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24 ABSTRACT
25 The scientific literature is vast, growing, and increasingly specialized, making it difficult to 

26 connect disparate observations across subfields. To address this problem, we sought to develop 

27 automated hypothesis generation by networking at scale the MeSH terms curated by the National 

28 Library of Medicine. The result is a Mesh Term Objective Reasoning (MeTeOR) approach that 

29 tallies associations among genes, drugs and diseases from PubMed and predicts new ones. 

30 Comparisons to reference databases and algorithms show MeTeOR tends to be more reliable. We 

31 also show that many predictions based on the literature prior to 2014 were published 

32 subsequently. In a practical application, we validated experimentally a surprising new 

33 association found by MeTeOR between novel Epidermal Growth Factor Receptor (EGFR) 

34 associations and CDK2. We conclude that MeTeOR generates useful hypotheses from the 

35 literature (http://meteor.lichtargelab.org/).

36 AUTHOR SUMMARY
37 The large size and exponential expansion of the scientific literature forms a bottleneck to 

38 accessing and understanding published findings. Manual curation and Natural Language 

39 Processing (NLP) aim to address this bottleneck by summarizing and disseminating the 

40 knowledge within articles as key relationships (e.g. TP53 relates to Cancer). However, these 

41 methods compromise on either coverage or accuracy, respectively. To mitigate this compromise, 

42 we proposed using manually-assigned keywords (MeSH terms) to extract relationships from the 

43 publications and demonstrated a comparable coverage but higher accuracy than current NLP 

44 methods. Furthermore, we combined the extracted knowledge with semi-supervised machine 

45 learning to create hypotheses to guide future work and discovered a direct interaction between 

46 two important cancer genes.

47

48

49
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50 INTRODUCTION
51 It is difficult to keep abreast of new publications. Currently, PubMed contains over 28 million 

52 papers (http://www.ncbi.nlm.nih.gov/pubmed)—3 million more than three years ago. This steady 

53 accumulation of findings gives rise to a large number of latent connections that Literature-Based 

54 Discovery (LBD) seeks to systematically recognize and integrate [1], such as Swanson’s original 

55 finding linking fish oil to the treatment of Raynaud’s disease [2]. Since this original analysis, 

56 LBD has been extensively replicated, automated and expanded [3-10], leading to new patterns of 

57 inference – e.g. locating opposing actions of a disease and a drug on given physiological 

58 functions [11] – and to new discoveries [12]. Successes include the automated discovery of 

59 protein functions [13, 14] and of the genetic bases of disease [15, 16], as well as the stratification 

60 of patient phenotypes [17] and outcomes [18].

61 A limitation of LBD, however, is its dependence on knowledge extraction. It either relies 

62 on human curation, which is not scalable, or on comprehensive text-mining, for which 

63 algorithms are less accurate [19, 20]. One of the largest curated multi-modal biomedical data 

64 sources is the Comparative Toxicogenomics Database (CTD). CTD relied on five full-time 

65 biocurators to curate 70-150 articles a day [21] and gather drug-gene, drug-disease, and gene-

66 disease associations from 88,000 articles, or about 0.3% of PubMed. By contrast, Natural 

67 Language Processing (NLP) combines semantic analysis of word meaning with syntactic 

68 knowledge of word grammar to break down sentences into biomedical associations. It 

69 automatically extracts knowledge from the entire literature without human supervision [22, 23], 

70 and it is improving [24] but still much less accurate than human curation [23, 25]. 

71 To combine the benefits of human curation with the scalability of text-mining, we note 

72 that an exhaustive manual curation of PubMed articles already exists. In order to facilitate article 

73 indexing and retrieval, curators at the National Library of Medicine assign Medical Subject 

74 Headings (or MeSH terms) and Supplemental Concept Records (SCR) to every PubMed article. 

75 These terms (https://www.nlm.nih.gov/pubs/factsheets/mesh.html) summarize key biomedical 

76 concepts for each paper, and to expand coverage and refine relevance, they are revised annually 

77 (or daily for SCRs) [26] (https://www.nlm.nih.gov/pubs/factsheets/mesh.html). The co-

78 occurrence of MeSH terms with text-mined gene names was used to cross-reference genes and 

79 predict diseases that shared disease characteristics and chromosomal locations [27, 28].  

80 Unfortunately, this was dependent on NLP for the identification of the genes (due to a reported 
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81 low-coverage of gene MeSH terms in 2003) and required additional databases of information for 

82 chromosomal locations. Another study suggested that weighting MeSH terms (TF*IDF) was 

83 beneficial [29]. More recently, MeSH term co-occurrence was analyzed with various 

84 unsupervised and supervised techniques to make retrospective and prospective hypothesis [30] 

85 that predicted future associations between MeSH terms accurately [30]. This approach used all 

86 MeSH terms, including broad terms such as “Proteins”, but not SCR. Unfortunately, the 

87 individual terms were not mapped to canonical gene and drug terms, such as HGNC[31] and 

88 PubChem [32] identifiers restricting comparisons to curated datasets. Overall, the use MeSH 

89 terms in LBD has been limited in a few applications with regards to gene accuracy/coverage, 

90 selection and mapping of MeSH terms, and  comparisons to curated datasets.

91 To improve on the generality, scalability and accuracy of these approaches we sought to 

92 comprehensively use MeSH terms for genes, to add the information from SCRs, and to perform 

93 thorough comparisons against biological standards and among the latest NLP methods. We also 

94 developed a robust unsupervised link prediction algorithm and experimentally tested a top 

95 prediction. The result is a literature-derived network called MeTeOR (the MeSH Term Objective 

96 Reasoning approach), which represents gene-drug-disease relationships exclusively from MeSH 

97 term and SCR co-occurrence. We show below that MeTeOR supplements knowledge from 

98 reference databases and more accurately recovers known relationships than traditional text-

99 mining. Pairing the MeTeOR network with Non-Negative Matrix Factorization (NMF), an 

100 unsupervised machine learning algorithm, significantly improved LBD performance. 

