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ABSTRACT 
 
Accurate, reliable prediction of risk for Alzheimer’s disease (AD) is essential for early, disease-
modifying therapeutics. Multimodal MRI, such as structural and diffusion MRI, is likely to contain 
complementary information of neurodegenerative processes in AD. Here we tested the utility of 
commonly available multimodal MRI (T1-weighted structure and diffusion MRI), combined with 
high-throughput brain phenotyping—morphometry and connectomics—and machine learning, 
as a diagnostic tool for AD. We used, firstly, a clinical cohort at a dementia clinic (study 1: Ilsan 
Dementia Cohort; N=211; 110 AD, 64 mild cognitive impairment [MCI], and 37 subjective 
memory complaints [SMC]) to test and validate the diagnostic models; and, secondly, 
Alzheimer’s Disease Neuroimaging Initiative (ADNI)-2 (study 2) to test the generalizability of the 
approach and the prognostic models with longitudinal follow up data. Our machine learning 
models trained on the morphometric and connectome estimates (number of features=34,646) 
showed optimal classification accuracy (AD/SMC: 97% accuracy, MCI/SMC: 83% accuracy; 
AD/MCI: 97% accuracy) with iterative nested cross-validation in a single-site study, 
outperforming the benchmark model (FLAIR-based white matter hyperintensity volumes). In a 
generalizability study using ADNI-2, the combined connectome and morphometry model 
showed similar or superior accuracies (AD/HC: 96%; MCI/HC: 70%; AD/MCI: 75% accuracy) as 
CSF biomarker model (t-tau, p-tau, and Amyloid β, and ratios). We also predicted MCI to AD 
progression with 69% accuracy, compared with the 70% accuracy using CSF biomarker model. 
The optimal classification accuracy in a single-site dataset and the reproduced results in multi-
site dataset show the feasibility of the high-throughput imaging analysis of multimodal MRI and 
data-driven machine learning for predictive modeling in AD. 

 
Keywords: Alzheimer’s disease; Multimodal MRI; White Matter Structural Connectomes; 
Probabilistic Tractography; Machine Learning  
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INTRODUCTION 
 
There is an urgent, unmet need for clinically useful biomarkers of risk for Alzheimer’s disease 
(AD) based on non-invasive and affordable measures suited for routine examination of 
individuals with subthreshold symptoms. Studies have focused on brain MRI-derived markers. 
Cortical thinning and reduced hippocampal volumes based on structural MRI are known for 
markers for AD, but these structural estimates alone are insufficient for implementation at 
clinical settings because of insufficient accuracy and generalizability (Teipel et al., 2015).  
 
It is conceptualized that biomarkers of Aβ deposition become abnormal early, and then markers 
of neuronal neurodegeneration or dysfunction show abnormality later in AD (Jack et al., 2010). 
These markers of neurodegeneration, rather than those of Aβ or Tau proteinopathy, appear 
directly related to cognitive symptoms (Jack et al., 2010). Neurobiology of AD relates to axonal 
and neuronal degeneration followed by fibrillar lesions triggered by amyloid precursor protein 
(APP)-initiated death-receptor mechanism and activation of tau (Holtzman et al., 2011; Nikolaev 
et al., 2009). Initial axonal degeneration may lead to grey matter tissue changes and finally to 
neuronal loss or atrophy resulting in cognitive and functional impairment. Since diffusion MRI 
uses water molecules as an endogenous tracer to probe tissue microstructure or properties 
(Beaulieu, 2002), it can detect subtle changes in microstructure tissue properties in AD. 
Previous studies have shown that decreased white matter integrity is associated with AD 
(Acosta-Cabronero et al., 2010; Douaud et al., 2011; Zhang et al., 2009). 
 
A potentially powerful application of diffusion MRI to AD research is assessing axonal white 
matter tracts using tractography. Tractography is a computational reconstruction of white matter 
tracts using biophysical modeling of fiber orientations (Johansen-Berg and Behrens, 2006; 
Seehaus et al., 2013). Recent advances in computational methods have enabled more rigorous 
estimation of white matter tracts (Azadbakht et al., 2015; Ciccarelli et al., 2008; Shi and Toga, 
2017; Sporns, 2011). In AD, human imaging of APP and tau shows widespread topography. 
Given this, when tractography is applied at the connectome level, this structural connectome 
data could be useful for assessing axonal or white matter abnormalities across the entire 
connectome. A few studies using tractography at the connectome level have noted abnormal 
topological organization of structural connectome in AD (Dai and He, 2014; Lo et al., 2010). 
However, it remains untested whether and to what extent the structural connectome carries 
additional information that structural MRI and morphometry analysis do not present.  
 
