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Abstract 
The Streptococcus pyogenes Cas9 (SpCas9) nuclease has become a ubiquitous genome editing 
tool due to its ability to target almost any location in DNA and create a double-stranded break1,2. 
After DNA cleavage, the break is fixed with endogenous DNA repair machinery, either by non-
templated mechanisms (e.g. non-homologous end joining (NHEJ) or microhomology-mediated 
end joining (MMEJ)), or homology directed repair (HDR) using a complementary template 
sequence3,4. Previous work has shown that the distribution of repair outcomes within a cell 
population is non-random and dependent on the targeted sequence, and only recent efforts have 
begun to investigate this further5–11. However, no systematic work to date has been validated in 
primary human cells5,7. Here, we report DNA repair outcomes from 1,521 unique genomic 
locations edited with SpCas9 ribonucleoprotein complexes (RNPs) in primary human CD4+ T 
cells isolated from multiple healthy blood donors. We used targeted deep sequencing to measure 
the frequency distribution of repair outcomes for each guide RNA and discovered distinct features 
that drive individual repair outcomes after SpCas9 cleavage. Predictive features were combined 
into a new machine learning model, CRISPR Repair OUTcome (SPROUT), that predicts the 
length and probability of nucleotide insertions and deletions with R2 greater than 0.5. Surprisingly, 
we also observed large insertions at more than 90% of targeted loci, albeit at a low frequency. 
The inserted sequences aligned to diverse regions in the genome, and are enriched for 
sequences that are physically proximal to the break site due to chromatin interactions. This 
suggests a new mechanism where sequences from three-dimensionally neighboring regions of 
the genome can be inserted during DNA repair after Cas9-induced DNA breaks. Together, these 
findings provide powerful new predictive tools for Cas9-dependent genome editing and reveal 
new outcomes that can result from genome editing in primary T cells.   
 
Main 
A wide range of therapeutic applications based on genome engineering of human hematopoietic 
cells are under active development. Primary T cells present a notably promising cell type for 
therapeutic genome editing, as they can be engineered efficiently ex vivo and transferred 
adoptively to patients12. Despite this, we still lack detailed information about the genomic 
outcomes of Cas9-dependent editing in primary human cells. Here, we use targeted sequencing 
to measure DNA repair outcomes at 1,656 unique genomic locations targeting 559 genes (three 
guides per gene, with positive and negative/non-targeting controls) in primary CD4+ T cells 
isolated from 18 human donors. Primary CD4+ T cells were isolated from human blood donors 
and expanded as described previously13. Guide RNAs were combined with SpCas9 to assemble 
RNPs and electroporated into T cells14,15. After 6 days of recovery and expansion, DNA was 
isolated from cells electroporated with each RNP, and a 180-260 base pair (bp) region around 
each site was PCR amplified and sequenced (Fig. 1A).  
 
We quantified the distribution of repair outcomes at each target site from the generated amplicon 
library using CrispRVariants16 (Fig. 1B). Target sites with fewer than 1,000 insertion or deletion 
(indel)-containing reads were removed from further analysis to ensure repair outcomes were 
measured accurately. There were 1,521 unique target sites from 549 genes that passed this 
filtering, with an average read depth of 57,555; 1,361 of these sites were replicated in two or more 
donors (Supplementary Fig. 1). We focused our analysis on these 1,521 high quality target sites. 
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In total, 31% of reads contained deletions centered around the cut site with an average deletion 
length of 13 bps. We also found that 20% of the reads had insertions at the cut site, and 95% of 
these insertions were of exactly one nucleotide. Only 0.008% of reads contained both an insertion 
and deletion. Moreover, fewer than 1% of the reads contained single nucleotide variation (SNV) 
but no indel, some of which may be attributable to sequencing error, and we chose to focus our 
analysis on reads containing at least one insertion or deletion.  
 
DNA repair outcomes were distinct at each site, similar to previous observations from 
immortalized cell lines5. There was an average of 98 discrete repair outcomes per site that were 
observed at a frequency greater than 1 in 1000 reads, and different target sites were highly 
variable in the proportion and length distribution of insertions and deletions. The standard 
deviation of the ratio of insertions to deletions was 0.43 across all cut sites (Supplementary Fig. 
2-4) with 25% and 75% quantiles equal to 0.08 and 0.41, respectively. Repair outcomes from 
sites were compared systematically by converting the top 20 indels for each site into binary bit 
strings and calculating Jaccard similarity coefficients (Fig. 2A, 2B). Three control sites, targeting 
CXCR4, LEDGF and CDK9, were tested in cells derived from each of the donors. The repair 
outcomes from each target site were very similar between donors, but very different between 
different target sites (Fig. 2A). Comparisons of repair outcomes between all sites showed that 
replicate editing experiments from individual target sites were significantly more similar to each 
other than to outcomes from different sites (Fig. 2B, Supplementary Fig. 5). Overall, these data 
demonstrate that DNA repair outcomes in primary T cells are highly variable but non-random and 
largely consistent between cells from different donors. 
 
We hypothesized that the variation in repair outcomes across cut sites was largely due to 
sequence variation near the cut site5–7 and would enable prediction based on sequence. To test 
this, we developed a machine learning model, SPROUT, to predict SpCas9 repair outcomes (Fig. 
1C). The model takes as input the 20 nucleotides of the spacer sequence plus the PAM. At each 
target site, the model predicted the fraction of indel mutant reads with an insertion (Fig. 2C) and 
deletion (1 - fraction of insertions) and the average length of insertions and deletions (Fig. 2D). 
We trained and evaluated SPROUT using five-fold cross validation. On an independent set of 304 
target sites in primary T cells, SPROUT was able to accurately predict the fraction of indel mutant 
reads with an insertion (R2 = 0.59) and the fraction of total reads with an insertion (R2 = 0.40, Fig. 
2C).    
 
The prediction signal was primarily localized in the three nucleotides immediately to the left and 
right of the cut site. When SPROUT was trained using just these six nucleotides, it predicted the 
fraction of indel-containing reads and total reads with insertions with an R2 of 0.56 and 0.38, 
respectively. Incorporating additional features such as local chromatin status and gene 
expression did not improve the predictive power for SpCas9 repair outcomes. SPROUT also 
predicted the edit efficiency with an accuracy of R2 = 0.23, where about 52% of the prediction 
power was due to the guide sequence alone (with R2 = 0.12) and the remaining power was derived 
from chromatin features and gene expression (with R2 = 0.11). These results were compared to 
other similar algorithms, showing improved performance in all cell types and especially in T 
cells17,18,19,20 (Supplementary Fig. 6).  
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We then investigated whether SPROUT could correctly select which SpCas9 target site in a gene 
was the most likely to have an enrichment of insertions in order to create a tool for in silico guide 
design. For each of the 532 genes with multiple guides, we used SPROUT’s prediction to rank 
the target sites by their predicted fraction of indel mutant reads with an insertion. For 73% of the 
genes, SPROUT correctly chose the top sgRNA, and for 60% of genes it correctly predicted the 
complete ranking of all the candidate guides by their insertion proportion, significantly above 
random guessing (Supplementary Fig. 7, p < 10-154). 
 