101

102 RESULTS
103 Developing a literature-based network from MeSH terms
104 In order to represent published biological associations among genes, drugs, and diseases, 

105 we took the Medical Subject Headings (MeSH) and Supplemental Concept Records (SCR) 

106 assigned to more than 21,531,000 MEDLINE articles by the National Library of Medicine 

107 (NLM) (Supplemental Fig. 1). MeSH terms facilitate indexing and searching, and SCR terms 

108 were created to identify drugs too numerous to be directly added as MeSH terms. (SCR terms 

109 also represent diseases and genes, among other topics.) Each distinct MeSH and SCR term 

110 became one of 276,000 nodes with 286 million term-article relationships. Nodes that co-occurred 

111 in a paper were fully connected into a clique for each article, and cliques were joined when they 
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112 shared nodes across articles (Figure 1A). This generated a single network with 129 million term-

113 term non-overlapping edges in which the number of articles that gave rise to a given pair of 

114 nodes measures the confidence of their association. Of these nodes, 39% mapped to 89,000 

115 drugs, 4,800 diseases, and 13,000 genes, forming 9 million edges. The network consisted 

116 primarily of genes (12%) and drugs (82%), but, given the focus of much biomedical research on 

117 disease, 56% of edges contained a disease (Figure 1B). As articles get added to MEDLINE, the 

118 network can be updated as soon as they have been annotated by the NLM. 

119 This network was too visually dense to interpret, even when focusing on only high-

120 confidence relationships (conf. >200 articles, degree >3) (Figure 1C). The complexity of the 

121 network and the presence of complete cliques at the article-level led us to evaluate the network’s 

122 topology. When limited to genes, drugs, and diseases, MeTeOR best fits a scale-free network 

123 with a power-law distribution of node degrees, where γ ≈ 1.34 (p-value << 10-35 compared to log-

124 normal and exponential distributions; Supplemental Fig. 2) [33] and some nodes have a much 

125 higher node degree, i.e. greater connectivity.  The presence of such hubs is a common feature of 

126 real-world networks [34]. MeTeOR thus condenses PubMed knowledge into a computable and 

127 well-structured network that is amenable to analysis by established network algorithms.
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129 Figure 1. MeSH terms can provide a reliable approximation of biomedical knowledge in 

130 the literature. A) MeSH terms are taken from an article, connected into a clique, and then 

131 merged by nodes across over 22 million articles in PubMed. Any associations that overlap 

132 between articles are considered to have greater confidence. B) Graphical representation of the 

133 proportion of nodes for each entity type and the percentage of edges per association type. C) The 

134 MeTeOR network as a whole is formidable, despite the exclusion of all edges with a confidence 

135 of less than 200 articles.  

136

137 MeTeOR outperforms literature-derived databases in number and reliability of 
138 associations
139 To assess the coverage and quality of MeTeOR, we compared it first with specialized, 
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140 gold-standard databases. MeTeOR tallies about twenty percent more gene-gene associations than 

141 BIOGRID low-throughput associations (177,000 vs 147,000; Supplemental Fig. 3). More 

142 impressively, MeTeOR contains 16.4 and 15.9 fold more gene-disease and gene-drug 

143 associations than CTD and DGIdb respectively.  Yet despite these gains in associations, 

144 MeTeOR overlapped each of these control databases to the same extent that they overlapped 

145 each other (Supplemental Fig. 3). 

146 MeTeOR also proved as reliable as these databases, preferentially recovering the high-

147 quality reference annotations over novel information. In other words, when MeTeOR 

148 associations were ordered by confidence (the number of supporting articles), the area under the 

149 Receiver Operating Characteristic (ROC) curves (AUC) averaged 0.71 for all references (Figure 

150 2A).  The average precision at 10% recall was 0.85 and at 50% recall was 0.73. (Supplemental 

151 Fig. 4).

152 We next compared MeTeOR to the literature-mining methods STRING-Literature [35], 

153 EVEX [22], BeFree [36], and STITCH-Literature [37]. These methods extract only one type of 

154 association from the literature—gene-gene, gene-disease, or gene-drug, respectively—and 

155 MeTeOR outperformed each of them across all references, except the BeFree method on the 

156 CTD reference. MeTeOR also outperformed all methods combined, both with and without the 

157 poor-performing EVEX (Figure 2A). It is worth noting that MeTeOR contained several-fold 

158 more novel associations than these other text-mining tools (Figure 2B), even though it has 

159 roughly the same order of magnitude of overlap with the references (Supplemental Fig. 3).  

160 These data show that MeTeOR mines more gene-gene, gene-disease, and gene-chemical 

161 associations than are found in our reference databases, while simultaneously recovering high-

162 quality references better than the state-of-the-art text-mining tools. 
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163
164 Figure 2. MeTeOR reliably recovers known associations and predicts new biomedical 

165 knowledge. A) MeTeOR was compared with appropriate algorithms using the area under the 

166 Receiver Operating Characteristic (ROC). All tests were done with bootstrapping to give a 

167 confidence range and to balance the positives and negatives. The literature-derived algorithms 

168 were STRING-Literature, EVEX, STITCH-Literature, and BeFree for genes, genes, drugs, and 

169 diseases, respectively. From left to right, the p-values comparing MeTeOR to the literature-

170 derived networks were 0.0076 (t=3.707, df=7), 0.0001 (t=7.822, df=7), 0.0432 (t=2.125, df=26), 

171 0.094 (t=2.145, df=5), <0.0001 (t=5.172, df=48). Excluding EVEX, MeTeOR’s difference from 

172 the literature-derived networks is still significant p-value<0.0005 (t=3.79, df=40). B) MeTeOR 

173 contained more known associations than the comparable algorithms in two of the three cases, 

174 and possessed more overall (17% vs 12%). C) In order to test the ability of the network to 

175 reliably predict biomedical associations, we performed a time-stamped, or retrospective, study. 
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176 The product of the latent matrices W and H from pre-2014 data resulted in a new network with 

177 predictions. Predictions were validated if they were borne out in the literature between 2014 and 

178 2018. D) The area under the ROC was calculated for MeTeOR gene-gene, gene-disease, and 

179 gene-drug associations based on Nonnegative Matrix Factorization (NMF) predictions being 

180 present in the 2018 network. These were compared against predictions from two naïve 

181 predictors, Common Neighbors (CN) and Adamic/Adar (AA). E) Positive predictive values 

182 (precision) were calculated at 10% and 50% recall. (* p<0.05 , ** p<0.01, *** p<0.001). 