In this study, we addressed this issue using rigorous, data-driven machine learning in two 
independent datasets of moderate sample sizes (211 elders for the first dataset [Korean 
National Health Insurance Service Ilsan Hospital, South Korea] and 179 elders for the second, 
generalizability dataset [ADNI-2]). In both data, using multi-modal brain MRI (structural and 
diffusion MRI), we performed high-throughput brain phenotyping, including automated 
morphometry and white matter structural connectomics (probabilistic tractography) to generate 
large-scale multi-modal, multi-parametric imaging-derived phenotypes used as features in 
machine learning. A well-established, rigorous analysis pipeline was applied to diffusion MRI to 
estimate robust, individualized structure connectomes. We compared data-driven machine 
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learning classifiers trained on the individualized brain connectome and morphometric estimates 
with benchmark models (white matter hyperintensity) for the first Korean data and CSF 
biomarkers for the second reproducibility ADNI-2 data) using existing metrics.   
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MATERIALS AND METHODS 
 
Participants. For the first study, we used data from 211 seniors who visited the dementia clinic 
at National Health Insurance Service Ilsan Hospital (NHIS-IH), Goyang, South Korea from 2010 
to 2015. This sample is a randomly selected subset of the Ilsan Dementia Cohort, a 
retrospective clinical cohort. Neurologists made a diagnosis based on possible AD and 
Peterson’s MCI criteria (Petersen, 2004), clinical history, a full battery of neuropsychological 
evaluations (Seoul neuropsychological screening battery) and MMSE (Mini-Mental State 
Examination). Those with vascular changes were not excluded from the study as long as they 
had a diagnosis of AD or MCI based on MMSE, CDR, and the neuropsychological evaluations. 
Those with AD as a primary diagnosis and with small vessel disease were noted as “AD with 
small vessel disease”. Participants included 110 with the diagnosis of Alzheimer's disease (AD; 
median age=82; interquartile intervals (Q3-Q1)=85-77), 64 with mild cognitive impairment (MCI; 
median age=73; Q3-Q1=77-66), and 37 subjective memory complaints (SMC; median age=74; 
Q3-Q1=78-72) (Table 1). To test the generalizability of our approach, we also used ADNI-2 
(Alzheimer’s Disease Neuroimaging Initiative), where structural and diffusion MRI was collected. 
Demographical information is also provided in Table 2. The institutional review board of our 
hospital approved this study before implementation (IRB number:2017-04-24)  
 
MRI acquisition. National Health Insurance Service Ilsan Hospital (NHIS-IH): We collected the 
following multimodal MRI from all participants: T1- MPRAGE: TE, 4.6 ms; matrix, 310 × 480× 
480; voxel size, 0.5 × 0.5 × 0.5 mm. T2-FLAIR; matrix = 320 × 240 × 240; voxel size = 0.56 x 
1.04 x 1.04. Diffusion MRI: matrix = 112 × 112 × 70; voxel size = 1.9 × 1.9 × 2.0 mm; the series 
included one image acquired without diffusion weighting and with diffusion weighting along 40 
non-collinear directions (b = 600 s/m−2). ADNI-2:  T1-weighted anatomical MRI and diffusion 
MRI. T1-MPRAGE: TE, min full echo; matrix, 208 × 240× 256; voxel size, 1 × 1 × 1 mm. 
Diffusion MRI: matrix = 256 × 256 × 46; voxel size = 1.36 × 1.36 × 2.7 mm; the series included 5 
image acquired without diffusion weighting and with diffusion weighting along 41 non-collinear 
directions (b = 1000 s/m−2). 
 
MRI Analysis-Structural MRI. 
The high-throughput computational analysis was conducted. First, we estimated morphometric 
estimates using the Freesurfer image analysis pipeline (Fischl, 2012) (v6) from T1 and T2-
FLAIR images. Morphometric measures (N=948 per subject) include volumes of the 
hippocampal subdivisions, and thickness, surface area, and volume of cortical/subcortical 
regions using two different atlases available in Freesurfer (Desikan-Killiany atlas and Destrieux 
atlas; https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation). The technical details of 
these procedures are described in previous studies (Desikan et al., 2006; Destrieux et al., 2010; 
Fischl and Dale, 2000; Fischl et al., 1999). In brief, the image processing includes motion 
correction, removal of non-brain tissue, Talairach transformation, segmentation, intensity 
normalization, tessellation of the gray matter-white matter boundary, topology correction, and 
surface deformation. Deformation procedures use both intensity and continuity information to 
produce representations of cortical thickness. The maps produced are not restricted to the voxel 
resolution and are thus capable of detecting submillimeter differences between groups.   
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MRI Analysis-Diffusion MRI 
We estimated structural connectome using the diffusion MRI analysis pipeline, MRtrix 3 
(Tournier et al., 2004). The connectome measures (33,698 features per subject) include counts 
of streamlines, a surrogate measure of structural connectivity (Cha et al., 2015; Cha et al., 
2017; Cha et al., 2016), and mean length of streamlines given any two brain regions based on 
multiple atlases. Diffusion-weighted magnetic resonance imaging (DWI) was preprocessed 
using the following pipeline in MRtrix 3. DWI was first denoised using a novel algorithm based 
on random matrix theory that permits data-driven, non-arbitrary threshold for Principal 
Component Analysis denoising; this method enhances the DWI quality for quantitative and 
statistical interpretation (Veraart et al., 2016). Denoised images then underwent eddy current 
and motion correction (Andersson and Sotiropoulos, 2016), brain extraction from three non-
diffusion-weighted images (taking their median), and bias field correction using N4 algorithm 
(N4ITK), an improved N3 method, in Advanced Normalization Tools (ANTs)(Tustison et al., 
2010). We then estimated fiber orientation distributions from each preprocessed image using 
2nd-order integration over fiber orientation distributions (iFOD2). Based on the FODs, 
probabilistic tractography was performed using constrained spherical devolution (CSD). We 
used a target streamline count of 10 million across the whole brain. The tractograms were 
filtered using spherical-deconvolution informed filtering of tractograms (SIFT) with a target 
streamline count of 3 million. After a primary statistical analysis using these filtered tractograms, 
we tested whether the effects of interest were robust to the tractography and filtering 
parameters, such as the target streamline count for tractography, SIFT, or a ratio between them. 
This method permits mapping to streamline estimation back to individual's DWI and updating a 
reconstruction to improve model fit. This approach renders the streamline counts connecting 
two brain regions proportional to the total cross-sectional area of the white matter fibers 
connecting those regions, enhancing streamline counts as a biologically plausible quantity, 
representing "structural connectivity". This was done by repeating tractography and SIFT with a 
set of extreme parameters (100 million and 5 million target streamlines, respectively) with a 
filtering factor of 20 (100/5). Finally, from the filtered tractograms, we generated a connectivity 
matrix in each participant using two different atlases available in Freesurfer (Desikan-Killiany 
atlas (Desikan et al., 2006) and Destrieux atlas (Destrieux et al., 2010). We used streamline 
counts as the primary connectivity metric in this study as in a recent human infant imaging study 
(van den Heuvel et al., 2015b), as well mean length as secondary measures. A prior macaque 
study suggests the validity of streamline counts as an indicator of fiber connection strength, with 
the number of streamlines significantly correlating with tract-tracing strength in the macaque 
brain (van den Heuvel et al., 2015a).  
 
