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The study of complex molecular organisation and nano-
structure by localization based microscopy is limited by the
available analysis tools. We present a segmentation pro-
tocol which, through the application of persistence based
clustering, is capable of probing densely packed structures
which vary in scale. An increase in segmentation perfor-
mance over state-of-the-art methods is demonstrated. More-
over we employ persistence homology to move beyond clus-
tering, and quantify the topological structure within data.
This provides new information about the preserved shapes
formed by molecular architecture. Our methods are flexible
and we demonstrate this by applying them to receptor clus-
tering in platelets, nuclear pore components and endocytic
proteins. Both 2D and 3D implementations are provided
within RSMLM, an R package for pointillist based analysis
and batch processing of localization microscopy data.
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Introduction
Single molecule localization microscopy (SMLM) is a
super-resolution fluorescence imaging technique capable
of localizing individual molecules to approximately 20nm.
Since its introduction (1–3), SMLM has matured as a tech-
nology and is now routinely used to probe biological nano-
structure and processes for a range of biological applica-
tions (4–6). After performing localization, the data from a
SMLM experiment is represented by a set of spatial coordi-
nates, each corresponding to a single detection, that form
a point cloud (7). This can be analyzed either by rendering
an image from these coordinates and using image-based
analysis methods, or by analyzing the point cloud directly.
Strategies for the latter have focused on the concept of
clustering, either by analyzing the spatial statistics of the
point cloud to confirm the presence of clustered molecules
(8–10), or by grouping individual detections into distinct
clusters (8, 11, 12). This latter approach allows per-cluster
statistics such as area and detection density to be calcu-
lated.
Clustering strategies commonly used for SMLM datasets
estimate local detection density and construct clusters

from the detections with density above a specified thresh-
old. DBSCAN and Ripley’s K based clustering measure
density by calculating the number of neighboring detec-
tions within a specified distance (8, 13), whereas Voronoï
diagram based clustering uses the area of the tiles in the
associated tessellation (11, 12). The free parameters; a
density threshold and sometimes a distance scale, can be
set manually or automatically using mean cluster density
(11) or Monte-Carlo simulations (12). If assumptions can
be made about the distribution and shape of the clusters, a
Bayesian engine can be used to set parameters (14). How-
ever, biological data is complex, often containing struc-
tures of significantly varying density. For such data a sin-
gle density threshold is not sufficient and a multi-scale ap-
proach is required. Clustering algorithms can be repeated,
using different parameter values, to segment structures at
different densities, for example cells, organelles and sub-
organelle protein clusters (11). Current tools require mul-
tiple passes over the data or complex post-processing to
achieve this.

A further limitation of current clustering approaches is that
topological information and higher order structure is not
considered. Topological data analysis (TDA) (15) provides
a robust mathematical framework for probing the topol-
ogy, or shape, of a point cloud. In this work we develop
cluster analysis methods based on TDA, specifically per-
sistence based clustering (16) and persistent homology
(17–19), to quantify clustering and topological structure
within SMLM datasets at a range of scales and densities.
We demonstrate their ability to outperform existing meth-
ods and reveal new insight into biological nano-structure.
Our clustering workflow is used to show a decrease in the
area of platelet integrin α2β1 clusters when the tyrosine
kinase Syk is inhibited. Additionally our persistent homol-
ogy methodology is used to quantify topological structure
for endocytic proteins and nuclear pore complex compo-
nents. The tools are made available to the community as
an R package under the GPL v3.0 licence.
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Results

Persistence based clustering outperforms existing ap-
proaches. In common with many existing approaches, the
first step in persistence based clustering is the calcula-
tion of an underlying density estimate (16). Local maxima
within the density estimate are found, and detections as-
signed to maxima by following the gradient of the density
along a specified graph, a collection of points (detections)
and lines linking pairs of points. This approach is known
as hill climbing and facilitates the separation of clusters in
close proximity (20). Next, candidate clusters, or density
modes, are merged based on the strength, or persistence,
of each local maximum. For each mode the persistence
is defined as the difference between the local maximum;
the birth density, and and the corresponding local mini-
mum; the death density. This clustering scheme is named
the Topological Mode Analysis Tool (ToMATo) and is anal-
ogous to local thresholding of the density estimate (16).
Therefore ToMATo is capable of segmenting clusters at
varying densities simultaneously.