183

184 Testing MeTeOR predictions with retrospective analyses
185 We next tested MeTeOR's ability to predict novel associations among genes, diseases, 

186 and drugs. Kastrin et al. recently tested both supervised and unsupervised link prediction 

187 methods on a MeSH co-occurrence network of 27,000 entities and found they could generate 

188 reliable hypotheses [30]. We hoped to build upon this attempt by using a more advanced link 

189 prediction method, Non-negative Matrix Factorization (NMF), with our greater number of 

190 entities (totaling 101,000). Often used in biology [38, 39], NMF is a semi-supervised machine 

191 learning algorithm that determines missing associations in a graph by decomposing it into a 

192 product of matrices [40]. Therefore, we tested the predictive power of the top two unsupervised 

193 algorithms from Kastrin et al. [30], Adamic/Adar (AA) and Common Neighbors (CN), and NMF 

194 in a retrospective study.

195 Here, we used cross-validation to estimate the number of features for each part of the 

196 NMF decomposed matrix (Figure 2C, Supplemental Table 1). When we applied NMF, we used 

197 a representation of MeTeOR derived solely from publications up to and including the year 2013 

198 to test whether MeTeOR’s predicted associations would be confirmed by appearing in literature 

199 published between 2014 and 2018. The median AUCs of gene-gene, gene-disease, and gene-drug 

200 associations were 0.65, 0.69 and 0.67, respectively (Figure 2D, left), while the median precisions 

201 at 10% recall (the top 10% of the highest-confidence associations) were 0.75, 0.79, and 0.81, 

202 respectively and 0.65, 0.68, 0.67 at 50% recall (Figure 2D, middle and right). Moreover, using 

203 AA and CN results in random predictive power, or AUCs at 0.5 (AA: 0.53, 0.50, 0.49; CN:0.51, 

204 0.46, 0.50; for gene-gene, gene-disease, and gene-drug median AUCs, respectively). It is 

205 important to note that the AA and CN predictions are distinct from previous attempts [30] in that 

206 the network excludes many general MeSH terms, includes SCRs, and is split into separate 
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207 association modes. Due to NMF’s reliable and higher performance, we chose it for subsequent 

208 analyses. These data show that the hypothetical associations among genes, drugs, and diseases 

209 produced by MeTeOR are likely to be confirmed in subsequent literature, especially those with 

210 the best confidence.

211 We investigated some of the top time-stamped associations in more detail in order to 

212 confirm the biological relevance of these predictions. To date, the literature has provided 

213 supporting evidence for 19, 17, and 18 out of the top 20 hypotheses from gene-gene, gene-

214 disease, and gene-drug associations, respectively (Supplemental Data File 1).  For example, a 

215 top predicted gene-gene association, based solely on the literature published up to and including 

216 2013, was between the human MeSH terms for MSX1 and CXCR4. In 2017, a paper was 

217 published showing that both MSX1 and CXCR4 independently regulate the motility and 

218 development of a population of highly migratory cells, known as primordial germ cells which 

219 give rise to eggs and sperm migration [41], and confirming MeTeOR’s hypothesis that these 

220 genes are linked in a biologically meaningful manner. To demonstrate a more complex, specific 

221 and novel prediction, MeTeOR predicted an association between PTEN and glaucoma based on 

222 pre-2013 literature.  In the beginning of 2018, a paper was published demonstrating that 

223 microRNA MiR-93-5p, which targets PTEN, regulates NMDA-induced autophagy in glaucoma. 

224 Several other papers published after 2014 [42, 43] also suggested some role for PTEN in 

225 glaucoma. MeTeOR also predicted an association between GLI1 and multiple myeloma, and in 

226 2017, Alu-dependent RNA editing of GLI1 was shown to promote malignant regeneration in 

227 multiple myeloma [44].

228 There were also some more complex indirect three-way associations (ex. gene-disease-

229 gene). For example, the top gene-gene prediction is between CD27 and CXCR4. This prediction 

230 makes sense in the context of the human immunodeficiency virus (HIV), where HIV-1 variants 

231 use CXCR4 to infect T cells, and through this process, HIV depletes both naïve and CD27+ 

232 memory T cells [45]. This demonstrates the predictive power of the network by highlighting a 

233 complex gene-disease-gene relationship (CXCR4 – HIV – CD27). Another example is between 

234 WT1 and HLA-B. The WT1 protein has been chosen as an immunologic target by a National 

235 Cancer Institute initiative [46], and this year, a phase 2 clinical trial showed a WT1 vaccine that 

236 is effective in Acute Myeloid Leukemia with predicted binding on HLA-B*15:01, HLA-

237 B*39:01, HLA-B*07:02, and HLA-B*08, HLA-B27:05 in addition to HLA-A*02 [47]. These 
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238 MeTeOR predictions suggests that further investigation is warranted and highlights the ability of 

239 the network to suggest complex gene–disease–gene relationships.

240 Though these hypotheses are only a small sample of all MeTeOR-identified links, they 

241 illustrate the power and range of MeTeOR’s NMF predictions. 

242

243 MeTeOR identifies known and novel EGFR associations
244 To illustrate how MeTeOR might be used, we focused on Epidermal Growth Factor 

245 Receptor (EGFR) as a test case. EGFR is a well-studied protein involved in various aspects of 

246 carcinogenesis [48], and we hypothesized that MeTeOR would be able to extract known and 

247 novel associations from the wealth of extant literature.

248 We first needed to understand EGFR’s known and verifiable associations. MeTeOR 

249 found 1064 genes connected to EGFR via MeSH terms in at least one article, 467 genes in at 

250 least two articles, and 97 genes in at least ten articles. Assuming that associations made by more 

251 articles would be more robust, we compared the MeTeOR-ranked list of 1064 gene-EGFR 

252 associations against the MSIGDB pathway standard used in Figure 2. 

253 MeTeOR recovered pathway information better than the text-mining algorithm EVEX 

254 (overall AUCMeTeOR of 0.88 vs AUCEVEX of 0.69; Figure 3A). MeTeOR's initial recall was also 

255 superior, as indicated by the Precision-Recall curve (Figure 3B). Finally, MeTeOR was overall 

256 more accurate than STRING Literature (AUCSTRING of 0.75), although in the initial recall, 

257 STRING did better, likely because it weighs confidence based on KEGG pathway information 

258 [49] (Figure 3B). 