We also evaluated which DNA sequence features affected DNA repair outcomes5,7, and we 
discovered that the -1 position (immediately to the 5’ end of the cleavage site) was the most 
influential (Fig. 2E and Supplementary Fig. 8). This is consistent with previous observations where 
this nucleotide is duplicated at many cut sites, which has been suggested to be the result of repair 
of single-base overhangs generated by Cas96. The presence of a G or C nucleotide at this position 
decreased the insertion proportion: 7% and 10% of indel mutant reads were insertions, 
respectively. Comparatively, the presence of A or T nucleotide at this position increased this 
proportion to 23% and 26%, respectively. The +3 position is also important in determining the 
proportion of outcomes as insertions or deletions (Supplementary Fig. 8B). A or G nucleotides at 
this position increase the insertion proportion to 25% and 23% respectively, compared with 16% 
and 15% for C and T. The presence of homopolymers (a run of two or more identical nucleotides) 
adjacent to the cut site increased the proportion of deletions (p < 0.02). For example, targets with 
G homopolymers abutting the cut site have deletions in 92% of the indel mutant reads, compared 
to 77% deletions when there is no homopolymer at the cut site (Supplementary Fig. 9), which 
could be a reflection of microhomology mediated end joining4.  
 
Next, we assessed the robustness of the algorithm to sequence- and cell-specific features by 
using the SPROUT model trained on the T cell data to predict SpCas9 repair outcomes in other 
human cell types. We re-analyzed published targeted sequencing data from 96 unique target sites 
tested in HEK293, K562, and HCT116 cells5 (Supplementary Fig. 10). These 96 targets were 
distinct from the 1,521 sites that were used to train SPROUT, and hence constitute new test data. 
SPROUT achieved an accuracy of R2 = 0.40 in predicting the fraction of indel mutant reads with 
an insertion and an R2 = 0.23 in predicting the fraction of total reads with an insertion. The 
relatively high cross-cell-type performance of SPROUT further suggests that the primary factor 
influencing the repair outcomes after SpCas9 cleavage within dividing cells is the nucleotide 
sequence context near the cut site. However, the lower accuracy compared with the T cell data 
strongly suggest that cell type and experimental conditions may have additional influence on the 
distribution of repair outcomes, and that cell-type-specific models may be required for accurate 
prediction.  
 
In the process of developing the SPROUT model to predict predominant insertions 
(Supplementary Fig. 11-12), we determined that the majority of insertions were less than 3 
nucleotides in length (Supplementary Fig. 4).  However, for 99% of the target sites, we also 
observed insertions that were at least three nucleotides in length, corresponding to 1.7% of all 
insertion-containing reads. Within this subset there were a prevalent class of insertions, over 25 
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nucleotides in length, present at low frequency per target site (Fig. 3A and Supplementary Fig. 
13). These long insertions were found within 1,406 unique sites, corresponding to 92% of 
assessed cut sites (Fig. 3B). 40% of these long insertions aligned to the human genome (Fig. 
3B); the remaining long insertions did not align with the default settings of BLAST. Averaged 
across sites, 0.07% of indel-containing reads (46 reads per site) were aligned long insertions. 
These aligned long insertions were not enriched for repetitive sequences nor for SINE motifs 
(Supplementary Materials). Only 36% aligned to regions within 1kb of the cut site (Supplementary 
Fig. 14) while the remaining 64% of long inserted sequences aligned to a different chromosome 
than the target site. The origins of the long insertions, i.e. the donor sites, were enriched for 
enhancers and transcriptionally active genomic regions (Supplementary Fig. 15). T cells from 
different individuals edited at the same cut site were significantly more likely to share the same 
long insertions compared to random pairs of cut sites (p < 10-39). The same cut sites from different 
individuals were also more likely to have large insertions that come from similar regions in the 
genome compared to different cut sites from the same individual (Fig. 3C, p < 10-101). Moreover, 
different cut sites within the same gene were more likely to share closer long insertions compared 
to cut sites from different genes (p < 10-95).  
 
Together, these results suggested that the physical location of the cut site affects the type of 
insertions that occur during DNA repair (Fig. 3C). To test this hypothesis, we used HiC data21 to 
quantify the physical proximity between the cut site and the location of origin of the inserted 
sequence, which we denote as the donor site. Cut sites had more HiC contacts with donor sites 
than they did with regions that are adjacent to the donor (p = 0.05) or with random regions (Fig. 
3D, p < 10-89). Conversely, donor sites were also more likely to have HiC contacts with the cut 
site than with regions adjacent to the cut site (p < 10-5). Due to the resolution limit of the HiC data, 
we found that the signal was more strongly enriched when we considered regions of sizes 500 kb 
and 1 mb (Fig. 3D). At the inter-chromosomal level, the likelihood of having long insertion 
exchanges between two chromosomes, normalized for chromosome length, was highly correlated 
with the proximity between the chromosomes, as measured via HiC (Fig. 3E, p < 10-77). 
Furthermore, we verified that insertions enriched for proximal genomic sequences were also 
found after editing in HEK293 and K562 cells (Supplementary Fig. 16,17). The enrichment for HiC 
contacts remained significant, although the smaller number of target sites in those data reduced 
the strength of the signal. Together, this analysis suggests that insertion of proximal genomic 
sequences occurs at low frequency in multiple cell types, and could be a general consequence of 
SpCas9-induced double-stranded DNA breaks.   
 