To evaluate ToMATo on SMLM data we generated real-
istic simulated dSTORM datasets of Gaussian clusters.
Low, high and mixed (a mixture of high and low) density
clusters were generated, either in close proximity or well
separated (Fig. 1a). Local detection density was esti-
mated by counting the number of other detections within
a fixed radius, and density modes were constructed from
a graph linking all detections within the same search ra-
dius (Fig. 1b). Detections which cannot be merged to a
density mode above the persistence threshold are consid-
ered to be noise. With our implementation of ToMATo there
are two free parameters; the radius of the search distance
and a threshold on density mode persistence. To enable
the selection of a suitable persistence threshold a scatter
plot of the death and birth densities for each mode can
be plotted. This is known as a ToMATo (persistence) dia-
gram (Fig. 1c). Modes close to the diagonal are weak and
should be merged to neighboring clusters.

We compared persistence based clustering to existing rou-
tinely used approaches: DBSCAN (13), Ripley’s K based
clustering (8, 14), and Voronoï tessellation (11, 12). A
range of free parameters were used for each simulation
scenario and algorithm. Performance was quantified as
the percentage of correctly assigned detections and av-
eraged over repeated simulations (Fig. 1d and Supple-
mentary Fig. S1). ToMATo significantly outperforms these
existing approaches in challenging scenarios when clus-
ters are close together (Fig. 1f). For easier problems
where clusters are well separated it performs equally well
(Supplementary Table S1). Moreover ToMATo is less
sensitive to small changes in the choice of free parameters
(Fig. 1e and Supplementary Fig. S2). Together these
results show that persistence based clustering is the high-
est performing and most stable of the tested algorithms for
SMLM cluster analysis.

Fig. 1. Persistence based clustering outperforms state-of-the-art for simulated
SMLM data. (a) Example simulation of four Gaussian clusters in close proximity
from the mixed density scenario. Detections are coloured by cluster and noise de-
tections are shown in black. Scale-bar 50nm. (b) Density is estimated for each
detection by counting the number of other detections within a fixed search radius,
here set to the optimal value (19nm). Detections are assigned to local maxima in
the density estimate by following the gradient of a graph formed by linking detec-
tions within the same search radius. These density modes form candidate clusters.
(c) ToMATo diagram showing the birth and death density for each density mode.
The vertical distance from the diagonal represents the persistence of the mode and
a threshold is chosen below which clusters are merged (dotted line). Here set to the
optimal value of 6 detections. The highest peak in each connected component of
the graph never dies and resides at death density−∞. (d) Optimal clustering result
across all tested parameters for the ToMATo and DBSCAN algorithms. (e) Perfor-
mance (percentage of correctly assigned detections) of ToMATo and DBSCAN for all
tested parameters. (f) Maximal algorithm performance across all tested parameters
for the low, mixed and high density simulations.
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Syk inhibition reduces the area of integrin α2β1 clus-
ters in platelets. Integrin α2β1, a platelet collagen re-
ceptor, accumulates at collagen fibres in spread platelets
(21) as shown in Supplementary Fig. S3. To demon-
strate the use of persistence based clustering on SMLM
datasets we segment nano-structures of α2β1 in platelets
seeded on collagen fibres (Fig. 2a,b and Supplemen-
tary Fig. S3). Within a single platelet, there are areas
with sparse or tightly packed α2β1 clusters due to differ-
ences in the underlying collagen distribution. This there-
fore represents a difficult multi-density segmentation prob-
lem. Stable platelet adhesion to collagen via α2β1 under
flow conditions is dependent on the presence of the cy-
toskeletal adapter protein talin, which links integrins to the
actin cytoskeleton (22, 23). We have disrupted the cortical
actin organisation using the tyrosine kinase Syk inhibitor
PRT060318 (24, 25), which we hypothesised would inter-
fere with α2β1 clustering on collagen fibres. Syk inhibi-
tion results in a significant reduction in mean cluster area,
however, no significant difference in cluster density was
observed (Fig. 2c).

Persistent homology quantifies topological
nano-structure. SMLM data is information rich and
contains more structural insight than is available through
cluster analysis alone. Here we use persistent homology
to extract complementary topological information from
the data. The concept of a graph can be extended to
a higher dimensional structure, known as a simplicial
complex. A simplicial complex is constructed from points,
lines, triangles, tetrahedrons and equivalent higher order
structures, collectively known as simplices. For SMLM
data we build the simplicial complex on top of the point
cloud formed by the detection list. There are a variety of
methods for building complexes but this work focuses on
the Rips complex, an abstract simplicial complex chosen
for it’s efficient computation and storage. If each point
within a candidate simplex (two points for a line and
three for a triangle) is within a distance, d, of every other
point, then the simplex is included in the complex. From
the Rips complex, topological features of the underlying
point cloud of different orders can be computed as a
function of scale, d. The first order is simply the number
of connected components in the complex. The second
order features correspond to the number of holes or loops.
When working with 3D datasets, the third order features
are enclosed voids.
Computing the topological structure within the detection
list at a single scale is not very informative; any given fea-
ture could be unstable due to small variations in scale and
it is not possible to capture multi-scale structure. To over-
come this the Rips complex is computed for a range of
scales, a process known as a filtration (Supplementary
Video 1 and Fig. 3a,b). To summarise the informa-
tion present in a filtration, the birth scale (emergence)
and death scale (closure) of each topological feature is
recorded in a persistence diagram (Fig. 3c). The more ro-