259 We then sought to evaluate MeTeOR’s likelihood of generating false positives. Reliance 

260 on MeSH terms could, for example, create a spurious link between EGFR and another gene if the 

261 publication is a review article that mentions another gene without actually proposing a 

262 relationship with EGFR. We noticed that 12 of the top 20 genes MeTeOR associated with EGFR 

263 did not appear in MSIGDB pathway standard (Figure 3C, Supplemental Fig. 5).  We therefore 

264 compared these top 20 genes against experimental associations derived from public sources 

265 (aggregated in STRING-Experimental). The STRING-Experimental dataset (STRING-EXP), 

266 which showed that 13 out of the top 20 genes physically interact with EGFR (Figure 3C), 

267 revealed that six of the twelve genes missed by MSIGDB are actually valid (Supplemental Fig. 

268 5). This brought the number of genes with curated evidence from MSIGDB pathways or 
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269 STRING from eight up to 14 (Figure 3D). For the remaining six genes, we pursued two analyses 

270 based on experimental evidence, one involving pan-cancer RNA-seq data (from 8768 TCGA 

271 patients [50], see Online Methods) and the other a prospective, unbiased high-throughput Mass 

272 Spectrometry experiment. 

273 We calculated the co-expression of all genes in 20 TCGA cancer types and thresholded 

274 them by the correlation co-efficient. The mRNA levels of three of the six putative “false 

275 positive” genes correlated with EGFR mRNA levels (|r| >0.25, Online Methods). For example, 

276 PTGS2 was not associated by pathways but was co-expressed with a q-value << 0.01, r = 0.29. 

277 This appears to be a biologically relevant relationship insofar as both PTGS2 and EGFR are 

278 prognostic biomarkers for several of the same cancers [51, 52], and PTGS2 expression levels can 

279 predict the efficacy of treatments that act on EGFR [53]. EGFR associations with the other two 

280 genes (VEGFA and ADAM17) appear equally valid (Supplemental Data File 2).

281 For the high-throughput Immuno-Precipitation Mass Spectrometry (IPMS), we pulled 

282 down EGFR at several time-points after stimulation with Epidermal Growth Factor (EGF) in 

283 order to obtain a snapshot of proteins binding with EGFR in a functional context (Supplemental 

284 Fig. 6, Supplemental Data File 3). IPMS showed that five of the 20 genes were associated with 

285 EGFR, though all were also associated with MSIGDB pathways or STRING. One of these five 

286 was PIK3CA, which possesses links through pathway knowledge, cancer co-regulation and the 

287 IPMS; it is frequently co-mutated with EGFR [54] and known to interact with other PI3K 

288 subunits (PIK3CB [55] and PIK3R1 [56]) [57].

289 In the end, just three genes (PTEN, BRCA1, and TNF) remained putative false positives 

290 (Figure 3C). All three, however, have some degree of literature support, denoted as non-MeSH 

291 literature evidence because it is manually curated and not originating from MeSH terms 

292 (Supplemental Data File 2). For example, PTEN is often lost in cancers with EGFR gains [58] 

293 and the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway causes malignant transformation, 

294 drug resistance, metastasis, and prevention of apoptosis [59]. Thus, even the apparent false 

295 positives in the top 20 associations seem to warrant investigation.
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296
297 Figure 3. MeTeOR-identified associations with EGFR and NMF predictions. A) EGFR 

298 MeTeOR, STRING-Literature (lit.), and EVEX literature associations are compared against 

299 pathway-level interactions, with AUCs of 0.88, 0.75, and 0.69, respectively. B) In the precision 

300 recall curve, MeTeOR's initial false positive rate is lower than that for EVEX, but higher than 

301 that for STRING-Lit. C) The overlap of the top 20 MeTeOR Genes with curated (MSIGDB and 

302 STRING Experimental) and experimental (Cancer Co-Expression and Prospective 

303 ImmunoPrecipitation Mass Spectrometry) evidence. Genes that did not fall into these categories 

304 were verified in the literature manually or determined to have no evidence (Supplemental Data 

305 File 2). Genes possessing experimental evidence and/or one or two references of support, which 
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306 are of particular interest, are written on the chart. Genes classified with Curated Evidence have at 

307 least curated, with the possibility of Experimental or Non-MeSH Literature Evidence, with 

308 Experimental Evidence having at least Experimental. D) The top 20 ranked genes by their 

309 difference from MeTeOR’s rankings to their rankings after NMF were also compared against the 

310 same references. All but one of the genes (CCL1) possessed some evidence.

311

312 MeTeOR’s automated hypothesis generation predicts new EGFR associations
313 Although the success of MeTeOR’s retrospective associations is reassuring, the real test 

314 of MeTeOR’s utility to the scientific community is whether it can reveal unexpected and 

315 valuable biological hypotheses that merit experimental validation. We therefore used EGFR as a 

316 test case again, but instead of using MeTeOR’s raw associations, this time we evaluated its Non-

317 Negative Matrix Factorization (NMF) predictions. These were ranked by their difference from 

318 MeTeOR’s rankings, such that: , 𝑁𝑀𝐹 𝑅𝑎𝑛𝑘 𝐶ℎ𝑎𝑛𝑔𝑒 = 𝑀𝑒𝑇𝑒𝑂𝑅 𝑅𝑎𝑛𝑘 ‒ 𝑀𝑒𝑇𝑒𝑂𝑅 𝑁𝑀𝐹 𝑅𝑎𝑛𝑘

319 where MeTeOR Weight>2 limits arbitrarily large ranks from genes that initially had little to no 

320 evidence (Supplemental Data File 4).