Discussion 
Here, we publish the largest analysis to date of DNA repair outcomes resulting from SpCas9 
editing in primary human CD4+ T cells. We used this dataset to develop SPROUT, a prediction 
algorithm to determine repair outcomes after a SpCas9 double-stranded DNA break. SPROUT 
has significantly enhanced prediction capacity compared to previous models in primary human T 
cells and, to a lesser extent, in transformed cell lines. It is able to rank guide RNA sequences by 
proportion of insertions and deletions and has revealed key elements of the nucleotide sequence 
that drive repair outcomes. Consistent with previous results5–7, we find that the nucleotides 
adjacent to the cut site are the major driver of NHEJ repair outcomes and that the presence of 
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homopolymers increase the fraction of deletions. We also reveal an unanticipated role for the 
PAM-adjacent nucleotide in promoting insertions as a repair outcome. This nucleotide on the non-
template strand packs against the end of the PAM duplex at the point the two strands diverge22. 
It is tempting to speculate that interaction of purine nucleobases with the PAM duplex will result 
in a different conformation of the non-template strand to pyrimidine nucleobases, resulting in a 
shift in likelihood towards generating single-base staggered cuts through the RuvC domain. 
Similarly, the -1 nucleotide is critical for positioning the non-template strand for cleavage by the 
RuvC domain and is involved in extensive interactions with both Cas9 protein and other 
nucleotides from the strand. Future structural and biochemical studies with different guide and 
target sequences will be required to illuminate this in detail. It important to note that while many 
of the features of repair outcomes were shared between primary T cells and transformed cell 
lines, SPROUT was more accurate at predicting repair outcomes for primary T cells. This 
suggests that there may be cell-type specific effects, and that any models targeted toward 
prediction of outcomes will require training on the specific cell-type of interest to achieve high 
accuracy. This may be of particular importance in post-mitotic cells, where influences of the cell 
cycle on DNA-repair will be more pronounced than in rapidly dividing populations.  
 
These experiments also reveal that the repair outcomes from the majority of target sites contain 
low frequency long DNA insertions that originate from other parts of the genome. A substantial 
fraction of these insertions align to regions of the genome that are physically proximal to the 
SpCas9 target site. Our analyses show that the long insertions preferentially originate from 
enhancers and transcriptionally active regions of the genome, and that they are not repetitive 
elements or retrotransposons. Recent reports have indicated that cells may undergo significant 
genomic rearrangements in response to SpCas9 cleavage8,23, although these should be 
interpreted cautiously given the cell types used. Short-range targeted PCR based sequencing is 
unable to detect many of these reported larger rearrangements, and these would have been 
missed in our analysis. However, despite this lack of sensitivity, the prevalence of the proximal 
genomic insertions in our data set suggests that some fraction of cells may use accessible regions 
of the genome to repair DNA using non-canonical mechanisms. Long-range PCR followed by long 
read sequencing or high coverage genome sequencing could provide additional data on complex 
repair outcomes, and perhaps reveal additional DNA sources8,24. However, long-range PCR and 
long read sequencing are inherently biased towards shorter fragments, and improved methods 
will be required for accurate quantification of the true occurrence rate of these insertion events. 
Given the therapeutic applications of T cells and other primary cells, it would be prudent to 
investigate further into the mechanisms and prevalence of these, and other larger 
rearrangements, during genome editing. 
 
Data availability 
The SPROUT software is publicly available at https://github.com/amirmohan/SPROUT.git. All raw 
data and analyses are openly available through SRA (BioProject: PRJNA486372) and figshare, 
respectively.  
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Methods 
 
T cell Editing 
Lyophilized crRNA and tracrRNA (Dharmacon) was resuspended at a concentration of 160 µM in 
10 mM Tris-HCL (7.4 pH) with 150 mM KCl. Cas9 ribonucleoproteins (RNPs) were made as 
previously described by combining 5µL of 160µM crRNA with 5µL of 160µM tracrRNA for 30 min 
at 37°C, followed by incubation of this 80µM gRNA product with 10µL of 40µM Cas9 (UC 
Macrolab) to form RNPs at 20µM25. Five 3.5µL aliquots were frozen in lo-bind 96-well V-bottom 
plates (E&K Scientific) at -80oC until used. All crRNA guide sequences were designed by 
Dharmacon for gene knockout (Hiatt et al, in review).  
 
T cell editing was conducted according to published protocols14. Briefly, peripheral blood 
mononuclear cells (PBMC) were isolated from whole blood (numeric donors, under a protocol 
approved by UCSF Committee on Human Research, CHR #13-11950) or de-identified residuals 
from leukoreduction chambers after Trima Apheresis (alphabetic donors, from Blood Centers of 
the Pacific) from healthy human donors by Ficoll centrifugation with SepMate tubes (STEMCELL, 
per manufacturer’s instructions). CD4+ T cells were then isolated from PBMCs with magnetic 
negative selection (STEMCELL), cultured at 1 million cells/mL in complete RPMI (RPMI-1640 with 
20 IU/mL IL2, 10% FBS, 50 µg/mL Pen/Strep and 5mM HEPES)  and activated with plate-bound 
anti-CD3 (OKT3) and anti-CD28 (CD28.2) antibodies. 
 
After three days of culture on stimulating antibodies at 37°C / 5% CO2, cells were resuspended 
and counted before editing. Approximately 3.5 x 105 cells were edited per blood donor per guide. 
Immediately before electroporation, cells were centrifuged at 400xg for 5 minutes, supernatant 
was aspirated, and the pellet resuspended in 20 µL of room-temperature Lonza electroporation 
buffer P3 (Lonza). The cell suspension was then gently mixed with thawed RNP and carefully 
aliquoted into 96-well electroporation cuvette for nucleofection with the 4D 96 well shuttle unit 
(Lonza) using code EH-115. Immediately after electroporation, 80 µL of pre-warmed media 
without IL2 were added to each well and cells were allowed to rest for at least one hour in a 37°C 
cell culture incubator. Subsequently cells were moved to 96-well flat-bottomed culture plates pre-
filled with 100 µL warm complete media with IL2 at 40 IU/mL (for a final concentration of 20 IU/mL) 
and anti-CD3/anti-CD2/anti-CD28 beads (T cell Activation and Stimulation Kit, Miltenyi Biotec) or 
anti-CD3/anti-CD28 dynabeads (ThermoFisher) at 1:1 bead:to:cell ratio.  
 
Cells were then cultured at 37°C / 5% CO2 in a dark cell culture incubator for a further 6 days, 
and were supplemented with IL2-containing complete media on days 3 and 5 of culture. On day 
6 of culture, one eighth of each culture, approximately 35 µL, was reserved for genomic DNA 
analysis by 1:1 mixing with QuickExtract buffer (EpiCentre) in a 96-well plate, sealing carefully 
with foil and heating to 65°C for 20 min followed by heating to 98°C for 5 minutes on a 
thermocycler. Genomic DNA extracts were stored at -20°C until use.  
 
