
Figure 6: SAUCIE produces patient manifolds from single-cell cluster signatures. Top row)
The patient manifold identified by SAUCIE cluster proportions, visualized by kernel PCA with
acute, healthy, convalescent, and all subjects combined from left to right. The healthy manifold
overlaps with the convalescent manifold to a much higher degree than the acute manifold. Mid-
dle row) The same patient manifold shown colored by each patient’s cluster proportion. Cluster
1 is more prevalent in acute, cluster 3 in healthy, cluster 5 is ubiquitous, and cluster 9 is rare and
in acute patients. Bottom row) A comparison of the cluster proportion for acute (X-axis) versus
convalescent (Y-axis) for patients that have matched samples.
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merging all clusters i, j 2 C, where C is the set of all clusters, such that both of the following
equations hold

argmin

⇠2C
MMD(i, ⇠) = j (2)

argmin

⇠2C
MMD(j, ⇠) = i (3)

This merging finds clusters that would be a single cluster in another granularity and fixes them
to a single cluster.

4.1.5 Patient Manifold Visualization

In addition to the cell-level manifold constructed by SAUCIE, we also consider the geome-
try between samples to provide a coarser patient-level manifold. We construct and embed this
manifold in low dimensions by applying kernel-PCA (kPCA) [60] with an RBF kernel to the
metric space defined by MMD distances between subjects. This augments the analysis SAUCIE
provides of the biological variations identified in the cell space with an analysis of the variation
in the patient space. Normally, without batch correction, the two sources of variation would
be confounded, and batch effects would prevent clear analysis at either level (patient or cell)
across batches. With our approach here we are able to separate them to provide on one hand, a
stable (batch-invariant) cell-level geometry by the SAUCIE embedding, and on the other hand,
a robust patient geometry provided by kPCA embedding. The patient geometry then allows us
to recover patient-level differences and utilize them further for data exploration, in conjunction
with the cell-level information. For example, as Figure 6A shows, we have a notable stratifica-
tion between the acute and non-acute subjects. There is also a noticeable difference between the
convalescent subjects and the acute, albeit a less drastic one than the difference between acute
subjects and the others.

4.1.6 Training

To perform multiple tasks, SAUCIE uses a single architecture as described above, but is run
and optimized sequentially. The first run imputes noisy values and corrects batch effects in the
original data. This preprocessed data is then run through SAUCIE again to obtain a visualization
and to pick out clusters. The different runs are done by optimizing different objective functions.
In the following, we describe the optimization of each run over a single batch of n data points.
However, the full optimization of each run independently utilizes multiple (mini-)batches in
order to converge and minimize the described loss functions.

For the first run, formally let X be an n ⇥ d input batch, where each row is a single data
point, and d is the number of features in the data. It is passed through a cascade of encoding
linear and nonlinear transformations. Then, a cascade of decoding transformations reconstruct
the denoised batch ˆ

X , which has the same dimensions as the input X and is optimized to
reconstruct it.
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For the next run, the cleaned batch ˆ

X is passed through encoding transformations and a
visualization layer denoted by V 2 n⇥2. We also consider a clustering layer in another run
where the decoder outputs near-binary activations B 2 n⇥dB , where d

B

is the number of
hidden nodes in the layer, which will be used to encode cluster assignments, as described below.
The activations in B are then passed to the reconstruction ˜

X that has the same dimensions as ˆ

X

(and X) and is optimized to reconstruct the cleaned batch.
The loss function of all runs starts with a reconstruction loss L

r

forcing the autoencoder to
learn to reconstruct its input at the end. SAUCIE uses the standard mean-squared error loss (i.e.,
L

r

(X,

ˆ

X) =

1
n

P
n

i=1 kxi

� x̂

i

k2, where x
i

and x̂

i

are the i-th row of X and ˆ

X correspondingly).
We note that while MSE is a standard and effective choice in general, other loss functions can
also be used here as application-specific substitutes that may be more appropriate for particular
types of data. For the first run, we add to this loss a regularization term L

b

that enables SAUCIE
to perform batch correction. This regularization is computed from the visualization layer to
ensure consistency across subsampled batches. The resulting total loss is then

L = L

r

(X,

ˆ

X) + �

b

· L
b

(V ).

The loss function of the clustering run then optimizes L

r

along with two regularization terms
L

c

and L

d

that together enable SAUCIE to learn clusters:

L = L

r

(

ˆ

X,

˜

X) + �

c

· L
c

(B) + �

d

· L
d

(B,

ˆ

X).

The first term L

c

guides SAUCIE to learn binary representations via the activations in B using
a novel information dimensionality penalty that we introduce in this paper. The second term L

d

encourages interpretable clusters that contain similar points by penalizing intra-cluster distances
in the cleaned batch ˆ

X , which is fixed for this run.