321 Controlled against MSIGDB pathway associations, all 20 predictions were putative “false 

322 positives” and only one possessed STRING-Experimental evidence (TLR2) (Figure 3D). This 

323 demonstrates the effectiveness of the NMF Rank Change at highlighting novel predictions. Yet, 

324 of the 19 unproven associations, two were co-expressed in cancer (CX3CL1 and FOXO1) and 

325 two were supported by our IPMS evidence (CDK2 and MSH2) (Supplemental Fig. 5). Of the 

326 remaining fifteen genes, all except CCL1 had non-MeSH literature support (Figure 3D; 

327 Supplemental Data File 2), underscoring the quality of NMF Rank Change predictions.

328 To narrow down candidates for experimental validation, we focused on CDK2 and 

329 MSH2, the proteins for which we had IPMS evidence (Figure 3D). Cyclin-dependent kinase 2 

330 (CDK2) seemed the most biologically promising: like EGFR, CDK2 is directly involved in the 

331 cell cycle and cell growth, and it has a similar kinase domain to CDK1, which phosphorylates 

332 EGFR in vitro [60]. Furthermore, in apoptosis and senescence, CDK2 translocates to the 

333 cytoplasm with Cyclin A [61] or Cyclin E [62], and under these conditions, an activated CDK2 

334 might bind to and phosphorylate EGFR.

335 To determine whether CDK2 and EGFR directly interact in a biologically relevant 

336 manner, we transfected human embryonic kidney cells with expression vectors for both proteins. 
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337 Co-immunoprecipation demonstrated that CDK2 and EGFR formed stable protein-protein 

338 interactions (Figure 4A, B). Next, we incubated purified EGFR protein by itself or with CDK2, 

339 along with either its interaction partner Cyclin A2 or Cyclin E1.  We found that, in vitro, both 

340 Cyclin A and Cyclin E activate CDK2 to phosphorylate EGFR’s intracellular regulatory portion 

341 (Figure 4C, D) but not to phosphorylate the extracellular portion (Supplemental Fig. 7). In 

342 silico prediction with GPS [63] identified several residues (752, 847, 991, 1026, 1032, and 1153) 

343 as possible sites of intracellular EGFR phosphorylation by CDK2 (Supplemental Fig. 8). It is 

344 worth noting that Residue 1026 was previously shown to be phosphorylated by CDK1 [60].

345 This interaction is rather surprising because CDK2 has never been shown to interact with 

346 EGFR. Yet our data indicate that CDK2 directly phosphorylates EGFR, and they bind to one 

347 another in vivo. MeTeOR’s automated hypothesis-generation thus produced many validated 

348 biological hypotheses, and in the case of CDK2 has revealed an unexpected and valuable 

349 biological insight.
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351 Figure 4. CDK2 phosphorylates EGFR, as predicted by MeTeOR. A, B) The western blot of 

352 the in vivo reciprocal pull-down of EGFR and CDK2 provided evidence of physical interaction 

353 between EGFR and CDK2. HEK293 cells were transfected with myc-tagged WT-EGFR and 

354 WT-CDK2 vectors, and overexpressed EGFR and CDK2 were immunoprecipitated from lysates 
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355 using anti-myc or anti-CKD2 antibody and quantified over three to five replicates. Mouse IgG 

356 antibody was used as a control. C, D). An in vitro kinase assay showed Serine/Threonine 

357 phosphorylation on EGFR by CDK2 with statistically significant levels being generated with 

358 either Cyclin A or Cyclin E activating CDK2. Purified recombinant EGFR-GST was incubated 

359 with recombinant cyclin A2 and cyclin E1 activated CDK2 kinase; quantification on three 

360 replicates for CDK2-Cyclin E and CDK2-Cyclin A was performed with ImageJ (* p-

361 value<0.05,** p-value<0.01, *** p-value<0.001; in vivo: t=6.834, df=4 for EGFR and t=3.407, 

362 df=8 for CDK2; in vitro: t=4.961, df=6 for CycA2 and t=3.984, df=6 for CycE1).

363

364 DISCUSSION
365 Our ability to find interesting relationships among bodies of knowledge separated by time 

366 and disciplinary boundaries is struggling with the ever-increasing size of the scientific literature 

367 [1]. Current tools, such as PubMed and Google Scholar, make it possible to search extant 

368 publications (at least to the extent that the content is available online), but they can reflect and 

369 propagate biases [64]; they cannot evaluate the relative confidence of observations; and they do 

370 not attempt to integrate information into novel hypotheses. Whereas many literature-mining 

371 methods seek to capture semantic and syntactic detail from each paper, we took the opposite 

372 approach, hypothesizing that millions of human-curated keywords could create useful network 

373 structures and that the sheer quantity of data points would wash out erroneous results while 

374 allowing verifiable information to emerge from separate but corroborating studies. Following the 

375 Bag-of-Words representation of knowledge in terms of common, contextual word associations 

376 [65], we focus on the most important facts from each paper embodied by (key) words chosen 

377 from Medical Subject Heading (MeSH) terms. These MeSH terms are readily available and 

378 regularly updated. By representing each article as a clique of MeSH terms, we create networks 

379 that can reveal unsuspected connections across the literature. This effectively converts 

380 unstructured into structured knowledge that, in turn, is amenable to machine learning techniques 

381 to generate new hypotheses.

382 In practice, the MeSH Term Objective Reasoning (MeTeOR) network pooled knowledge 

383 from over 22 million PubMed articles to create a map of relationships among genes, drugs, and 

384 diseases. MeTeOR recovered knowledge from reference databases and revealed many previously 

385 uncharacterized biomedical associations; its performance was on par with or better than domain-
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386 specific and state-of-the-art Natural Language Processing (NLP) models for knowledge 

387 extraction. Moreover, hypothesis generation through non-negative matrix factorization predicted 

388 new associations prior to their publication. This predictive efficacy was further demonstrated by 

389 MeTeOR's ability to discern known and novel EGFR interactions more reliably than NLP 

390 algorithms. In particular, MeTeOR predicted an association between CDK2 and EGFR, and we 

391 confirmed and simultaneously suggested the association is a direct physical interaction with 

392 high-throughput IPMS screening. This interaction has implications for biological processes such 

393 as cell cycle, cell growth, and apoptosis as well as disease processes such as tumorigenesis. Both 

394 CDK2 [66] and EGFR [67] are targets of cancer therapies, but previous hints of a relationship 

395 between the two proteins had been attributed to similarities in structural activation [68] or distant 

396 regulatory effects [69]. Our experimental data verified this interaction, which had been latent in 

397 the literature but gone unnoticed.  Together, these results demonstrate that the breadth and 

398 redundancy of keyword coverage in the literature compensate for the superficiality of the 

399 information taken from any one article and can accurately represent knowledge across a large 

400 corpus of literature, creating hypotheses that warrant experimental investigation.