Machine Learning Classification  
We built several machine learning models using the large-scale brain MRI-derived phenotypes 
to predict the diagnosis of AD and MCI, respectively. Machine learning models were trained and 
cross-validated within each dataset. We benchmarked three commonly used classifiers 
available at a python library for machine learning, scikit-learn (Abraham et al., 2014): random 
forest, logistic regression (LR) with L1 and L2 regularization, and support vector machine (SVM) 
with a linear kernel. As a common preprocessing step for machine learning estimators, we 
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standardized the imaging derived phenotypes by removing the median and scaling them 
according to the quantile range (i.e., between the 1st and the 3rd quartile); this method is known 
to be robust to outliers (RobustScaler in scikit-learn python library). Model training and validation 
were done using nested cross-validation to avoid overfitting due to bias to training data (Cawley 
and Talbot, 2010; Varoquaux et al., 2017). Nested cross-validation uses a series of 
train/validation/test set splits: In the inner loop, we trained the model and selected a set of 
hyperparameters using the training set, then optimized the model with validation set; In the 
outer loop, we estimated generalization error of the underlying model using test sets. For 
feature selection, we used the 'forests of randomized trees' method, an ensemble method to 
combine the predictions of base estimators built with a learning algorithm, and then tested 
whether additional PCA-based dimensionality reduction improved the model or not. For hyper-
parameter optimization, we used the grid search method, varying C parameter for SVM and LR 
classifier, and varying the number of estimators and the minimum samples per leaf for random 
forest classifier. We used nested, k-fold, stratified cross-validation with ten iterations. To avoid 
information leakage during cross-validation, our nested cross-validation scheme used a series 
of train/validation/test set splits. First, in the inner loop, feature selection was performed, and the 
model was trained in a train set, and the model performance was maximized via hyper-
parameter optimization in a validation set. Secondly, in the outer loop, the model performance 
was evaluated in a test set, and generalization error was estimated by averaging test set scores 
across cross-validation splits.   
To measure model performance, we used accuracy, sensitivity, specificity, and Area Under the 
Curve in receiver operating characteristic (AUC ROC). In diagnostic classification, we tested six 
different binary classifications, AD (coded as 1) vs. SMC (coded as 0), AD vs. MCI, MCI vs. 
SMC, AD only vs. AD with small vessel diseases, AD only vs. MCI, AD only vs. SMC.  
 
Benchmark models 
We used existing biomarkers as benchmark models. First, white matter hyperintensity in the 
Korean NHIS-IH study, and CSF biomarkers in the ADNI-2 study. White matter hyperintensity 
measures were estimated from T2-weighted FLAIR images using Wisconsin White Matter 
Hyperintensities Segmentation Toolbox (Ithapu et al., 2014). This method uses supervised 
machine learning methods to segment hyperintense regions and generates normalized effective 
white matter hyperintensity volume. Second, in ADNI-2 data, we used CSF biomarkers 
(phosphorylated tau, total tau, AB, ratio of phosphorylated tau/AB, ratio of total tau/AB), whose 
utility as biomarkers for diagnosis of AD (Olsson et al., 2016), MCI, and progression to AD from 
MCI (Hansson et al., 2006) has been studied. Furthermore, CSF biomarkers are reported to 
precede symptom onset of MCI (Moghekar et al., 2013). 
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RESULTS 
 
Classification of AD and MCI  
In the first study, we tested machine learning classification using white matter structural 
connectomes and morphometric estimates in 211 elders at the dementia clinic at the Korean 
National Health Insurance Service Ilsan Hospital. Age and sex alone showed moderate 
accuracies: AD/SMC: accuracy = 0.77; MCI/SMC: accuracy = 0.63;  AD/MCI: accuracy = 0.72. 
White matter hyperintensity (WMH) served as a benchmark model, for it has been widely tested 
in the literature.  
 