bust a feature is to changes in scale, the longer it persists,
and the greater the distance from the diagonal of the dia-
gram. Fragile features, typically noise, will be located close
to the diagonal. Therefore thresholding features by persis-
tence selects only the most robust, a procedure known as
persistent homology (17–19).
To test our persistent homology based workflow for SMLM,
realistic synthetic datasets were generated. Molecules
were distributed according to one of three scenarios; (i)
complete spatial randomness (CSR), (ii) Gaussian clus-
ters, or (iii) circular rings with molecules evenly distributed
on the circumference. Before performing persistent homol-
ogy it is advantageous to perform a cluster analysis to seg-
ment the data into nano-structures (Supplementary Fig.
S4). This reduces the effects of noise, and also the com-
putational cost. We used ToMATo to segment the clusters
and subsequently grouped topological features across all
clusters into a single persistent diagram per scenario (Fig.
3d and Supplementary Video 2). A single persistence
threshold was applied to all scenarios and the number of
significant holes, for each cluster, was counted (Fig. 3e).
ToMATo clustering was able to accurately segment clus-
ters and persistent homology showed that the number of
holes was significantly higher for the ring simulation, and
in most cases equal to the number of clusters. As ex-
pected no significant difference in cluster area was found
between Gaussian and ring clusters. Therefore standard
cluster statistics cannot distinguish between Gaussian and
ring clusters, whereas persistent homology clearly reveals
the key topological difference. Several clusters were found
in the CSR scenario due to artifacts such as multiple blink-
ing events. However the number of holes for these clusters
was not significantly greater than zero.
The topology of clusters, as defined by our workflow, can
be used to filter clusters for downstream analysis. For ex-
ample we can select all clusters with a single hole and find
the average radial distribution as shown for the ring sim-
ulations in Fig. 3f. Our workflow can also be applied to
3D SMLM datasets as demonstrated for equivalent simu-
lations in Supplementary Fig. S5 and Video 3.

Topological analysis of nuclear pore and endocytic
proteins. To evaluate our novel methods on real data we
focused on structures for which the topology has already
been well characterised through image based particle av-
eraging. This is appropriate as it facilitates a robust val-
idation of the proposed workflow. Specifically we choose
Nup107, a component of the nuclear and cytoplasmic rings
of nuclear pore complexes (26–28), and three different pro-
teins of the yeast endocytic machinery; Las17, Ede1 and
Sla1 (4).
Persistence based clustering was used as a pre-
processing step to segment either the nuclear pore com-
plex, or endocytic sites (Supplementary Fig. S6, S7, S8).
For Nup107 both 2D and 3D dSTORM datasets were ana-
lyzed. For the 2D dataset the resulting persistent diagram
shows a large number of holes above the threshold (Fig.
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Fig. 2. Syk inhibition reduces the mean
area of integrin α2β1 clusters. (a)
Platelets were seeded onto collagen fibers
and treated with either the Syk inhibitor
PRT060318, or a DMSO control. The sam-
ple was immunollabeled for integrin α2β1,
secondary labelled with AlexaFluor647,
and imaged using dSTORM. Persistence
based clustering (ToMATo) was used to
segment integrin α2β1 nano-structures.
Representative dSTORM image recon-
structions, density estimates and cluster
results (noise not shown). The search ra-
dius for the calculation of the density esti-
mate and linking graph was set to 20nm.
Scale-bar 500nm. (b) ToMATo diagrams
showing the birth and death density for
each mode. Dotted line shows the cho-
sen persistence threshold for merging of
modes (10 detections). (c) Mean clus-
ter area and cluster density. N = 3, four
fields of view per replicate. The entire field
of view was analysed and mean cluster
statistics were computed for all clusters in
a replicate. Comparisons by two-sample t-
test (*P < 0.05), error bars are mean ±
s.d.

