














 

 
 

 
 
Supplementary Figure 8. (A) Average fraction of indel mutant reads with insertion in target sites 
grouped by their nucleotide type at location -1 (adjacent to the cut site from the 5’ side). Presence 
of C or G at location -1 is significantly correlated with higher deletion proportion (p < 0.004) and 
presence of A or T is significantly correlated with higher insertion proportion (p < 10-6) consistently 
across all cell types. We show the results for T cells (left) and the aggregate results for HEK293, 
K562 and HCT116 (right). (B) Average fraction of indel mutant reads with insertion conditioned 
on the nucleotide at position +3 (the last nucleotide before e.g. 5’ of the PAM sequence). The 
presence of A at +3 is correlated with higher fraction of insertions. Error bars represent the 
standard error of the mean (SEM). The analyses here differ from and complement Fig 2E. The 
SPROUT importance scores of 2E captures the nonlinear model’s overall prediction as to the 
impact of each nucleotide and position. The figures here ignore the effects of other positions and 
plots the conditional insertion fractions. Even though the methods are different, both the feature 
importance scores and the conditional fractions give consistent biological findings. 
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Supplementary Figure 9. Average fraction of indel mutant reads with deletion in target sites 
grouped by their homopolymer types. HomP(A) corresponds to target sites that have at least two 
consecutive A nucleotides adjacent to the cut site, and similarly for HomP(C), HomP(G), and 
HomP(T). No HomP indicates the rest of the target sites without homopolymers. We show the 
results for T cells (top) and the aggregate results for HEK293, K562 and HCT116 (bottom). Error 
bars represent the standard error of the mean (SEM). 
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Supplementary Figure 10. Data summary for T cells and three other cell types5. 
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Supplementary Figure 11. Histogram of the distances of long insertions from the target cut sites. 
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Supplementary Figure 12. The performance of SPROUT in predicting the insertion type given a 
single-nucleotide insertion. The first row of each table gives the accuracy for predicting if the 
inserted nucleotide is A/T or C/G (binary classification).  The second row of each table gives the 
accuracy of predicting if the inserted nucleotide is A, T, C, or G (4-class classification). SPROUT’s 
performance is compared to a naive guessing strategy which selects the most frequently 
occurring nucleotide(s) in the dataset. 
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Supplementary Figure 13. Distribution of the length of the aligned insertions in T cells. 
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Supplementary Figure 14. Histogram of the distance of the insertion donor sites to the cut sites 
in intra-chromosomal long insertions. The x-axis indicates distances in log 10 bases.  
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Chromatin state Description % donor sites % shuffled sites 

1_TssA Active TSS 1.3 0.6 (0.5-0.7) 

2_TssAFlnk Flanking Active TSS 3.4 1.6 (1.5-1.8) 

3_TxFlnk Transcr. at gene 5' and 3' 0.5 0.1 (0.0-0.1) 

4_Tx Strong transcription 10.1 8.9 (8.5-9.3) 

5_TxWk Weak transcription 12.0 12.0 (11.5-12.4) 

6_EnhG Genic enhancers 2.6 1.3 (1.1-1.4) 

7_Enh Enhancers 5.8 5.2 (4.9-5.5) 

8_ZNF/Rpts ZNF genes & repeats 0.5 0.3 (0.2-0.3) 

9_Het Heterochromatin 1.8 1.8 (1.6-2) 

10_TssBiv Bivalent/Poised TSS 0.0 0.0 (0.0-0.1) 

11_BivFlnk Flanking Bivalent 
TSS/Enh 

0.3 0.2 (0.1-0.2) 

12_EnhBiv Bivalent Enhancer 0.2 0.3 (0.2-0.3) 

13_ReprPC Repressed PolyComb 0.9 1 (0.9-1.2) 

14_ReprPCWk Weak Repressed 
PolyComb 

9.9 12.1 (11.7-12.5) 

15_Quies Quiescent/Low 50.6 54.7 (54.1-55.3) 

Active state (1-7) Sum of states 1 to 7 35.8 29.6 (29.0-30.2) 

 
Supplementary Figure 15. Overlap between the insertion donor sites and 15 core chromatin 
states. We measured the percentage of insertion donor sites that fall within each of the 15 
chromatin states (“% donor sites”). The chromatin states were obtained for primary CD4+ T cells 
(E043) from the Human Epigenome Roadmap. Here we considered only the long insertions that 
are aligned to a different chromosome from the SpCas9 target site, to avoid potential confounding 
due the target sites being in exons. For background control, we randomly shuffled each aligned 
insertion within a +- 500kb window centered at its original location (i.e. donor site), and report the 
percentage of the shuffled sites that overlap each chromatin state (“% shuffled sites”). Insertion 
donors are significantly enriched for chromatin states associated with enhancers and transcription 
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(states 1-7, colored red) compared to control (P < 10-5). Altogether 35.8% of inter-chromosome 
donor sites come from one of states 1 to 7 compared to 29.6% of the control sites.  
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Supplementary Figure 16. The average similarity and distance of the chromosomal positions 
between long insertions. We measure the similarity and distance for long insertions across 
biological samples at the same cut site (“Within cut site”), across different cut sites within the 
same gene (“Within gene”), and across random pairs of cut sites (“Shuffled control”).  We report 
the results for each of three previously published data5. 
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Supplementary Figure 17. The HiC contact map at the insertion site locations compared to three 
control cases in two other cell types (HEK293 and K562) across different HiC block sizes for 
insertion larger than 25 nucleotides5. The first control averages the HiC contact map in the 
neighboring blocks of the insertion donor and cut site. The third control averages the HiC score 
among random blocks in the same cut site-donor site chromosome pairs. Error bars represent 
the standard error of the mean (SEM). 
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