401 In the future, MeTeOR can be improved in a number of ways. It could be combined with 

402 orthogonal databases [49] or ontological hierarchies [70] so as to improve the network accuracy 

403 and coverage. Additional relevant keywords, such as the context of an association (e.g., 

404 regulation, phosphorylation) and MeSH terms for biological processes, therapies, and clinical 

405 variables, could deepen MeTeOR analyses. Labels that convey dates, number of citations, 

406 journal, and other contextual details might provide useful qualifiers for the confidence of 

407 associations. Alternatively, defining the semantic meaning of the relationship may be done 

408 through integration of the SemRep system [71]. Keyword indexing exists in fields outside 

409 biomedicine [72] and could be turned, likewise, into knowledge networks that summarize and 

410 support machine learning over entirely different domains of knowledge. For now, MeTeOR is a 

411 public, reliable source of gene, drug, and disease associations that directly link to PubMed 

412 references, improving accessibility and indexing of the literature, while enabling its use for 

413 hypothesis generation across biology.

414

415 MATERIALS AND METHODS
416 Indexing Information to Represent Biomedical Knowledge: Co-occurrence strengthens the 
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417 confidence in associations as the number of articles sampled increases [73]. Supplementary 

418 Concepts Records (SCRs) are similar to MeSH terms and cover a wide variety of concepts 

419 including genes, drugs, and diseases. They were used in addition to MeSH terms to supplement 

420 the existing data. All data was obtained using the NCBI eutils tool and a list of all PubMed IDs 

421 associated with a search for Eukaryotes, Bacteria, Viruses, and Archea (~22 million articles). All 

422 proteins were mapped to Entrez ids using supplementary concepts annotations of RefSeq 

423 numbers in the notes section where possible and by symbol or synonym if no RefSeq number 

424 was present. All drugs and diseases were mapped using the MeSH hierarchy as done in previous 

425 works [21, 74], with PubChem CIDs used for drugs and MeSH ids for diseases. In order to 

426 obtain the co-occurrence of these terms, we calculated the dot-product of the term-article 

427 membership matrix. Terms that mapped to the same Entrez ids were summed by edge weights.

428

429 Data Visualization: The MeTeOR network was filtered to only use edges that had a confidence 

430 over 200, and while nodes were made invisible. The weights of each edge represented as the 

431 penwidth for each edge. The format for the network was assembled in NetworkX 

432 (https://networkx.github.io/) in python as DOT file, and then the network was visualized using 

433 the sfdp tool of GraphViz (http://www.graphviz.org/). 

434

435 Ground Truth Comparisons: The network was compared against highly accessed and cited 

436 databases in order to determine if the network contains valid associations between terms. These 

437 comparisons measure the recovery of a reference database based on the ranking of the others 

438 (MeTeOR or a literature-derived source), and the data output is the recovery rate of true positives 

439 (TPR) and false positives (FPR). A true positive was defined as an association present in 

440 MeTeOR that also was present in the ground truth.

441

442 Robust Comparisons: Receiver Operating Characteristic (ROC) plots can lead to inaccurate 

443 representations of the data when there are unbalanced numbers of true and false negatives. In 

444 particular, if there is a space of 100,000 by 100,000 possible associations between drugs and 

445 genes, most of the possible interactions will be True Negatives, making the False Positive Rate 

446 increase extremely slowly according to the formula:
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447 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

448 This leads to inflated AUCs.  To solve this problem, the number of positives and negatives was 

449 determined, and an approximately equal number of positives and negative were chosen randomly 

450 together up to a hundred times. This was designed to randomly sample for complete coverage of 

451 all positives. Occasionally, the number of positives per iteration was below 100, and in order to 

452 make each iteration more reliable, the number of iterations was decreased. This allowed the 

453 determination of a range of accuracy scores (ROC, PR, etc.) for each comparison. The final 

454 comparison between MeTeOR and a literature-derived source was calculated with a paired t-test 

455 on the group of average AUCs or PRs from the bootstraps. Any reference which had fewer than 

456 3 overlaps with either MeTeOR or a literature-derived source was discarded. Additionally, 

457 references were broken down by type if provided (example: BIOGRID High and Low 

458 Throughput). 

459

460 Box Plots and Statistics: Boxes define the 25th -75th percentiles, with the whiskers extending 

461 from min to max, and the line in the middle defining the median. All statistical tests are two-

462 sided. For comparisons against the ground truths in Figure 2A, all values are means of the 

463 bootstrap values, and these means were compared with a paired t-test, when all values were 

464 pooled together, they passed a D'Agostino & Pearson normality test with a K2=1.615, p=0.4459 

465 for the literature-derived source and K2=0.6366, p=0.7274 for MeTeOR.

466

467 Data Normalization: The MeTeOR network was smoothed using Laplacian normalization, as 

468 defined by:

469 𝐿 = 𝐼 ‒ 𝐷 ‒ 0.5 ∗ 𝐴 ∗ 𝐷 ‒ 0.5

470 where L is the normalized Laplacian, D is the degree matrix, and A is the adjacency matrix of the 

471 network. This was done for each mode (gene-gene, gene-disease, gene-drug, etc.). For large-

472 scale ranking, the absolute value of the non-diagonal elements was used. In individual rankings, 

473 such as to EGFR, the non-normalized data was used to provide easy interpretation.

474

475 Collection of Ground Truths: In order to determine if MeTeOR contained valid gene, disease, 

476 and drug information, ground truths were collected from the literature. MSIGDB refers to the 
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477 canonical pathways from MSigDB [75] and was used to determine gene-gene pathway-level 

478 associations, while the components of BIOGRID [19] represented physical gene-gene 

479 associations. A gene-gene association was made for MSIGDB if two genes were present in a 

480 pathway together, and each association was given a confidence  and then all ∑ 1
‖𝑃𝑎𝑡ℎ𝑤𝑎𝑦‖

481 confidence scores were normalized to Z-scores. The top 0.1% of associations (N=32,000) were 

482 used as a ground truth to prevent promiscuous associations.