4a). As expected most (65%) of the clusters have a single
hole topology. 32% of clusters have no significant holes
(Fig. 4b). These clusters could be a result of many scenar-
ios including clustered molecules not in a pore complex,
imaging artifacts, noise detections in the center of features
and variation in pore alignment. Filtering of clusters with a
single hole results in an average radial profile with a peak
at 60nm, reproducing the results of imaged based parti-
cle averaging (Fig. 4c) (28). When imaged in 3D both the
cytoplasmic and nuclear rings of the complex must be con-
sidered. If the cluster segmentation is able to split these
two rings each cluster will have a single hole. If a clus-
ter contains both rings the resulting structure will have two
holes and no enclosed voids. When our method is applied
to 3D data we observe large numbers of structures with
either single (36%), or two (16%) holes (Supplementary
Fig. S8). Very few structures had enclosed voids (2%).
Again there is a large number of structures with no topo-
logical features (39%).

In a recent study (4) the actin nucleation promoting factor
Las17, has been shown to have a clear ring profile when
many endocytic sites are averaged, whereas the coat pro-
tein Sla1 does not. It was also shown that Ede1 is re-
cruited to sites in the early staged of endocytosis, and
clusters are not uniform in size and shape, hence a ring
like topology is not clear from image based particle aver-
aging. We take data from this study, where endocytic pro-
teins in yeast were endogenously labeled with a photocon-
vertible fluorescent protein and imaged using a homebuilt

SMLM system, and apply our novel topological analysis
workflow. Figure Fig. 4d shows example cluster results
and persistence diagrams for all three proteins. From vi-
sual inspection of the diagrams it is clear that both Las17
and Ede1 clusters have large numbers of holes, whereas
Sla1 clusters do not. Quantification of the percentage of
clusters with holes reveals a significant difference between
Las17 and Sla1, and Ede1 and Sla1, but not Las17 and
Ede1 (Fig. 4e). The averaged radial profile of single hole
clusters for Las17 has a clear ring profile with maximum
at 50nm, confirming the results of imaged based analy-
sis (Fig. 4f). Together these results demonstrate that our
method is able to accurately and efficiently quantify nano-
scale topology in SMLM datasets.

RSMLM: R package for analysis of SMLM datasets.
To complement this study we have released RSMLM,
an R package for the pointillist based analysis of SMLM
data. This package includes the methods described in
this paper for persistent clustering (ToMATo), alongside
DBSCAN, Voronoï tessellation and Ripley’s K based clus-
tering. There is also the capacity to simulate dSTORM
data. This library will provide an adaptable framework for
analysing and batch processing both 2D, and 3D, SMLM
datasets. Binder ready Jupyter notebook tutorials are pro-
vided to facilitate easy use of the package. The functional-
ity of the library can also be included within KNIME work-
flows using simple R-snippets. This enables users without
any scripting knowledge to access the core functionality.
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Fig. 3. Persistent homology for topological analysis of clusters in SMLM datasets. (a) Simple example where detections are spaced evenly on the circumference of two
circles. Scale-bar 10 arbitrary units (a.u.). (b) Building a filtration. Balls of varying diameter were placed at each detection (top) and the Rips complexes (bottom) were
determined by the overlap of these balls. The filtration was evaluated for all integer values between 1 and 60a.u.. Without the filtration, it would be difficult to choose a scale
which fully encapsulates the clustering and topology of the data. Simplex colour is set by the detection density estimate and is only for display purposes. (c) The persistence
diagram summarises structure within the filtration. The birth and death scales for each hole are shown. The persistence threshold is shown as a dotted line and there are two
significant holes above this threshold. (d) Simulations for randomly distributed molecules, Gaussian clusters and rings with 60nm radius were segmented using ToMATo. For
each cluster a filtration was constructed and the corresponding persistence diagrams are shown. All holes have been grouped into a single persistence diagram per scenario.
A single persistence threshold of 20nm was applied (dotted line). Scale-bar 100nm. (e) Mean number of clusters, cluster area and number of holes. Error bars are mean ±
s.d.. (f) Averaged radial distribution for all clusters with a single hole from the ring simulation. As expected the peak of the profile lies as 60nm.