In classification of AD vs. SMC, optimal classification performance was shown in 
“morphometry+connectome” model (accuracy = 0.97, 95% CI=0.95-0.98) and “connectome” 
model (accuracy = 0.97, 95% CI=0.96-0.98) (Table 3; Figure 1A). These two models 
outperformed “morphometry” (accuracy = 0.87, 95% CI=0.85-0.88) and WMH benchmark 
models (accuracy = 0.73, 95% CI=0.71-0.75). In classification of MCI vs. SMC, similar 
classification performance was observed in “morphometry+connectome” (accuracy = 0.82, 95% 
CI=0.80-0.85) and “connectome” models (accuracy = 0.83, 95% CI=0.81-0.85), compared with 
lower performance of “morphometry” (accuracy = 0.59, 95% CI=0.57-0.60) and the WMH 
benchmark models (accuracy = 0.57, 95% CI=0.54-0.60). In classification of AD vs. MCI, 
“morphometry+connectome” models showed a best accuracy (accuracy=0.97, 95% CI=0.96-
0.98), followed by “connectome” model (accuracy = 0.96, 95% CI=0.95-0.97), “morphometry” 
model ( accuracy = 0.83, 95% CI=0.80-0.86), and the WMH benchmark models (accuracy = 
0.66, 95% CI=0.64-0.69). Throughput all classifications, connectomes and morphometry 
showed greater diagnostic accuracies compared with the WMH benchmark. 
 
Testing generalizability  
We next tested the generalizability of the same multimodal brain imaging-based machine 
learning using ADNI-2 data. We included participants in ADNI-2 data whose structural and 
diffusion MRI (baseline) were both collected . To compare the performance of our classifiers, we 
used the invasive CSF biomarkers (p-tau, t-tau, Aβ42, p-tau/ Aβ42, t-tau/ Aβ42) as a benchmark 
model. In the classification of AD vs. HC, all the MRI-based models showed similarly optimal 
performance around 0.88 accuracy (Table 4; Figure 1B), outperforming the CSF benchmark 
model (accuracy = 0.75, 95% CI=0.73-0.77). In classification MCI vs. HC, all the MRI-based 
models showed similar performance with accuracies ranging from 0.64-0.67, outperforming the 
CSF benchmark (accuracy = 0.62, 95% CI=0.59-0.65). In classification AD vs. MCI, all the MRI-
based models showed similar performance with accuracy ranging from 0.66-0.71, outperforming 
the CSF benchmark (accuracy = 0.54, 95% CI=0.52-0.57) which is barely above chance. This 
generalizability data showed, firstly, morphometry and connectome estimates showed equally 
good performance consistently exceeding the invasive CSF biomarkers in classifying 
AD/MCI/HC; secondly, unlike the NHIS-IH results, synergistic effects of combined morphometry 
and connectomes were not observed using our machine learning framework.  
 
 
Testing utility for prognosis  
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Of the ADNI-2 data, we further tested the utility of our approach in predicting the disease 
trajectory. Data from 60 elders were used, whose baseline diagnosis was MCI and who were 
followed for at least two years. Machine learning models trained on the same five CSF 
benchmarks were used as a benchmark. In predicting progression from MCI to AD, 
“morphometry” model showed a highest accuracy (accuracy = 0.69, 95% CI=0.65-0.73) among 
MRI-based models, similar to the CSF benchmark model (accuracy = 0.70, 95% CI=0.66-0.75). 
(Table 5, Figure 2). “Connectome” model showed a lower, but statistically meaningful accuracy 
(accuracy = 0.57, 95% CI=0.53-0.61). Combining the two modalities of morphometry and 
connectomes (“morphometr+connectome”) did not improve the model accuracy (accuracy = 
0.59, 95% CI=0.56-0.62), compared with “morphometry” model. 
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DISCUSSION 
 
In this study, we used large-scale MRI-derived brain phenotypes (morphometry and white 
matter structural connectomes) with machine learning techniques to improve AD and MCI 
diagnosis in two independent Alzheimer’s disease datasets compared with the benchmark 
models. We also predicted disease progression to AD from MCI.  For high-throughput imaging 
analysis, we used a well-established automated pipeline for morphometry (Freesurfer 6.0) and a 
pipeline to estimate rigorously individualized white matter structural connectomes with up-to-
date pre-/post-processing algorithms. Firstly, the models trained on morphometry and 
connectomes showed the best accuracy in classifying AD, MCI, and SMC or HC in the single-
site data (ranging from 90% to 99% in AUC ROC; NHIS-IH, South Korea) as well as the multi-
site (ranging from 70% to 97% in AUC ROC; ADNI-2, USA) “reproducibility” data. In most of the 
cases, the models outperformed the benchmark models significantly (e.g., white matter 
hyperintensity or CSF biomarkers) and demographic model (including age, sex, and education). 
Second, the model trained on connectome or morphometric estimates showed moderate 
accuracies (ranging from 57% to 79%; AUC) in predicting progression to AD in 60 elders with 
MCI in ADNI-2 data. These results show potential utility of white matter structural connectomes 
in addition to widely use morphometry as a proxy measure of neurodegeneration in AD 
pathology.    
 