483 There were several databases for gene-disease associations including the Comparative 

484 Toxicogenomic  Database (CTD) [20] and DisGeNET [76], and these databases were broken 

485 down into their component pieces and mapped to Entrez IDs for genes and MeSH terms for 

486 diseases. For gene-drug interactions, the primary sources of data were DGIdb [77] and 

487 Drugbank, downloaded through BIOGRID [19]. Pubchem CIDs [32] were used to map MeSH 

488 chemicals [32] and Drugbank’s mapping facilitated Drugbank IDs to CIDs. All STRING 

489 networks were mapped to Entrez IDs though STRING’s provided mappings from STRING 9 and 

490 STRING 10. All references were retrieved in March 2018. Mappings created in this project can 

491 be found within the data repositories provided with this paper.

492

493 Collection of Text-Mining Algorithms: STRING-Literature (version 10.5), EVEX, STITCH-

494 Literature (version 5), and DisGeNET’s BeFree (version 5) were chosen as representative 

495 Natural Language Processing (NLP) efforts to mine gene-gene, gene-drug, and gene-disease 

496 relationships from the literature. All these efforts are publicly available and have been through 

497 multiple revisions as they undergo continued development.

498

499 Naïve Unsupervised Prediction Methods: Two naïve methods were used to compare against a 

500 more advanced algorithm, Non-negative Matrix Factorization (NMF). These algorithms were the 

501 Common Neighbors algorithm and the Adamic/Adar algorithms, calculated to include edge 

502 weight confidence. These were selected because of their top performance in Kastrin et al.[30]. 

503 Though it is worth noting that in this publication, we include SCRs and limit the analysis to 

504 specific edge types (e.g. gene-gene), which is not true in Kastrin et al.[30].

505

506 Non-negative Matrix Factorization (NMF): The principle behind NMF is to create two low- 

507 dimensional matrices that, when multiplied together, approximate an original matrix [40]. These 
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508 matrices are called basis vectors, where the degree to which they can recapitulate the original 

509 matrix is determined by their size. The greater the size, the more features the basis vectors can 

510 capture. The basis vectors are determined through several optimization algorithms that act upon 

511 randomly initialized W and H matrices. In this work, we employed both the alternating least 

512 squares algorithm:

min
𝑊, 𝐻 ≥ 0

𝑓(𝐖, 𝐇) =
1
2‖𝐀 ‒ 𝐖𝐇‖2

F Eq. 3

𝐖 = 𝐫𝐚𝐧𝐝(𝐦,𝐤)
Eq. 4-1

Solve for H: 𝐖T𝐖𝐇 = 𝐖T𝐀
Eq. 4-2

𝐇(𝐇 < 0) = 𝟎
Eq. 4-3

Then Solve for W: 𝐇𝐇T𝐖T = 𝐇𝐀T

Eq. 4-4

𝐖(𝐖 < 0) = 𝟎
Eq. 4-5

513 and the multiplicative algorithm:

𝐖 = 𝐫𝐚𝐧𝐝(𝐦,𝐤) Eq. 5-1

𝐇 = 𝐫𝐚𝐧𝐝(𝐦,𝐤) Eq. 5-2

𝐇 = 𝐇
𝐖𝐓𝐀

𝐖𝐓𝐖𝐇 Eq. 5-3

𝐖 = 𝐖
𝐇𝐓𝐀

𝐇𝐓𝐇𝐖 Eq. 5-4

514

515 NMF was executed computationally with MATLAB’s Statistics Toolbox, with three repetitions 

516 of 5 iterations of the multiplicative algorithm in order to find the optimal basis initialization, then 

517 100 iterations of the alternating least squares were performed. For bulk analysis, this was done 

518 one time. For specific association predictions, like associations to EGFR, this NMF process was 
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519 completed five times, and then the Mean Reciprocal Rank was computed for each association 

520 across the NMF runs. This ensured that a stable answer was obtained despite the non-convex 

521 nature of NMF. The number of features (k) was selected using ten-fold cross validation of each 

522 mode of MeTeOR. The Matthew’s Correlation Coefficient (MCC) was calculated and rounded to 

523 two digits of significance in order to select the lowest k with the highest MCC: 300 for gene-

524 gene, 100 for gene-disease, and 50 for gene-drug.

525

526 Retrospective: Retrospective experiments were undertaken in order to determine if the 

527 information in MeTeOR through 2013 was sufficient to make accurate predictions that had yet to 

528 be discovered. The first retrospective experiment was a validation of the technique and quality of 

529 data, in that the MeTeOR network through 2013 was used to predict itself in 2018. After 

530 predictions were made on MeTeOR, all shared associations in the ground truth  up to 2013 were 

531 removed, and the remaining predictions were assessed against the ground truth in the future.

532

533 Tissue Culture and Crosslinking for IPMS: Hela cells were grown in DMEM (Sigma) with 

534 10% FBS (Invitrogen) in 5% CO2 at 37°C. 108 cells were crosslinked with formaldehyde by 

535 directly adding it to the culture medium to a final concentration of 0.5% for 8 min at 37°C. The 

536 cross-linking reaction was quenched by adding Glycine (Sigma) to a final concentration of 0.2M. 

537 Membrane proteins were extracted by re-suspending the pellet in LB1 buffer (50mMHEPES-

538 KOH [pH 7.5], 140mMNaCl, 1mMEDTA, 10% glycerol, 0.5% NP-40, 1% Triton X-100) for 30 

539 min at 4°C. After centrifugation the supernatant containing crosslinked membrane and cytosolic 

540 proteins was used for immunoprecipitation. Immunoprecipitation and sample prep for mass 

541 spectrometry was performed as previously described [78].