Discussion

The mathematical field of topological data analysis pro-
vides a powerful framework for structural analysis of
SMLM data. We have introduced tools using both persis-
tence based clustering (16) and persistent homology (17)
to quantify biological nano-structure. ToMATo provides su-
perior segmentation performance over existing algorithms
for SMLM data when either structures vary in density, or
are close together (8, 11–13). We argue that biological
nano-structure is rarely simple and for many applications
these conditions will be commonplace, as we show for
clustering of collagen receptors in platelets. Moreover se-
lection of free parameters is less sensitive for persistence
based clustering, and can be guided by ToMATo diagrams.
Whilst Bayesian approaches (14) to parameter setting are
very powerful when the underlying nano-structure can be
modeled in advance, it is not suitable for exploratory ap-
plications where the nanostructure is not known a priori.
The core concepts in this work could also be transferred
to other clustering approaches which could be extended to
threshold on persistence. For example the Ripley K func-
tion or Voronoï tesselation could be used to calculate the
density estimate. The dual graph of the tessellation could
also be used to link detections resulting in an algorithm

with only one free parameter, providing an interesting av-
enue for further research.

Persistent homology is designed to reveal topological
structure within pointillist datasets and has natural applica-
tions for the analysis of SMLM data, as also demonstrated
in parallel work (29). Our novel framework moves beyond
per cluster statistics such as area and density to reveal
new information about the underlying topological features
within segmented nano-structures. Importantly, this is a
multi-scale approach, revealing unbiased structural infor-
mation at a range of distance scales simultaneously. Val-
idation of these approaches was performed using nuclear
pore and endocytic site proteins. Similar structural infor-
mation can be gained from SMLM data by image based
particle averaging (4, 28). However persistent homology
can be used in cases where particle averaging methods
may fail, for example, where the underlying structures vary
in shape or size but maintains a constant topology. Persis-
tent homology can also quantify the structure of individual
clusters, not just average ensembles, and is suitable for
studying smaller datasets. Finally image-based analysis
workflows are typically complex with many pre-processing
steps specific to the application. Our streamlined work-
flow requires minimal adaptation for different datasets as
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Fig. 4. Persistent homology quantifies the topological configuration of biological nano-structures. (a) Topological analysis of Nup107-Snap-AlexaFlour647 imaged using
dSTORM. Cropped field of view showing clustering result and example Rips complex evaluated at 40nm. Scale-bar 100nm. A threshold of 15nm was chosen for the
persistence digram (dotted line). (b) Percentage of Nup107 clusters with specified topological configuration. (c) Averaged radial distribution for all clusters with a single
significant hole. Peak at 50nm. (d) Topological analysis of the endocytic proteins Las17, Ede1 and Sla1 in yeast. Cropped fields of view showing clustering results and
example Rips complexes evaluated at 30nm . Persistence threshold was set to 15nm (dotted lines). (e) Mean cluster area and the percentage of clusters with significant holes.
Twenty fields of view were analysed. Statistics performed by one-way ANOVA and subsequent tests for multiple comparisons using the Bonferroni method (***P < 0.001).
Error bars are mean± s.d.. (f) Averaged radial distributions for all clusters with a single significant hole. Peak for Las17 profile at 50nm.

demonstrated throughout this study.
Our methods for persistence based clustering and persis-
tent homology have been implemented and validated in
both 2D and 3D. This framework is applicable for a wide
range of problems, revealing new topological information
and unprecedented insight into biological nano-structure
not attainable from existing tools.

Methods
ToMATo clustering. Detection density estimates were cal-
culated by counting the number of other detections within a
specified radius. This was implemented using the R pack-
age dbscan which uses the C++ library ANN to employ
a k-d tree framework for efficient computation. Density
modes were calculated using a hill climbing approach and
a Rips graph (20). Modes were then merged or desig-
nated as noise based on a specified persistence threshold.
This was implemented by adapting C++ scripts (GPLv3)
described in (16). C++ functions were incorporated into
RSMLM using the R package Rcpp. For algorithm com-
parison the search radius ranged from 1 to 50nm, and the
persistence threshold from 0 to 50 detections.

Other clustering algorithms. Density based spatial clus-
tering of applications with noise (DBSCAN) was imple-

mented using the R package dbscan (13). Edge detec-
tions were included in clusters. For algorithm comparison
the search radius ranged from 1 to 50nm, and the density
threshold from 1 to 100nm.
Ripley K based clustering was implemented by finding the
number of detections within a specified search radius, r,
and using this to calculate the Ripley L function, L(r), for
each detection (30). L(r)−r was subsequently used as a
density estimate and thresholded (8). Filtered detections
were grouped into clusters by finding the connected com-
ponents of the graph formed by linking all filtered detec-
tions within r (14). For algorithm comparison the search
radius, r, ranged from 1 to 50nm, and the L(r)−r thresh-
old from -10 to 30.
Voronoï tesselations were calculated using the R package
deldir. Tesselation based clustering was implemented by
removing all tiles where the normalised detection density
was below a specified threshold. Density was either de-
fined as the inverse of tile area (Voronoï zero) (12), or the
inverse of mean first rank tile area (Voronoï 1st) (11). Mean
first rank tile area is defined as the mean area of the spec-
ified tile and all adjacent tiles. Density estimates were nor-
malised by dividing by the mean density across the full field
of view. After removing tiles from the tessellation, clusters
were formed from the connected components of the dual
graph (the Delaunay triangulation). For algorithm compar-
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ison the normalised density thresholds ranged from 1 to
5.