PCR amplification of cut sites 
PCR primers were designed using an in-house Python wrapper around Primer3 
(github.com/czbiohub/Primer3Wrapper)26. Primers were designed to amplify a 180 to 260 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/404947doi: bioRxiv preprint 

https://doi.org/10.1101/404947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

nucleotide region, ensuring that the cut site was at least 50 nucleotides from the end of each 
primer, as well as 15 nucleotides from the center of the read to ensure there was enough 
sequence to accurately quantify larger indels. Sequencing adapters (Forward: 5’-
CTCTTTCCCTACACGACGCTCTTCCGATCT-3’ and Reverse 5’-
CTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’) were appended to the designed primers, and a 
homodimer and heterodimer filter was applied to ensure no secondary structure existed between 
primers. Sites were amplified using between 4,000 and 10,000 genomic copies, 0.5 µM of each 
primer, and Q5 hot start high-fidelity 2x master mix (NEB). PCR was performed using the standard 
protocol: 98oC for 30 seconds; then 35 cycles of 98oC for 10 seconds, 60oC for 30 seconds, and 
72oC for 30 seconds; followed by a final extension at 72oC for 2 minutes (NEB). Samples were 
diluted 1:100 and individually indexed in a second, 12-cycle PCR using index primers containing 
Illumina sequencing adapters and 8 base barcodes, under the same conditions as the first PCR. 
After the second PCR, indexed samples were pooled and purified using a 0.7x SPRIselect 
purification and sequenced on an Illumina NextSeq 500.  
 
Repair outcome pre-processing pipeline 
Fastq sequencing files were first merged using FLASH27, then subjected to adapter and quality 
trimming with trimmomatic28. These merged reads were then initially aligned to the hg38 genomic 
contig using bwa mem29, creating individual .bam files. Each sample was individually analyzed 
using the CrispRVariants bioconductor package in R16, which performs a secondary alignment 
and quantifies each unique insertion and deletion per sequencing read. Repair outcomes were 
then further parsed using embedded CrispRVariants packages to quantify individual DNA repair 
outcomes, the insertion sequences, mutation efficiencies, and SNVs. Sites where the total 
number of reads was less than 1,000 were considered dropouts and filtered from all analysis. The 
average number of reads per site, after filtering, is approximately 59,000. 
 
T cell data summary  
This study involved 3,989 DNA repair profiles from T cells isolated from 18 patients. These 
outcomes targeted 1,521 unique sites within 549 genes in the human genome. The RNP 
knockouts were repeated on average 2 times, each across unique primary T cells from different 
blood donors (Supplementary Fig. 1). The repair outcomes were averaged over the repeats 
across the patients, and DNA repair outcome data from each target site has been deposited on 
figshare. 
  
HCT116, HEK293, and K562 data summary 
Published sequencing data7 from three other cell types (HEK293, K562, and HCT116; BioProject 
PRJNA326019) were analyzed according to the same procedure as the T cell data and used for 
validation of the machine learning model. The dataset we used from the manuscript comprised 
the RNP knockouts, after 48 hours, from 96 unique cut sites on the human genome. Each 
knockout was biologically repeated three times (Supplementary Fig. 10), and DNA repair outcome 
data from each target site has been deposited on figshare. 
 
SNVs within the dataset 
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Single nucleotide variations (SNVs) are rarely observed in SpCas9-based repair outcomes. On 
average, only 1.04% of our reads at a given cut site show one or more SNVs, with the 25% to 
75% quantiles equal to 0.45% and 0.75%, respectively.  
 
Jaccard similarity 
We computed the Jaccard similarity by analyzing the top 20 DNA repair outcomes. This analysis 
measures the ratio of the number of shared repair outcomes between the two sets over the total 
number of repairs in both sets together. 
 
Training the machine learning model 
We used five-fold cross-validation to train SPROUT. We randomly split the unique cut sites in T 
cells (a total of 1,521) into 5 folds and trained SPROUT on four of the five folds. We then tested 
the performance of SPROUT on the remaining unseen fifth fold (304 cut sites). We repeated the 
random data split procedure 10 times and report the average and standard deviation of the 
prediction performance over the 10 random repeats. We evaluated the prediction performance of 
regression tasks, i.e., predicting the fraction of total or indel mutant reads with insertion or deletion 
and the edit efficiency, using the coefficient of determination (R2). We also evaluated the 
prediction performance of classification tasks, i.e., predicting if the average insertion or deletion 
length or the diversity is larger/smaller than the median of the distribution, using the accuracy of 
the classifier. A naive (or random) guess would be 50% accurate in predicting the correct output 
labels. 
 
For the models evaluated on three other cell types (HCT116, HEK293, and K562), we trained 
SPROUT on the full T cell data (1,521 cut sites) and tested the performance of the model on the 
other cell types. For the classification tasks, we used the median of the cell type distributions to 
set the threshold. 
 
Fraction of insertions and average insertion length 
We trained SPROUT to predict the fraction of reads with an insertion using both the number of 
reads with an insertion divided by the number of reads with insertion or deletion (fraction of indel 
mutant reads), and the number of reads with an insertion divided by the total number of reads, 
(fraction of total reads). We also trained SPROUT to predict if the expected insertion length is 
more or less than a threshold of the average insertion (approximately a single base). To determine 
SPROUT’s accuracy, a classifier was used based on the median size of the insertion (1.11 bp for 
T cells, 1.14 bp for HCT116/HEK293/K562s). The accuracy of this classifier was 84% and 77% 
for the two classes of cells tested, respectively. Note that random naive guess achieves 50% 
accuracy on this task (34% and 27% accuracy gain).  
 
Fraction of deletions and average deletion length 
We replicated the method for insertions to predict deletion outcome. Due to the increased 
variance in deletion length compared to insertion length (standard deviation of 5.0 bp compared 
to 0.4 bp), the prediction was more difficult (Supplementary Fig. 4). SPROUT predicted the 
fraction of deletion mutant reads with an R2 = 0.59. Note that since the fraction of indel mutant 
reads with an insertion and deletion adds to one, the prediction performance of these two 
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outcomes are similar. Our model predicted the fraction of total reads with a deletion with R2 = 
0.10, significantly lower than the insertion prediction (R2 = 0.40, Fig. 2). The model did not retain 
accuracy on the immortalized human cell lines (average R2 = 0.05).  
 