In two different datasets, our white matter structural connectome estimates showed promising 
results in classifying baseline diagnosis or predicting prognosis (MCI to AD progression). In the 
first study with NHIS-IH data, the models trained on connectome estimates outperformed 
morphometric estimates alone, as well as the existing benchmark metrics of white matter 
hyperintensity. This pattern was not so apparent in ADNI-2 data, where morphometric and 
connectome models show the similar model performance, and the combined models did not 
show a synergistic effect. Overall, this indicates the white matter structural connectomes provide 
essential information about brain pathophysiology of AD along with structural MRI-derived 
morphometry.  
 
On the other hand, in the second study with ADNI-2 data, in predicting disease progression from 
MCI to AD, we found the morphometry model outperformed both connectome and combined 
models. This may suggest that grey matter morphometry provides more useful information in 
predicting the AD trajectory than the connectome measures. However, given the smaller sample 
size, machine learning training and feature selection may be suboptimal for the connectome 
model with a significantly larger number of features than the morphometry model; this might 
work favorably to the morphometry model. Furthermore, while morphometry and connectome 
models respectively showed statistically meaningful (above chance) predictions, when 
combined, there was little improvement in model performance. This indicates more rigorous 
methods to combine models trained across multimodal brain imaging-derived phenotypes, such 
as ensemble methods (Zhang et al., 2011), may be required. 
 
A novel aspect of this study is to assess the utility of the dMRI-based white matter structural 
connectomes in predictive modeling of AD in a sufficiently large sample (n=211) and to validate 
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it in an independent study (n=179). Compared with other imaging modalities diffusion MRI and 
connectomics approach have been relatively understudied. Some prior studies have provided 
novel insights about the associations of structural connectomes with potential AD pathology 
(e.g., topological disturbance based on graph theory) (Pereira et al., 2017) and with healthy 
aging (Perry et al., 2015). Another line of literature shows the promising utility of connectomics 
estimates in predicting risk for AD, but with a caveat of limited samples sizes (n<30 (Wee et al., 
2012; Zhu et al., 2014)). In line with this, this study presents validated results using larger 
samples from two independent studies. Also, the use of high-performance computing permitted 
to estimate individualized structural connectomes in a rigorous way such that it was not bound 
to limits of computational resources (e.g., restriction of tractography parameters). Therefore, this 
data may support a potential utility of the high-throughput brain phenotyping based on structure 
and diffusion MRI towards an accurate predictive model of risk for AD.  
 
Across the two studies, we found the classification performance of the combined connectome 
and morphometry models were different. Though they generally outperformed the benchmark 
models in predicting AD or MCI, the combined model showed ~10% decrease in model 
performance in ADNI data compared with NHIS-IH data. Several points should be noted. First, 
since ADNI MRI came from multiple sites, dMRI are most likely to be affected by site effects. 
Similar to any MRI, dMRI signal characteristics change across sites; this may persist even when 
acquisition protocols are matched (cf. given there are no dynamic phantoms available for dMRI, 
there is hardly any objective ways to assess harmonization of dMRI acquisition). One way to 
mitigate the site effects (also as known as batch effects in biomedicine) is a statistical 
adjustment; a recent study suggests a Bayesian method for post-acquisition harmonization of 
dMRI (Fortin et al., 2017). However, despite its potential utility, more thorough assessment of 
such methods may be needed to determine its strengths and limitations (e.g., whether minimum 
batch sizes required, robustness to distinguish neurobiological signals vs. site effects). In this 
study, we did not use such a method, because no such methods were available for raw diffusion 
weighted images or FOD (fiber orientation distribution) maps (so that the tractography and 
connectome estimation may benefit from harmonized data) used for estimation of the structural 
connectomes. Secondly, a socio-demographic difference between the NHIS-IH and the ADNI 
studies may be related to the difference in model performance. Indeed, ADNI participants have 
a higher education than NHIS-IH participants; this is probably because NHIS-IH participants 
were affected by the Korean war in their 10-20’s. Accordingly, we speculate that ADNI cohort 
might have a more substantial cognitive reserve than NHIS-IH, in which case the white matter 
structural connectomes in the ADNI cohort might be better protected even in the case of AD, 
compared with the NHIS-IH cohort.  
 
Regarding the differences in model performance across the datasets, one innovative way is to 
use machine learning is for domain-invariant feature learning. For example, a recent seminal 
study (Ghafoorian et al., 2017) of white matter hyperintensity segmentation in the brain shows a 
successful application of domain adaption: a convolutional neural network was trained on data 
from a single domain (i.e., from a single scanner with a single acquisition protocol), which was 
then retrained (transfer learning) on the same task with independent brain images from different 
domains (i.e., different acquisition protocols and image dimension from the same scanner).  
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Given the revolutionizing success of deep learning and the large volume of multi-center brain 
imaging data available for AD research, deep neural network-based domain adaptation might be 
a promising area of research towards a generalizable predictive model in AD.  
 