542

543 Mass Spectrometry: Binding partners of EGFR were pulled down at different time points (2, 

544 10, 30, 120 seconds) after EGF stimulation and identified through ImmunoPrecipitation Mass 

545 Spectrometry (IPMS) in HeLa cells. Each IPMS experiment was conducted in triplicate, with 

546 one IPMS experiment conducted on non-stimulated cells to serve as a baseline. Peptides were 

547 reconstituted in 0.5% methanol, 0.1% formic acid and fractionated using a C18 (2 µm, Reprosil-

548 Pur Basic, 6 cm x 150 µm) column with an EASY-nLC-1000 HPLC (Thermo Scientific) online 

549 with a Q-Exactive mass spectrometer (Thermo Scientific). A 75-minute gradient of 2-26% 
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550 acetonitrile, 0.1% formic acid at 800nl/min was used per fraction. A window of 300-1400 m/z at 

551 120k resolution, 5 x 105 AGC, and 50ms injection time, was used for precursor selection. The 

552 top 50 most intense ions were selected for HCD fragmentation with a 5 m/z isolation window, 18 

553 sec exclusion time. RAW files were acquired with Xcalibur (Thermo) and processed with 

554 Proteome Discoverer 1.4 and MASCOT 2.4. Peptides were matched using a 20 ppm precursor 

555 tolerance window and 0.5 Da fragment threshold. Up to two missed cleavages were allowed. The 

556 data was filtered with a 1% false discovery rate by Percolator and abundances were calculated by 

557 the iBAQ algorithm. RAW files were then converted to mzXML and peptide abundances were 

558 distributed to gene products through Grouper software. Unique to gene PSMs must be >=1.

559

560 Analysis of Mass Spectrometry: All EGFR-associated proteins had their iBAQ levels 

561 normalized across time points and averaged across three biological replicates. All missing values 

562 were filled in with the minimum overall value. The amount at a given time point was calculated 

563 as a gradient relative to the previous time point. The gradient allowed the monitoring of protein 

564 changes over time, and clustering of the gradients through k-means revealed distinct patterns 

565 (Supplemental Fig. 6). Most patterns were self-consistent and showed a change at the initial time 

566 points, with little change thereafter, but the second group appeared to show random changes for 

567 proteins over all time points and may be promiscuously associated with EGFR (Supplemental 

568 Fig. 6). All proteins that changed more than 5% over the course of the experiment were 

569 considered true positives and associated with EGFR.

570

571 In vitro Kinase Assay: Two hundred fifty ng of purified recombinant EGFR-GST (Aa 668-

572 1210, Sino Biological Inc, Beijing, P.R. China) was incubated with 100 ng of recombinant cyclin 

573 A2 or Cyclin E1 activated CDK2-GST kinase (ProQinase, Freiburg, Germany) in 20 µl of kinase 

574 buffer (10 mM HEPES, pH 7.5, 50 mM glycerophosphate, 50 mM NaCl, 10 mM MgCl2, 10 mM 

575 MnCl2, 1mM DTT and 10 µM ATP) for 30 min at 30°C.  The reaction was terminated by 

576 addition of SDS treatment buffer, applied to 4-12 % SDS-PAGE, and immunoblotted with anti-

577 phopho-S/T (BD Bioscience, San Jose, CA, USA), anti-EGFR, anti-CDK2, or anti-GST 

578 antibodies (Santa Cruz Biotechnology, Dallas, TX, USA).

579

580 In vivo Reciprocal Pull-Down: HEK293 cells were grown in 6 cm dishes and transfected with 2 
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581 µg of WT-EGFR and WT-CDK2 expression construct using lipofectamine 2000 (Life 

582 Technologies, Carlsbad, CA. USA). After 24 h incubation at 37°C, cells were lysed with Buffer 

583 (10 mM HEPES, pH 7.5, 10 mM KCl, 0.1 mM EDTA, 1 mM DTT, 0.25% NP-40) containing 

584 protease inhibitor cocktail (Roche). Lysates were centrifuged at 6,000 rpm for 4 min and the 

585 supernatants were transferred to a new tube and protein concentration measured using Bradford 

586 assay (Bio-Rad Laboratories, CA). One hundred µg of cell lysate was incubated with 2.5 ug of 

587 anti-myc antibody (BioLegned, San Diego, CA, USA) or anti-CDK2 antibody (Santa Cruz 

588 Biotechnology, Dallas, TX, USA) overnight at 4°C.  After further incubation with 20 µl of 

589 protein A agarose (50% (v:v) in lysis buffer (Santa Cruz Biotechnology, Dallas, TX USA), the 

590 incubation mixture was washed three times with 1 ml lysis buffer, and twice with RIPA buffer 

591 (Boston BioProducts, MA, USA) containing protease inhibitor cocktail V (Calbiochem, CA, 

592 USA).  The precipitates were re-suspended in 20 µl of 2 × SDS sample buffer and heated at 100 

593 °C for 5 min and were applied to 4-12% SDS-PAGE followed by immunoblotting using anti 

594 EGFR, anti-CDK2, or anti-GST antibodies (Santa Cruz Biotechnology, Dallas, TX, USA). 

595 Mouse IgG antibody (Santa Cruz Biotechnology) was used as a control. 

596

597 Co-Regulation of Genes in Cancer: The RNASeqV2 Level 3 files of 20 TCGA cancer types 

598 (BLCA, BRCA, CESC, COAD, GBM HNSC, KIRC, KIRP, LAML, LGG LIHC, LUAD, LUSC, 

599 OV  PRAD, READ, SKCM, STAD, THCA, UCEC) were downloaded from TCGA data portal 

600 (https://tcga-data.nci.nih.gov/tcga/) on August 19, 2015. RSEM (RNA-Seq by Expectation 

601 Maximization [79]) normalized count values of 8,768 tumor samples were used to compute 

602 Spearman's rank correlation coefficient of EGFR and all other 20,426 genes. Genes with absolute 

603 values of correlation coefficient more than 0.25 were considered to be significantly co-regulated 

604 with EGFR.

605

606 EGFR NMF Predictions: Because the Non-negative Matrix Factorization (NMF) predictions 

607 are based on MeTeOR associations, the NMF MeTeOR rank was subtracted from the MeTeOR 

608 rank, to obtain a MeTeOR Difference.

609

610 Data and Code Availability: All data and code from the MeTeOR network is available online at 

611 http://meteor.lichtargelab.org/ or http://osf.io/as865.
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612

613 Computation: MeTeOR was assembled in python 3 and tested using MATLAB code for 

614 comparisons on an Ubuntu computer with 64 GB RAM and 4th Gen. Intel Core i7 3.7 GHz 

615 processor.
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