On T cells SPROUT predicted (using the previously described classification method) if the 
average deletion length is less or more than the median of 12.19 bps with an accuracy of 65% 
(15% accuracy gain over a random guess). We validated the model trained on T cells on other 
cell types, i.e., HCT116, HEK293, and K562; the median of the expected insertion length on other 
cell types was 11.76 bps. The model trained on T cells predicted if the average deletion length is 
less or more than the median with an accuracy of 61% (11% accuracy gain) in these three cell 
lines. 
 
Homopolymer analysis 
To analyze the effect of homopolymers on indel formation, we fit a linear regression model based 
on spacer (+PAM) input sequence, whose output predicted the fraction of mutant reads containing 
a deletion. Four binary indicators measured the presence (or absence) of homopolymers. To 
obtain the binary indicator variables, we assess if the nucleotides adjacent or crossing the cut site 
repeat for more or equal to two times. Each of the four indicators proved to be significant in 
predicting deletions (p < 0.02). The length of homopolymers is also positively correlated with 
increased deletion proportion (p < 0.02).  
 
Predicting the diversity of outcomes 
We use the entropy of the repair outcome distribution as a metric to quantify the site-specific 
repair diversity. This entropy measured the distribution of the repair outcomes – whether they 
were more diverse and widespread, or singular and enriched – again based on the input guide 
and PAM sequence. The model classified outcomes into two classes of high and low diversity, 
which correspond to having an entropy of less than or larger than the median (3.66) of entropies 
across repair outcomes. This classifier had an accuracy of 68% on T cells. This generalized to 
the immortalized lines with 70% accuracy (median of 3.05).  
 
Nucleotide features extracted from the machine learning model 
To measure the importance of individual features in the gradient boosting model, the information 
gain concept was used. The information gain associated to a feature measures the decrease in 
entropy after a dataset is split based on that particular feature. A higher information gain 
corresponds to a more predictive feature. We also determined the influence of each feature 
(enrichment or depletion) from the sign of the coefficients of a linear regression model trained on 
the data. Note that the algorithm was completely blind to the actual location of the cut site. 
Additionally, the feature importance for nucleotides (e.g., ‘G’) showed an alternating pattern. We 
speculate that one reason for the enrichment of alternating pattern for an insertion outcome and 
thus depletion for a deletion outcome is the homopolymer effect. It has been observed that 
homopolymers – the repetition of one base creating long runs of the same nucleotide – favor a 
deletion outcome (Supplementary Fig. 9)4,5. 
 
Ranking guides based on a desired repair outcome 
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We evaluated SPROUT in ranking the guides based on fitness to produce a desired repair 
outcome. Two outputs were used to train the regression: the fractions of indel reads, and the 
fractions of total reads. After training on 400 genes, the model was used to predict the fraction of 
insertions and deletion of a hold-out set of guides targeting 149 different genes. We assessed the 
ranking performance of the guides on only the genes that have more than one guide in our 
datasets (142 test genes out of 149 genes total). The guides were then ranked within each gene 
based on the insertion and deletion fractions, and the rank correlation between the observed 
result and predicted ranking was evaluated.  
 
The performance was measured using Kendall’s tau ranking coefficient and the percentage of 
completely correct predictions. Kendall’s tau ranking coefficient measures the difference between 
the observed result and the predicted rankings. The Kendall’s tau coefficient is a ranking measure 
between -1 and 1, where 1 indicates that rankings match exactly, 0 means that there is no ranking 
correlation, and -1 means that there is complete reverse ranking correlation. We tabulated the 
results in Supplementary Fig. 7 both in ranking the guides in hold-out genes from T cells and 
guides from the three other validation cell types (HCT116, HEK293, and K562). 
 
Edit efficiency prediction  
We compared the performance of previously trained models for edit efficiency17,18,30 on the edit 
efficiency from the T cells repair data (Supplementary Fig. 6). These models showed no power 
(R2 < 0.01) in predicting the edit efficiency in T cells, HCT116, HEK293, or K562 (R2 < 0.01). This 
lack of power suggests that the published predictors are specific to the particular delivery methods 
and readouts used in these papers. SPROUT, in contrast, predicted the edit efficiency of T cells 
with R2 = 0.23. However, this did not carry over to other cell types.  
 
Predicting short inserted sequences 
We trained SPROUT to predict the type of the nucleotide that is inserted during an insertion event 
of length one. We first attempted to predict if the inserted sequences are more likely to be A/T or 
C/G in a single-nucleotide insertion event (Supplementary Fig. 12). Of the total dataset, 1245 of 
the guides were more likely to have A/T insertion and the remaining 267 sites were more likely to 
have C/G insertion. Since this was an unbalanced dataset, we used the more proper F1 measure, 
which computes the harmonic mean of precision (TP / (TP + FP)) and recall (TP / (TP + FN)), 
where TP is the true positive, FN is the false negative, and FP is the false positive. Our model 
predicted the “dual” insertion type (A/T or G/C) with 96% accuracy (F1 = 0.87).  
 
SPROUT was also trained to predict the insertion type among the four distinct classes A, C, G, 
and T, again given a single nucleotide insertion event. SPROUT predicted the inserted nucleotide 
with a 49% accuracy. Naive guessing strategy of the most frequent class achieved an accuracy 
of 43% (6% accuracy gain). Validation on the other cell types showed a prediction accuracy of 
77% while the naive guessing strategy was also 77% accurate (no accuracy gain).  
 
Extracting and aligning long insertion data from the repair outcomes 
To obtain the insertion data, the repair outcomes of all 1,521 cut sites were parsed and reads with 
an inserted sequence of length at least 25 bp were selected, totaling 22,495 unique insertions 
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which centered on the cleavage site (Supplementary Fig. 11). All insertions were aligned to the 
human genome with the BLAST algorithm (blastn command, 
https://blast.ncbi.nlm.nih.gov/Blast.cgi) under default conditions and input parameters. For the 
cases with more than one alignment, the site with the highest alignment score was selected. A 
total of 8,946 unique insertions aligned to the human genome (Supplementary Fig. 13). 36% of 
the long insertions aligned to the same chromosome as that of the cleavage site (intra-
chromosomal map) and the remaining insertions (64%) aligned to other chromosomes (inter-
chromosomal map).  
 
HiC contact maps database  
The HiC contact map of GM12878 primary cell lines (the most T cell-like line with data in public 
inter-chromosomal HiC databases) was used to evaluate the HiC contact scores in T cells. The 
contact maps are available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6352521. 
HiC contact maps from various resolutions (250 kb, 500 kb, 1 mb) were used. The raw observed 
data (chrXX_YY_ZZb.RAWobserved) with the MAPQGE30 format was used. For the 
immortalized K562 line, the same GM12878 contact map was used.  The HEK293 immortalized 
line was analyzed using the NHEK contact map [GEO accession number: GSE63525]. The 
chromosomal level contact maps were obtained by adding the pairwise scores between the blocks 
with chromosomes. 
 