Our samples from NHIS-IH data represents a retrospective clinical cohort. Compared to some of 
the publicly available imaging databases for AD research, our clinical data may present a 
greater heterogeneity in aging samples; therefore, these samples may well represent a true 
clinical population. Given this, it is interesting such an accurate classification for both AD and 
MCI. However, in classifying AD/SMC, given the significant difference in age (i.e., higher in the 
AD group), it is likely that a greater aging effect embedded on morphometric and connectome 
estimates contributed to the perfect classification. Owing to the lack of age-matched healthy 
controls, in this study we could not disentangle the impact of normal and pathological (i.e., AD) 
aging on brain phenotypes. This remains to be tested in future research. 
 
On the other hand, the accurate classification of MCI/SMC (age-matched) is notable. Our 
analysis showed the most significant contributor to this model was structural connectome. The 
connectome model classified MCI/SMC as equally accurate as the combined model, whereas 
the morphometry model did not classify accurately. This pattern was particularly more 
pronounced in MCI/SMC classification than in AD/SMC classification. This may reflect different 
time ordering of white matter integrity (or connectivity) and grey matter atrophy. Literature 
shows the capability of diffusion MRI-derived measures to detect subtle changes in tissue 
properties or microstructure, whereas structural MRI is typically used to estimate macroscopic 
properties, namely volume.  
 
Our results show white matter structural connectomes and morphometry contains salient 
information perhaps complementary to each other and important for prediction of clinical 
outcomes in AD. This study may thus lend a support to the future research using the white 
matter connectomics in AD research. Future research should test rigorous analytics, such as 
deep neural networks, that could optimally use the large-scale connectomic and morphometric 
information. In the future the combination of multimodal brain MRI and rigorous analytics might 
permit to detect subtle brain abnormalities before the onset of cognitive symptoms or severe 
neurodegeneration (e.g., hippocampal volume loss).  
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/255141doi: bioRxiv preprint 

https://doi.org/10.1101/255141


           Wang, et al. 

13 
 

Acknowledgments 
This work used the Extreme Science and Engineering Discovery Environment Stampede 2 at 
the Texas Advanced Computing Center (TG-IBN170015: Cha) and Argonne National 
Laboratory Leadership Computing Facility (PI, Cha). This study was supported by NIMH K01 
MH109836 (Cha), Brain and Behavior Research Foundation NARSAD Young Investigator 
award (Cha), Korean Scientists and Engineers Association Young Investigator Grant (Cha), 
National health insurance Ilsan hospital research fund. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/255141doi: bioRxiv preprint 

https://doi.org/10.1101/255141


           Wang, et al. 

14 
 

 
Tables 
 
Table 1. NHIS-IH  Participant Demographics 
 
 AD 

(N= 110) 
MCI 
(N=62) 

SMC 
(N=36) 

Test Statistics P value 

Age,Mean (SD) 79.95 (6.61) 71.42 (8.62) 72.25 (6.99) 
F = 32.72 

 P < 0.001 
Sex      

Female 74 38 32 c2 =8.56 P = 0.014 

Male 36 24 4 
 
  

Education 6.7 (5.2) 9.8 (4.6) 7.6 (4.9) F = 6.541 P = 0.011 
      

MMSE 18.1 (0.53) 25.1 (0.36) 26.3 (0.37) F = 151.9 P < 0.001 
      

CDR 1.03 (0.57) 0.54 (0.13) 0.50 (0.11) F = 79.38 P < 0.001 
NHIS-IH,  National Health Insurance Service Ilsan Hospital; SD, standard deviation; MMSE, 
Mini Mental State Examination; CDR, the clinical Dementia Rating.  
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Table 2. ADNI-2 Participant Demographics 
 
 AD 

(N=48 ) 
MCI 
(N=60) 

HC 
(N= 71) 

Test 
Statistics 

P value 

Age,Mean (SD) 74.96 (8.59) 72.57 (6.62) 72.55 (5.66) 
F = 3.11 

 P =0.08 
Sex      

Female 20 20 43 c2 =10.28 P =0.006 

Male 28 40 28 
 
  

Education 15.31 (2.87) 16.08 (2.68) 16.28 (2.72) F = 6.541 P = 0.07 
      
      
CDR 0.82 (0.24) 0.50 (0.00) 0 F=663.1 P < 0.001 

ADNI-2, Alzheimer’s disease neuroimaging Initiative; SD, standard deviation;  CDR, the 
clinical Dementia Rating. 
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Table 3. Performances of Machine Learning Classifier using NHIS-IH Structural 
Connectomes, Morphometric Brain Features, and white matter hyperintensity.  