Persistent homology. Rips filtrations and persistence di-
agrams were computed using the R package TDA which
employs the C++ library GHUIDI (31, 32). When the den-
sity of points in a persistence diagram was too high for a
simple plot, features were grouped into a joint histogram
with 1nm2 bins and displayed using a heat-map. Visuali-
sations of Rips complexes were created using plex-viewer
(https://github.com/atausz/plex-viewer) and the Java li-
brary javaPlex (33). Filtration movies were created using
POV-Ray.

Cluster measurements. Cluster area and volume were
calculated using the convex hull of all detections in a clus-
ter. Cluster density was defined as the number of cluster
detections divided by the cluster area (volume in 3D). The
number of holes per cluster was defined as the number
of second order topological features in the corresponding
persistence diagram above a specified persistence thresh-
old. Similarly, the number of voids corresponds to the num-
ber of third order features above a specified persistence
threshold.

Radial averaging of clusters. Clusters were filtered for a
specified topology, for example clusters with a single hole.
For each filtered cluster the intensity weighted center of
mass (COM) was found. For each detection in a cluster the
radial distance to the corresponding COM was calculated.
To produce the average radial distribution these distances
were grouped into 10nm bins (ranging from 0-150nm). To
normalise the distribution the value for each bin was di-
vided by the corresponding area (πr2

2 −πr2
1), before scal-

ing between 0 and 1. r2 is the bin maximum, and r1 the
bin minimum.

dSTORM simulations. Fluorophore blinking characteris-
tics were modeled using a geometric distribution with prob-
ability of transition to the dark state set to 0.5 (34). Sim-
ulated molecules were bound to an average of 5 fluo-
rophores, randomly distributed between molecules. The
localisation uncertainty for each blinking event was de-
termined using a normal distribution centered on the
molecule position. Standard deviation for localisation un-
certainty was set using a log-normal distribution with mean
2.8 and standard deviation 0.28 (experimentally measured
parameters for AlexaFluor647) (35). Detection rate for
blinking events was set to 70%. 10% false detections
(noise) were added and distributed randomly across the
field of view.

Simulation of data for comparison of clustering algo-
rithms. Simulations for low, high and mixed (a mixture of
high and low) density clusters were generated, either in
close proximity or well separated. For each of these six
scenarios four Gaussian clusters were placed on a field of

view of size 400nm2 for well separated clusters, 300nm2

otherwise. The standard deviation for low and high den-
sity clusters was set to 5nm and 20nm respectively. For
mixed density simulations two high density and two low
density clusters were generated. For well separated sim-
ulations all clusters were separated by 200nm. Otherwise
low and high density clusters were separated by 100nm
and 60nm respectively. After generating molecule loca-
tions the dSTORM imaging process was simulated. Sim-
ulations were repeated twenty times and algorithm perfor-
mance, for a given parameter set, was averaged across all
repeats.

Simulation of nano-structures for topological analysis.
For ring simulations 40 molecules were even spaced on
the circumference of a circle with radius 60nm. For hollow
sphere simulations 100 molecules were randomly placed
on the surface of a sphere with radius 75nm. The stan-
dard deviation for Gaussian clusters was set to the ring
(or sphere) radius / 1.5 (87% of molecules will lie within
the radius). For all scenarios five clusters were distributed
on a 1µm2, or 1µm3, field of view according to a uniform
random distribution, with re-selection if closer to another
cluster than the diameter of the ring (or sphere). For ran-
domly distributed simulations molecules were placed on
the field of view according to complete spatial random-
ness. There where 200 and 500 molecules per field of
view for the 2D and 3D simulations respectively. After gen-
erating molecule locations the dSTORM imaging process
was simulated. Simulations were repeated twenty times
for each scenario.