HiC contact maps analysis 
We employed a statistical analysis test to test the correlation between the HiC maps and the 
aligned insertions using different resolutions: both chromosomal level and genomic block level. 
For the chromosomal level, the average HiC map between chromosome pairs21 was compared 
to the mapped insertions (Fig. 3E), skipping the sex chromosomes because sex was masked in 
our T cell donors. This interaction was normalized by the length of the chromosomes, and the 
resulting correlation (Pearson correlation of 0.72, p < 10-77) suggested raw chromosome to 
chromosome contact correlated with the aligned insertions. To analyze genomic blocks, we 
collected and averaged the values of HiC scores and compared the values to three controls. The 
first control averaged the HiC contact scores on the neighboring HiC block to the selected blocks 
from the insertion donating site side (see Fig. 3A for visualization). The second control averaged 
the HiC scores on the neighboring HiC block to the selected blocks from the cut sit side. The third 
control averaged the HiC scores on random blocks within the same chromosome pairs that the 
cut happened and insertion aligned to. The results spanned different block sizes ranging from 
250kb to 1mb. 
 
Repetition of long insertions across donors in the same cut sites and genes 
We also quantified the similarity of the inter-chromosomal insertions (larger than 25bp) across the 
same cut sites (or genes). We analyzed the similarity between the aligned chromosomes, given 
a common cleavage site, and compared them with random control. To measure this, we defined 
Sij = {cij

1,cij
2,cij

3,...,cij
Nij}, where the chromosome set is of cleavage site i, donor was j, and Nij was 

defined as the unique long insertions. Thus, cij
k denoted the chromosome index of the kth insertion 

donating site, corresponding to donor j at cut site i. We then quantified the similarity of long 
insertion outcomes of donors j = {1,2,3,...,Mi} at cut site i by finding the fraction of shared elements 
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between sets Sij and Sij’ for every pair of donors (j,j’). This was compared to a random control 
comprised of two random cut sites or genes from shuffled, distinct donors. The analysis shows 
that the long insertion outcomes which are observed on the same cut site are significantly (p < 
10-39) closer to each other (23% similarity) compared to the random control case (13% similarity). 
The same observation was true for the long insertion outcomes observed on the same gene (22% 
similarity and p < 10-17). The same method was used to quantify across the biological replicates 
from published immortalized cell line data5.  
 
We also quantified the chromosomal similarity of long insertions across donors, measured by the 
location of the aligned insertion. The average distance between inserted sequences was 
calculated and compared to a random control baseline (40 Mb vs 63 Mb average distance, 
respectively). Similar results were obtained when evaluating aligned long insertions obtained from 
cleavage sites within the same gene. This same method again was used to evaluate long 
insertions from previously published sequencing data5 (Supplementary Fig. 16).  
 
Insertion repeat element analysis 
To evaluate if the aligned long insertions were enriched for repetitive sequences and for 
retrotransposons, we performed a computational search for common features. We calculated the 
frequency of k-mers, and the entropy of these k-mer frequencies. As an example, SINE elements 
which often have runs of (CA)n and (CT)n