 

 

AD 
vs 

SMC 

MCI 
vs 

SMC 

AD 
vs 

MCI 

Morphometry
+ 

Connectome 

AUC 0.99(0.99-1.00) ª 0.90(0.87-0.92) ª 0.99(0.98-1.00)ª 

Accuracy 0.97(0.95-0.98) 0.82(0.80-0.85) 0.97(0.96-0.98) 

Sensitivity 0.94(0.92-0.97) 0.76(0.72-0.80) 0.96(0.94-0.97) 

Specificity 0.98(0.98-0.99) 0.87(0.85-0.90) 0.98(0.97-0.99) 

Connectome 

AUC 0.99(0.99-1.00) ª 0.90(0.88-0.92) ª 0.99(0.99-1.00) ª 

Accuracy 0.97(0.96-0.98) 0.83(0.81-0.85) 0.96(0.95-0.97) 

Sensitivity 0.94(0.93-0.97) 0.77(0.74-0.81) 0.94(0.91-0.96) 

Specificity 0.98(0.97-0.99) 0.88(0.85-0.91) 0.98(0.97-0.99) 

Morphometry 

AUC 0.88(0.86-0.90) 0.48(0.45-0.50) 0.85(0.82-0.88) 

Accuracy 0.87(0.85-0.88) 0.59(0.57-0.60) 0.83(0.80-0.86) 

Sensitivity 0.84(0.79-0.88) 0.33§ 0.80(0.75-0.86) 

Specificity 0.88(0.86-0.89) 0.63(0.62-0.64) 0.85(0.82-0.86) 

Benchmark 
(White Matter 

Hyperintensity) 

AUC 0.67(0.64-0.70) 0.45(0.42-0.49) 0.61(0.57-0.64) 

Accuracy 0.73(0.71-0.75) 0.57(0.54-0.60) 0.66(0.64-0.69) 

Sensitivity 0.38§ 0.26§ 0.44§ 

Specificity 0.78(0.76-0.79) 0.61(0.60-0.63) 0.72(0.70-0.73) 

 
NHIS-IH,  National Health Insurance Service Ilsan Hospital; SMC, subjective memory 
complaints; MCI, mild cognitive impairment; AD, Alzheimer’s disease.*All results show mean 
and standard deviation as mean and 95% confidence interval in this table. ª indicates the 
best models for this classification; § indicates the confidence interval is not available. For all 
three classifications, random forest performed as the best classifier, therefore, we only put 
random forest classifier performance results into this table.  
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Table 4. Performances of Machine Learning Classifiers using ADNI-2 Structural 
Connectomes and Morphometric Brain Features.  
 

ADNI-2, Alzheimer’s Disease Neuroimaging Initiative 2; MCI, mild cognitive impairment; AD, 
Alzheimer’s disease; HC, healthy control.  *All results show Mean and standard deviation as 
mean and 95% confidence interval in this table. ª indicates the best models for this 
classification. For all three classifications, random forest performed as the best classifier, 
therefore, we only put random forest classifier performance results into this table. § indicates 
the confidence interval is not available. 
 

 

 

AD 
vs 
HC 

MCI 
vs 

               HC 

AD 
vs 

MCI 

Morphometry
+ 

Connectome 

AUC 0.96(0.94-0.97) 0.70(0.67-0.73) 0.75(0.72-0.78) 

Accuracy 0.88(0.86-0.90) 0.64(0.61-0.66) 0.66(0.64-0.69) 

Sensitivity 0.89(0.87-0.90) 0.64(0.62-0.66) 0.69(0.68-0.72) 

Specificity 0.91(0.88-0.93) 0.66(0.62-0.70) 0.65§ 

Connectome 

AUC 0.95(0.94-0.96) 0.72(0.69-0.75)ª 0.75(0.73-0.78) 

Accuracy 0.89(0.87-0.90) 0.64(0.62-0.67) 0.67(0.65-0.70) 

Sensitivity 0.88(0.87-0.90) 0.65(0.63-0.67) 0.71(0.68-0.74) 

Specificity 0.92(0.89-0.94) 0.66§ 0.67(0.63-0.71) 

Morphometry 

AUC 0.97(0.96-0.98)ª 0.71(0.67-0.74) 0.79(0.76-0.81)ª 

Accuracy 0.89(0.87-0.91) 0.67(0.64-0.69) 0.71(0.69-0.73) 

Sensitivity 0.88(0.86-0.90) 0.67(0.65-0.69) 0.73(0.70-0.75) 

Specificity 0.92(0.89-0.95) 0.69§ 0.70(0.66-0.73) 

Benchmark 
(CSF 

Biomarkers) 

AUC 0.79(0.77-0.82) 0.65(0.62-0.68) 0.56(0.53-0.59) 

Accuracy 0.75(0.73-0.77) 0.62(0.59-0.65) 0.54(0.52-0.57) 

Sensitivity 0.76(0.74-0.78) 0.63(0.60-0.66) 0.59(0.56-0.61) 

Specificity 0.76(0.72-0.80) 0.61(0.57-0.65) 0.49(0.46-0.52) 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/255141doi: bioRxiv preprint 

https://doi.org/10.1101/255141


           Wang, et al. 

18 
 

Table 5. Prognostic Performances of Machine Learning Classifier using ADNI-2 
 

 
 
ADNI-2, Alzheimer’s Disease Neuroimaging 
Initiative 2; MCI, mild cognitive impairment; AD, 
Alzheimer’s disease; LR, logistic regression; 
PCA, principal component analysis; CV, cross-
validation.  *All results show Mean and standard 
deviation as mean and 95% confidence interval 
in this table.  
 