Platelet preparation and spreading. Human washed
platelets were prepared from blood samples donated
by healthy, consenting volunteers (local ethical review
no: ERN-11-0175). Blood was drawn via venipunc-
ture into sodium citrate as the anticoagulant and then
acid/citrate/dextrose (ACD) added to 10% (v:v). Blood was
centrifuged at 200xg for 20 minutes. Platelet rich plasma
(PRP) was removed and then centrifuged at 1000xg for 10
min in the presence of 0.1 µg/ml prostacyclin. Plasma was
removed and the platelet pellet was resuspended in mod-
ified Tyrode’s buffer (134mM NaCl, 0.34mM Na2HPO4,
2.9mM KCl, 12mM NaHCO3, 20mM HEPES, 5mM glu-
cose, 1mM MgCl2; pH 7.3) containing ACD and 0.1µg/ml
prostacyclin before being centrifuged for 10 min at 1000xg.
The washed platelet pellet was resuspended in modified
Tyrode’s buffer, left to rest for 30 min and the platelet count
adjusted to 2× 107 platelets/ml.

Platelet spreading and immunolocalisation. Glass-
bottom MatTek dishes were coated with 10µg/ml Horm
collagen (diluted in manufacturer supplied diluent; Takeda,
UK) overnight at 4◦C before being blocked in 5mg/ml BSA
for 1 hour at room temperature. Washed platelets were
added to the dishes and allowed to spread for 45 minutes
at 37◦C before the addition of the Syk inhibitor PRT060318
(10µM) or DMSO control, each diluted in modified Tyrode’s
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buffer. The platelets were returned to 37◦C for a further 5
minutes before being washed once in PBS and then fixed
in 10% formalin solution for 10 min. Following PBS washes
the platelets were permeabilised with 0.1% Triton X-100
for 5 min and then washed in PBS and blocked for 30 min
in block buffer (1% BSA, 2% goat serum in PBS). The
platelet integrin α2β1 was immuno-labelled with 5µg/ml
anti-CD49b (clone 16B4; AbD Serotec) diluted in block
buffer for 1 hour at room temperature. Platelet integrin
α2β1 was secondary labelled with anti-mouse-Alexa647
and F-actin was labelled with phalloidin-Alexa488 (both In-
vitrogen and diluted 1:300 in block buffer). Platelets were
washed and stored in PBS.

dSTORM imaging of platelet integrin α2β1. Labelled
platelets were imaged on a Nikon N-STORM system us-
ing a 100 x 1.49NA TIRF objective. The system contains a
Ti-E stand with Perfect Focus, Andor iXon Ultra DU-897U
EMCCD camera and an Agilent ML400 high power laser
bed. DIC and TIRF images of the platelets were taken to
identify areas containing platelets and collagen fibres. To
induce fluorophore blinking of the Alexa647 labelled inte-
grin, platelets were imaged in a PBS-based buffer contain-
ing 100 mM MEA, 50ug/ml glucose oxidase and 1ug/ml
catalase, pH 7.5, as detailed in (36). For each image,
20,000 frames were captured using NIS Elements 4.2 with
an exposure time of 20ms, gain 300 and conversion gain
3.
Detections were localised using the ThunderSTORM plu-
gin for Fiji with a Gaussian PSF model and maximum likeli-
hood fitting (37). Image visualisations were produced with
the normalised Gaussian method.

Nup107 and endocytic protein datasets. 2D and 3D
SMLM Nup107 data was recently published and described
in (26) where Nup107–SNAP–Alexa Fluor 647 was im-
aged using dSTORM in U-2 OS cells. 3D localiazation was
achieved using an experimental PSF model.
SMLM datasets for Las17, Ede1 and Sla1 were recently
published and described in (4). In short endocytic proteins
were endogenously tagged with the photoconvertible pro-
tein mMalple (38) in budding yeast strains and imaged in
high-throughput using a homebuilt SMLM imaging system
(39).

Detection filtering. Detections in the integrin α2β1 and
Nup107 datasets were filtered by intensity with a mini-
mum value of 1000 photons. For all real data detections
that were found in consecutive frames within a distance of
75nm were grouped into a single detection.

Code availability. RSMLM has been released under the
GNU General Public License v3.0 and is available at
https://github.com/JeremyPike/RSMLM. Tutorials for this li-
brary implemented as Binder ready Jupyter notebooks
are available at https://github.com/JeremyPike/RSMLM-
tutorials.
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Supplementary Note 1: Supplementary Figures and Tables

Algorithm Low Mixed High Low Sep. Mixed Sep. High Sep.