31, corresponding to a low entropy. The average entropy 
of k-mers was calculated for each aligned long insertion and compared to a random shuffling of 
the nucleotides within an insertion. The average entropy of aligned insertions (3.18 ± 0.25) did 
not show a significant difference from random shuffled sequences (3.24 ± 0.24) when we 
analyzed the 3mer frequency. We also searched for consensus motifs of SINE 
(TGGCNNAGTGGN and GGTTCGANNCC) and only found the motifs in 4 aligned long insertions.  
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Figure 1. Overview of the method. (A) Primary T cells were isolated, activated, and electroporated 
with Cas9/crRNA/tracrRNA RNPs in 96-well plates. After 6 days of expansion, genomic DNA was 
isolated from each well, amplified and sequenced. (B) The CrispRVariants R package16 was used 
to quantify each SpCas9 RNP knockout. An example alignment is plotted here, with quantification 
shown for two blood donors. Each site has this same unique plot, all of which can be found on 
figshare. (C) A gradient boosting machine learning algorithm was trained to predict multiple DNA 
repair outcomes given the guide RNA sequence, chromatin factors, and gene expression levels.  
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Figure 2. SPROUT predicts DNA repair outcomes. (A) The DNA repair outcomes resulting from 
RNP activity in T cells derived from different blood donors were compared for CDK9, CXCR4, and 
LEDGF control guides analyzing the top 20 indels at each site. These guides were used in every 
blood donor. Jaccard similarity is calculated for each guide site across donors. (B) Jaccard 
similarity of DNA repair outcomes for 18 randomly chosen guides, again using the top 20 indels. 
Jaccard coefficients are plotted comparing outcomes from different guide RNAs and between 
blood donors. (C) The trained model was used to predict DNA repair indel fractions in a hold-out 
(un-seen) portion of the T cell dataset. The model was also evaluated on previously published 
data5 obtained from immortalized cell lines to test generalization performance for other cell types 
and experimental conditions. (D) Accuracy of the trained model in predicting the average insertion 
and deletion length and indel diversity on both T cells and previously published data5. (E) The 
importance that SPROUT assigns to nucleotides at each position relative to the cut site. Larger 
text indicates that the presence of a particular nucleotide at a position has greater importance in 
determining the likelihood of insertion versus deletion.  
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Figure 3. Genomic DNA sequences from sites in physical proximity can be inserted at SpCas9 
cut sites. (A) All insertions longer than or equal to 25 bases were identified and plotted. (B) 
Number of cut sites with at least one (aligned) long insertion was plotted against the insertion 
length. (C) Average similarity of the insertion location within the same cut site and gene was 
compared across donors. This was also performed on a shuffled set of insertions as a control. 
Average genomic distance quantifies the distance between the donor sites of the long insertions 
that originate from the same chromosome. (D) HiC chromosome contact maps were directly 
compared to the aligned long insertions. (E) Quantification of the HiC contact data to the long 
insertions. Neighboring blocks as well as a randomly selected block were used as controls. The 
HiC block size was also varied. 
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Supplementary Figure 1. Histogram showing the distribution of unique blood donors per SpCas9 
cut site in the T cell data. 
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Supplementary Figure 2. Distribution of the edit efficiency (left) and indel diversity (right) of the 
repair outcomes in T cells. We use the entropy of the distribution of the reads over the indel types 
as a metric to quantify the diversity of the repair outcomes. If there is exactly one repair outcome 
in all of the reads, then the entropy is 0. Higher entropy means that the repair outcomes are more 
diverse.  
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Supplementary Figure 3. Distribution of the fraction of total reads with an insertion (left) and 
deletion (right) in T cells. 
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Supplementary Figure 4. Distribution of the average insertion length given an insertion (left) 
and average deletion length given a deletion (right) in the repair outcomes of T cells. 
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Supplementary Figure 5. The Jaccard similarity between the top 20 indels of 250 (of a total of 
3,989) randomly selected SpCas9 targeted sequencing experiments in T cells. Experiments 
performed on cells from different individuals at the same cut site are placed next to each other in 
the heatmap. These biological replicates show greater Jaccard similarity in repair outcomes 
compared to outcomes at distinct cut sites, as can be seen in the blocks along the diagonal.   
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Supplementary Figure 6. Performance of SPROUT in predicting editing efficiency. (A) 
Comparison of SPROUT machine learning model to two other published models18,30. SPROUT 
was trained on a random subset of T cell sites and the table indicates its accuracy on the hold-
out T cell targets as well as on three other cell types on which it was not trained.  (B) The eight 
most important features (ranked by information gain) of SPROUT for predicting edit efficiency. E 
indicates that presence of the feature corresponds to increasing the number of insertions relative 
to deletions, and D indicates the features corresponds to decreasing the number of insertions 
relative to deletions. See http://cadd.gs.washington.edu/static/ReleaseNotes_CADD_v1.2.pdf for 
more details on the extracted features from the ENCODE project. 
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Supplementary Figure 7. SPROUT’s performance in ranking guides within a gene based 
predicted repair outcome. (A) Schematic of the guide ranking experiment. Assuming a gene with 
three potential guides (Guide 1, Guide 2, Guide 3), SPROUT ranks the guides based on likelihood 
to produce a single nucleotide insertion (or deletion). In this illustration the algorithm predicts that 
Guide 2 produces the most number of reads with 1-bp insertion/deletion. (B) Guide ranking 
performance on T cells. The algorithm was trained on 435 genes and tested on the remaining 108 
genes. Kendal tau (between [-1,1]) measures the rank correlation (higher is better and zero 
indicates no correlation) and “# genes” indicates the number of genes for which SPROUT 
predicted exactly the correct ranking across all the guides. (C) Guide ranking performance on 
HEK293. (D) Guide ranking performance on K562. (E) Guide ranking performance on HCT116. 
For parts (C,D,E) the model was trained on all T cell genes and tested on 28 genes from these 
other cell types. 
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Supplementary Figure 8. (A) Average fraction of indel mutant reads with insertion in target sites 
grouped by their nucleotide type at location -1 (adjacent to the cut site from the 5’ side). Presence 
of C or G at location -1 is significantly correlated with higher deletion proportion (p < 0.004) and 
presence of A or T is significantly correlated with higher insertion proportion (p < 10-6) consistently 
across all cell types. We show the results for T cells (left) and the aggregate results for HEK293, 
K562 and HCT116 (right). (B) Average fraction of indel mutant reads with insertion conditioned 
on the nucleotide at position +3 (the last nucleotide before e.g. 5’ of the PAM sequence). The 
presence of A at +3 is correlated with higher fraction of insertions. Error bars represent the 
standard error of the mean (SEM). The analyses here differ from and complement Fig 2E. The 
SPROUT importance scores of 2E captures the nonlinear model’s overall prediction as to the 
impact of each nucleotide and position. The figures here ignore the effects of other positions and 
plots the conditional insertion fractions. Even though the methods are different, both the feature 
importance scores and the conditional fractions give consistent biological findings. 
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Supplementary Figure 9. Average fraction of indel mutant reads with deletion in target sites 
grouped by their homopolymer types. HomP(A) corresponds to target sites that have at least two 
consecutive A nucleotides adjacent to the cut site, and similarly for HomP(C), HomP(G), and 
HomP(T). No HomP indicates the rest of the target sites without homopolymers. We show the 
results for T cells (top) and the aggregate results for HEK293, K562 and HCT116 (bottom). Error 
bars represent the standard error of the mean (SEM). 
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Supplementary Figure 10. Data summary for T cells and three other cell types5. 
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Supplementary Figure 11. Histogram of the distances of long insertions from the target cut sites. 
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Supplementary Figure 12. The performance of SPROUT in predicting the insertion type given a 
single-nucleotide insertion. The first row of each table gives the accuracy for predicting if the 
inserted nucleotide is A/T or C/G (binary classification).  The second row of each table gives the 
accuracy of predicting if the inserted nucleotide is A, T, C, or G (4-class classification). SPROUT’s 
performance is compared to a naive guessing strategy which selects the most frequently 
occurring nucleotide(s) in the dataset. 
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Supplementary Figure 13. Distribution of the length of the aligned insertions in T cells. 
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Supplementary Figure 14. Histogram of the distance of the insertion donor sites to the cut sites 
in intra-chromosomal long insertions. The x-axis indicates distances in log 10 bases.  
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Chromatin state Description % donor sites % shuffled sites 

1_TssA Active TSS 1.3 0.6 (0.5-0.7) 

2_TssAFlnk Flanking Active TSS 3.4 1.6 (1.5-1.8) 

3_TxFlnk Transcr. at gene 5' and 3' 0.5 0.1 (0.0-0.1) 

4_Tx Strong transcription 10.1 8.9 (8.5-9.3) 

5_TxWk Weak transcription 12.0 12.0 (11.5-12.4) 

6_EnhG Genic enhancers 2.6 1.3 (1.1-1.4) 

7_Enh Enhancers 5.8 5.2 (4.9-5.5) 

8_ZNF/Rpts ZNF genes & repeats 0.5 0.3 (0.2-0.3) 

9_Het Heterochromatin 1.8 1.8 (1.6-2) 

10_TssBiv Bivalent/Poised TSS 0.0 0.0 (0.0-0.1) 

11_BivFlnk Flanking Bivalent 
TSS/Enh 

0.3 0.2 (0.1-0.2) 

12_EnhBiv Bivalent Enhancer 0.2 0.3 (0.2-0.3) 

13_ReprPC Repressed PolyComb 0.9 1 (0.9-1.2) 