4.1.7 Runtime Comparison Methodology

For each visualization, clustering, and imputation method, the dataset of size N was given to
the method as input and returned the appropriate output. For batch correction, the dataset of
size N was divided into two equal-sized batches that were corrected. For the methods that
operated on minibatches, minibatches of size 128 were used. For the methods that train by
stochastic gradient descent, the number of steps was determined by taking the total number of
points and dividing by the size of the minibatch, so that a complete pass through the entire
dataset was performed. In order to return clusters, the latent space of scVI must be clustered by
another method, and since the number of clusters is not known ahead of time, the fastest method
that does not require this to be known (Phenograph) was used. For SAUCIE, batch correction,
imputation, clustering, and visualization were all produced in the timed run. All computations
were performed on a single machine with 16 CPU cores and a GeForce GTX 1080 GPU.
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4.2 Experimental methods

4.2.1 Study Subjects

Dengue patients and healthy volunteers were enrolled with with written informed consent under
the guidelines of the Human Investigations Committees of the NIMHANS and Apollo Hospital,
and Yale University [19]. The Human Investigations Committee of each institution approved
this study. Patients with dengue virus infection were defined as dengue fever using WHO-
defined clinical criteria, and/or laboratory testing of viral load or serotyping at the time of
infection. Healthy volunteers included household contacts of dengue patients present in the
same endemic area. Participants were of both genders (26.7% female) and were all of Indian
heritage. Subjects from the symptomatic and healthy groups were not statistically different for
age, gender, or race in this study.

4.2.2 Sample Collection and Cell Isolation

Heparinized blood was collected from patients and healthy volunteers and employed a 42
marker panel of metal conjugated antibodies following methods previously described [61, 62].
Purification of peripheral blood mononuclear cells (PBMCs) was performed by density-gradient
centrifugation using Ficoll-Paque (GE Healthcare) according to the manufacturer’s instructions
following isolation and cryopreservation guidelines established by the Human Immunology
Phenotyping Consortium. PBMCs for CyTOF were frozen in 90% FBS containing 10% DMSO
and stored in liquid N2 for shipping following the guidelines of the DBT. Samples for this study
were received in three shipments and viability was average 85% (range 50�98) across the dates.

4.2.3 Mass Cytometry Acquisition

For mass cytometry at Yale University, PBMCs (5 x 106 cells/vial) were thawed incubated in
Benzonase (50U/ml) in RPMI/10% human serum, and seeded in 96-well culture plate (6 x 103-
1.2 x 106 cells/well. Monensin (2µM, eBioscience) and Brefeldin A (3µg/ml, eBioScience)
added for the final 4 h of incubation for all groups. Groups of samples (8-13/day) were infected
in vitro per day on 5 separate days and included a CD45-labeled spike-in reference sample in
every sample. Surface markers were labeled prior to fixation and detailed staining protocols
have been described. Briefly, cells were transferred to 96-well deep well plates (Sigma), resus-
pended in 25 µM cisplatin (Enzo Life Sciences) for one minute, and quenched with 100% FBS.
Cells were surface labeled for 30 min on ice, fixed (BD FACS Lyse), and frozen at �80°C.
Intracellular labeling was conducted on batches of cells (12/day). Fixed PBMCs were perme-
abilized (BD FACS Perm II) for labeling with intracellular antibodies for 45 min on ice. Cells
were suspended overnight in iridium interchelator (125 nM; Fluidigm) in 2% paraformaldehyde
in PBS and washed 1X in PBS and 2X in H2O immediately before acquisition. A single batch
of metal-conjugated antibodies was used throughout for labeling panels. Metal-conjugated an-
tibodies were purchased from Fluidigm, Longwood CyTOF Resource Core (Cambridge, MA),
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or carrier-free antibodies were conjugated in house using MaxPar X8 labeling kits according
to manufacturer’s instructions (Fluidigm). A total of 180 samples were assessed by the Helios
(Fluidigm) on 15 independent experiment dates using a flow rate of 0.03 ml/min in the presence
of EQ Calibration beads (Fluidigm) for normalization. An average of 112, 537 ± 71, 444 cells
(mean ± s.d.) from each sample were acquired and analyzed by CyTOF. Data was preprocessed
with the hyperbolic sine transformation. Additional experimental details will be given in [19].

4.3 Grant Support

This work was supported in part by awards from the NIH (AI089992), the Indo-U.S. Vaccine
Action Program. It was also supported by the CZI grant for computational tools.

5 Software

SAUCIE is written in Python using the Tensorflow library for deep learning. The source code
is available at https://github.com/KrishnaswamyLab/SAUCIE/.
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