ToMATo 87 89 90 94 95 96
DBSCAN 77 65 76 94 95 96
Ripley K 59 69 61 94 95 96
Voronoi, 1st 52 52 52 88 90 93
Voronoi, zero 56 56 55 91 92 94

Table S1. Performance of clustering algorithms was quantified as the percentage of correctly assigned detections. Six different
scenarios were simulated: low, mixed and high density clusters either in close proximity, or well separated (Sep.). For each scenario
twenty simulations were analyzed and the maximal performance (averaged across simulations) for all parameter sets is shown.
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Fig. S1. Example cluster results for each simulation scenario and algorithm. For each algorithm the result with the highest performance
across all tested parameters is shown.
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Fig. S2. Heatmaps showing the performance of each clustering algorithm across all clustering scenarios and parameter sets. Perfor-
mance is defined as the percentage of correctly assigned detections and was averaged across twenty simulations.
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Fig. S3. Imaging of integrin α2β1 by dSTORM. Platelets were seeded on collagen fibers and treated either with PRT060318, or DMSO
(control). Representative widefield, DIC and dSTORM images are shown. Collagen fibers can be seen in the DIC image. Scale-bar
500nm.

Fig. S4. Persistence based clustering as a pre-processing step for topological analysis. (a) Detection density for simulations of randomly
distributed molecules, Gaussian clusters and rings were estimated by counting the number of other detections within 30nm. Scale-bar
100nm. (b) ToMATo diagrams showing the birth and death coordinates for all density mode. For unbiased visualisation modes across
repeated simulations have been grouped. A persistence threshold of 20nm was used to merge modes into clusters (dotted line). (c)
Final clustering results after merging. Noise points are shown in black.
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Fig. S5. Persistence based clustering and persistent homology for analysis of 3D SMLM datasets. (a) Example simulations for
randomly distributed molecules, Gaussian clusters and hollow spheres with radius 75nm. Detection density was estimated by counting
the number of other detections within 40nm. ToMATo diagrams were used to select a persistence threshold for merging of density modes
(27.5 detections, dotted line). After merging of density modes to produce the clustering result persistent homology was performed to
produce persistence diagrams for both 2D (holes) and 3D (enclosed voids) features. Features from all clusters were grouped into a
single diagram per scenario and dimension. Persistence thresholds of 30nm and 10nm were selected for holes and voids respectively.
(b) Number of clusters, mean cluster area, number of holes and number of voids. The number of voids is higher for the hollow sphere
simulation and there was no significant difference in the number of holes between the Gaussian and sphere simulations. This is
consistent with the topology of the simulated structures as a hollow sphere has a single enclosed void but no holes. As expected the
cluster area is lower for the sphere simulation. Error bars are mean ± s.d.. (c) Averaged radial distribution for all clusters with a single
void from the spherical simulation. Peak at 80nm.

14 | bioRχiv Pike et al. | TDA quantifies biological nano-structure

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2018. ; https://doi.org/10.1101/400275doi: bioRxiv preprint 

https://doi.org/10.1101/400275
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. S6. Persistence based clustering of nuclear pore component Nup107 in 2D. (a) Density estimate was calculated using a search
radius of 25nm. Representative cropped field of view shown. Scale-bar 100nm. (b) ToMATo diagram showing all density modes.
Persistence threshold set to 25 detections (dotted line). (c) Result of ToMATo clustering to segment nuclear pore complexes. Clusters
were filtered by number of detections (20 − 400) and area (π× 402 −π× 1002nm2).

Fig. S7. Persistence based clustering of endocytic proteins; Las17, Ede1 and Sla1. (a) Density estimates were calculated using a
search radius of 40nm. Representative cropped field of view shown. Scale-bar 100nm. (b) ToMATo diagrams showing density modes.
Persistence threshold set to 20 detections (dotted lines). All fields of view grouped into a single diagram per condition. (c) Result of
ToMATo clustering to segment endocytic sites. Clusters were filtered by number of detections (20+) and area (π×302 −π×1302nm2).
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Fig. S8. Clustering and topological analysis of nuclear pore component Nup107 in 3D. (a) Density estimate was calculated using a
search radius of 50nm. Representative cropped field of view shown as a projection and 3D scatter-plot. (b) ToMATo diagram where
a persistence threshold of 25nm was applied (dotted line). (c) Result of ToMATo clustering to segment nuclear pore complexes in 3D.
Clusters were filtered by number of detections (20−400) and volume (4/3π×403 −4/3π×1503nm3). (d) Persistence diagrams for 2D
and 3D topological features. Thresholds of 20nm and 15nm were chosen for holes and voids respectively. (e) Percentage of clusters
with a given topological configuration. Specified in terms of number of holes (H) and voids (V) per cluster.
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