14_ReprPCWk Weak Repressed 
PolyComb 

9.9 12.1 (11.7-12.5) 

15_Quies Quiescent/Low 50.6 54.7 (54.1-55.3) 

Active state (1-7) Sum of states 1 to 7 35.8 29.6 (29.0-30.2) 

 
Supplementary Figure 15. Overlap between the insertion donor sites and 15 core chromatin 
states. We measured the percentage of insertion donor sites that fall within each of the 15 
chromatin states (“% donor sites”). The chromatin states were obtained for primary CD4+ T cells 
(E043) from the Human Epigenome Roadmap. Here we considered only the long insertions that 
are aligned to a different chromosome from the SpCas9 target site, to avoid potential confounding 
due the target sites being in exons. For background control, we randomly shuffled each aligned 
insertion within a +- 500kb window centered at its original location (i.e. donor site), and report the 
percentage of the shuffled sites that overlap each chromatin state (“% shuffled sites”). Insertion 
donors are significantly enriched for chromatin states associated with enhancers and transcription 
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(states 1-7, colored red) compared to control (P < 10-5). Altogether 35.8% of inter-chromosome 
donor sites come from one of states 1 to 7 compared to 29.6% of the control sites.  
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Supplementary Figure 16. The average similarity and distance of the chromosomal positions 
between long insertions. We measure the similarity and distance for long insertions across 
biological samples at the same cut site (“Within cut site”), across different cut sites within the 
same gene (“Within gene”), and across random pairs of cut sites (“Shuffled control”).  We report 
the results for each of three previously published data5. 
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Supplementary Figure 17. The HiC contact map at the insertion site locations compared to three 
control cases in two other cell types (HEK293 and K562) across different HiC block sizes for 
insertion larger than 25 nucleotides5. The first control averages the HiC contact map in the 
neighboring blocks of the insertion donor and cut site. The third control averages the HiC score 
among random blocks in the same cut site-donor site chromosome pairs. Error bars represent 
the standard error of the mean (SEM). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/404947doi: bioRxiv preprint 

https://doi.org/10.1101/404947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

References 
 

1. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 

(2013). 

2. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 

819–823 (2013). 

3. Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting 

genomes. Nat. Biotechnol. 32, 347–355 (2014). 

4. Deriano, L. & Roth, D. B. Modernizing the nonhomologous end-joining repertoire: 

alternative and classical NHEJ share the stage. Annu. Rev. Genet. 47, 433–455 (2013). 

5. van Overbeek, M. et al. DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-

Mediated Breaks. Mol. Cell 63, 633–646 (2016). 

6. Lemos, B. R. et al. CRISPR/Cas9 cleavages in budding yeast reveal templated insertions 

and strand-specific insertion/deletion profiles. Proc. Natl. Acad. Sci. U. S. A. 115, E2040–

E2047 (2018). 

7. Brinkman, E. K. et al. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand 

DNA Breaks. Mol. Cell 70, 801–813.e6 (2018). 

8. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by 

CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 

765 (2018). 

9. Richardson, C. D. et al. CRISPR-Cas9 genome editing in human cells occurs via the 

Fanconi anemia pathway. Nat. Genet. 50, 1132–1139 (2018). 

10. Bae, S., Kweon, J., Kim, H. S. & Kim, J.-S. Microhomology-based choice of Cas9 nuclease 

target sites. Nat. Methods 11, 705–706 (2014). 

11. Taheri-Ghahfarokhi, A. et al. Decoding non-random mutational signatures at Cas9 targeted 

sites. Nucleic Acids Res. (2018). doi:10.1093/nar/gky653 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/404947doi: bioRxiv preprint 

https://doi.org/10.1101/404947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12. Fischbach, M. A., Bluestone, J. A. & Lim, W. A. Cell-Based Therapeutics: The Next Pillar of 

Medicine. Sci. Transl. Med. 5, 179ps7–179ps7 (2013). 

13. Hultquist, J. F. et al. A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of 

HIV-Host Interactions in Primary Human T Cells. Cell Rep. 17, 1438–1452 (2016). 

14. Hultquist, J. F. et al. A CRISPR-Cas9 Genome Engineering Platform in Primary CD4+ T 

Cells for the Interrogation of HIV Host Factors. bioRxiv 205500 (2017). doi:10.1101/205500 

15. Hiatt J. et al. A Functional Map of HIV-host Interactions in Primary Human T cells. In 

preparation 

16. Lindsay, H. et al. CrispRVariants charts the mutation spectrum of genome engineering 

experiments. Nat. Biotechnol. 34, 701 (2016). 

17. Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated 

gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014). 

18. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target 

effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016). 

19. Uusi-Mäkelä, M. I. E. et al. Chromatin accessibility is associated with CRISPR-Cas9 

efficiency in the zebrafish (Danio rerio). PLoS One 13, e0196238 (2018). 

20. Horlbeck, M. A. et al. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. Elife 

5, (2016). 

21. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals 

principles of chromatin looping. Cell 159, 1665–1680 (2014). 

22. Jiang, F. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. 

Science 351, 867–871 (2016). 

23. Shin, H. Y. et al. CRISPR/Cas9 targeting events cause complex deletions and insertions at 

17 sites in the mouse genome. Nat. Commun. 8, 15464 (2017). 

24. Ma, H. et al. Ma et al. reply. Nature 560, E10–E23 (2018). 

25. Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/404947doi: bioRxiv preprint 

https://doi.org/10.1101/404947
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

genome targeting. Nature 559, 405–409 (2018). 

26. Untergasser, A. et al. Primer3--new capabilities and interfaces. Nucleic Acids Res. 40, e115 

(2012). 

27. Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve 

genome assemblies. Bioinformatics 27, 2957–2963 (2011). 

28. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina 

sequence data. Bioinformatics 30, 2114–2120 (2014). 

29. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler 

transform. Bioinformatics 25, 1754–1760 (2009). 

30. Peng, H., Zheng, Y., Blumenstein, M., Tao, D. & Li, J. CRISPR/Cas9 cleavage efficiency 

regression through boosting algorithms and Markov sequence profiling. Bioinformatics 

(2018). doi:10.1093/bioinformatics/bty298 

31. Kramerov, D. A. & Vassetzky, N. S. Short retroposons in eukaryotic genomes. Int. Rev. 

Cytol. 247, 165–221 (2005). 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 31, 2018. ; https://doi.org/10.1101/404947doi: bioRxiv preprint 

https://doi.org/10.1101/404947
http://creativecommons.org/licenses/by-nc-nd/4.0/