MCI-AD vs. Stable MCI  
Morphometry 

Accuracy 0.69 (0.65-0.73)* 
Sensitivity 0.79 (0.74-0.83) 
Specificity 0.69 (0.64-0.74) 
AUC 0.79 (0.74-0.84) 

Connectomes 
Accuracy  0.57 (0.53-0.61) 
Sensitivity 0.64 (0.58-0.69) 
Specificity 0.53 (0.47-0.59) 
AUC 0.62 (0.56-0.68) 

Morphometry + Connectome 
Accuracy 0.59 (0.56-0.62) 
Sensitivity  0.60 (0.56-0.63) 
Specificity  0.68 (0.56-0.79) 
AUC 0.65 (0.59-0.71) 

Benchmark: CSF biomarkers  
Accuracy 0.70 (0.66-0.75) 
Sensitivity  0.76 (0.72-0.81) 
Specificity  0.71 (0.64-0.78) 
AUC 0.76 (0.70-0.81) 
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Figures 
 
Figure 1. Classification of baseline diagnosis using connectomes and morphometric 
estimates. (A),  classification performances in the first study (Korean National Health Insurance 
Ilsan Hospital data).It showed higher diagnostic accuracy (area under the curve of the receiver-
operator characteristics or AUC ROC) of the machine learning model trained on combined 
connectome and morphometric estimates consistently, compared with the benchmark model 
trained on white matter hyperintensity. Out of three machine learning algorithms (random forest, 
support vector machine, and logistic regression), best models were shown. (B), classification 
performances in the second study (ADNI-2). It showed reproducible results of diagnostic 
accuracy of connectomes and morphometry. The combined models show better performance in 
predicting AD from healthy controls and AD from MCI, and similar in predicting MCI from HC. 
Best models were shown. Compared with the first study, the reproducibility data shows less 
diagnostic accuracy presumably due to multiple sites and stricter inclusion and exclusion criteria 
in ADNI.   WMH, white matter hyperintensity; Demo, demographics including sex, age, and 
education. 
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Figure 2. Prediction of progression to AD from MCI using connectomes and 
morphometric estimates. Using ADNI-2 data that has follow-up data after baseline MRI scan, 
machine learning models were tested using connectome and morphometry estimates to predict 
MRI-to-AD progression in 50 elders with MCI (mean follow-up years in stable MCI, 3.76 ± 0.98; 
range, 2.18-5.32). Morphometry model showed similar performance to CSF benchmark model. 
Both the combined model and connectome model showed lower but meaningful accuracy.     
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Supplemental Tables 
 
Supplemental Table 1. Performances of Machine Learning Classifier using NHIS-IH 
Structural Connectomes, Morphometric Brain Features, and white matter hyperintensity. 
 

 
 

ADonly 
vs 

AD with 
small vessels 

ADonly 
vs 

MCI 

ADonly 
vs 

SMC 

Morphometry 
+ 

Connectome 

AUC 0.69(0.65-0.72) 0.82(0.79-0.83) ª 0.80(0.78-0.82) ª 
 

Accuracy 0.71(0.69-0.73) 0.75(0.72-0.76) 0.77(0.76-0.79) 

Sensitivity 0.41§ 0.77(0.74-0.81) 0.81(0.77-0.84) 

Specificity 0.73(0.72-0.74) 0.74(0.72-0.76) 0.77(0.76-0.79) 

Connectome 

AUC 0.64(0.60-0.68) 0.79(0.77-0.81) 0.78(0.76-0.80) 

 
Accuracy 

0.70(0.68-0.72) 0.74(0.72-0.76) 0.76(0.74-0.78) 

Sensitivity 0.38§ 0.74(0.71-0.78) 0.79(0.75-0.84) 

Specificity 0.73(0.72-0.74) 0.75(0.73-0.76) 0.76(0.74-0.77) 

Morphometry 

AUC 0.69(0.66-0.72) 0.78(0.76-0.81) 0.80(0.78-0.82) ª 

 
Accuracy 

0.72(0.70-0.73) 0.70(0.67-0.73) 0.76(0.74-0.78) 

Sensitivity 0.52§  0.65(0.62-0.68) 0.75(0.70-0.80) 

Specificity 0.75(0.73-0.76) 0.75(0.72-0.77) 0.77(0.75-0.79) 

Benchmark 
(White Matter 

Hyperintensity) 

                 
AUC 0.96(0.95-0.97) ª 0.50§  0.62(0.60-0.64) 

 
Accuracy 0.90(0.87-0.91) 0.57(0.56-0.58) 0.65(0.64-0.67) 

Sensitivity 0.89(0.85-0.94) 0.73§ 0.54§ 

Specificity 0.90(0.88-0.92) 0.57(0.56-0.58) 0.69(0.68-0.71) 

 
NHIS-IH,  National Health Insurance Service Ilsan Hospital; SMC, subjective memory 
complaints; MCI, mild cognitive impairment; AD, Alzheimer’s disease.*All results show Mean 
and standard deviation as mean and 95% confidence interval in this table. ª indicates the 
best models for this classification; § indicates the confidence interval is not available. For all 
three classifications, random forest performed as the best classifier, therefore, we only put 
random forest classifier performance results into this table.  
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Notice: The best classifier for ADonly vs. AD with small vessels is an SVM classifier, and a 
logistic regression classifier performed best for ADonly vs. MCI, random forest classifier 
performed best for ADonly vs. SMC.  
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