2014). Our finding that text was often used as a mark 

and was endowed with aesthetic properties like color and variable font faces and sizes suggests 

that researchers are aware of the power of visual channels, but not necessarily the choice of an 

effective mark. We also note that many visualizations tended to show all of the data, rather than 

exploring alternatives that visually summarize data at multiple levels of detail.   

 

Our work highlights opportunities for further work on areas where the genomic epidemiology 

research community could be better supported in designing data visualizations. 
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Bioinformaticians and software developers can use GEViT to evaluate whether the tools they are 

creating afford the visual expressivity that infectious disease researchers need to communicate 

their research findings. Phylogenetic trees are evidently important, but there is a need for better 

tools that allow researchers to explore alternative visualizations and to more effectively encode 

tabular metadata onto trees and other visualizations.  Although our study did not reveal how 

researchers create their data visualizations, our experience in the genomic epidemiology research 

community suggests that many chart- or tree-generating packages, some in R, are often used in 

conjunction with Power Point or Adobe Illustrator to compose complex visualizations that 

include chart combinations and enhancements. Software tools or libraries that support more 

expressive generation of visualizations can lower the barrier to generating data visualizations, 

reduce the overreliance on text, expand the use of combinatorial charts, and contribute to more 

reproducible research by creating more informative visualizations in which data is not obscured. 

 

We also suggest that our findings might inspire developers to create alternatives to existing 

common design choices, and that our gallery of visualizations gives such developers a resource 

with which they can empirically test their new visualization design against existing choices. This 

empirical approach to testing a new visualization will help move the community further away 

from the ad hoc approach to visualization development, where design choices are heavily biased 

by individual preferences. As more work is done to explore and test new visualization designs, 

GEViT will incorporate these designs, potentially resulting in the addition of new typological 

terms. It will also be interesting to explore how GEViT might be used to suggest visualizations 

to researchers, as is currently done with common statistical charts in tools like Tableau’s “Show 
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Me” feature (Mackinlay et al., 2007), Google Sheets’ “Chart Suggestions”, or in novel systems 

like Draco (Moritz, 2018).  

 

Implications of our findings for the genomic epidemiology community 

Data visualization can be an important tool for translating scientific results to a group of experts 

working in a common domain but with varying backgrounds. This situation is often the case in 

public health genomic epidemiology, where microbiologists, computational biologists, clinicians, 

epidemiologists, healthcare administrators, and others often come together around a specific 

issue. By making individuals aware of data visualization conventions used by the community 

through the GEViT gallery, we hope to assist researchers who struggle to visually communicate 

their research findings by providing both inspiration and a framework for reasoning about data 

visualizations that will assist as they develop their own data visualization practice. We have 

tagged examples in the GEViT gallery with “good” and “missed opportunities” to provide some 

guidance, but these labels are assigned by our subjective reasoning as data visualization experts 

and have not been empirically validated. Future work in this area might include quantitative 

evaluation of the efficacy of particular visualizations, and ultimately more sophisticated guidance 

around visualization design and analysis in the public health context.  

5.0 Conclusions 

Through a systematic method, we have delineated the visualization design space used in 

infectious disease genomic epidemiology. We provide both a concrete terminology for 

describing data visualizations and a gallery of visual inspiration, the combination of which we 

hope will provide guidance to visualization tool developers and to researchers looking to create 

their own visualizations. Mostly importantly, our work demonstrates that is possible to think 
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systematically and rigorously about data visualizations and that there exist open, complex, and 

interesting problems in visualizations design and analysis, where the potential impacts on 

research domains such as public heath are profound. 
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