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Abstract
Working memory is fundamental to cognition, allowing one to hold information ‘in mind’
and use it to guide behavior. A defining characteristic of working memory is its flexibility:
we can hold anything in mind. However, typical models of working memory rely on finely
tuned, content-specific, attractors to persistently maintain neural activity and therefore
do not allow for the flexibility observed in behavior. Here we present a flexible model of
working memory that maintains representations through random recurrent connections
between two layers of neurons: a structured ‘sensory’ layer and a randomly connected,
unstructured, layer. As the interactions are untuned with respect to the content being
stored, the network is able to maintain any arbitrary input. However, this flexibility comes
at a cost: the random connections overlap, leading to interference between representations
and limiting the memory capacity of the network. Additionally, our model captures
several other key behavioral and neurophysiological characteristics of working memory.

Introduction
Working memory is the ability to hold information ‘in mind’. It acts as a workspace on
which information can be held, manipulated, and then used to guide behavior. In this way,
working memory plays a critical role in cognition, allowing behavior to be decoupled from
the immediate sensory world. However, despite its importance, the circuit mechanisms
that support working memory remain unclear. In particular, existing models fail to
capture key behavioral and neural characteristics of working memory.

Working memory has two defining behavioral characteristics. First, it is highly flexi-
ble: one can hold anything in mind and can do it from the first experience. This flexibility
allows working memory to act as a generic workspace to support cognition. Second, work-
ing memory has a severely limited capacity. Humans and monkeys are able to maintain
only 3-4 objects at once [Buschman et al., 2011; Cowan, 2010; Luck and Vogel, 1997; Ma
et al., 2014]. In other words, although one can hold anything in mind, one can only hold
a few of them at a time.

In addition to these behavioral characteristics, previous work has identified several
neural characteristics of working memory. First, the contents of working memory are
thought to be represented in both the persistent activity of neurons [Funahashi et al.,
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1989; Fuster, 1999; Goldman-Rakic, 1995; Miller et al., 1993; Romo et al., 2002] and in the
dynamic evolution of neural activity over time [Barak et al., 2010; Jun et al., 2010; Murray
et al., 2016; Rainer et al., 1998; Stokes, 2015]. Second, working memory representations
are distributed across the brain [Christophel et al., 2017]: working memory representa-
tions have been observed in prefrontal [Ester et al., 2015; Riley and Constantinidis, 2016],
parietal [Christophel et al., 2015; Constantinidis and Steinmetz, 1996], and sensory cortex
[Harrison and Tong, 2009; Pasternak and Greenlee, 2005; Serences et al., 2009], as well as
sub-cortical regions such as the basal ganglia [Alexander, 1987] and thalamus [Watanabe
and Funahashi, 2012]. Third, increasing the number of items held in working memory
(the ‘memory load’), increases the overall activity in these brain regions (up to an indi-
vidual capacity limit; [Vogel and Machizawa, 2004]). However, increasing memory load
also reduces the selectivity of individual neurons in a divisive-normalization-like manner;
the firing rate of neurons selective for one item is decreased with the addition of more
items. This is thought to underlie the reduction in memory performance and accuracy
at high memory loads [Buschman et al., 2011; Sprague et al., 2014].

Theoretical models have captured some, but not all, of these characteristics. The
dominant model of working memory is that persistent neural activity is the result of re-
current network interactions, either within or between brain regions [Barak and Tsodyks,
2014; Brunel, 2003; Compte et al., 2000; Machens et al., 2005; Wang, 2001]. These models
have a limited capacity, as lateral inhibition limits the number of simultaneous patterns
of activity that can be maintained [Edin et al., 2009; Swan and Wyble, 2014]. However,
these models are inflexible. They rely on fine tuning of connections to embed stable
fixed points in the network dynamics specific to the content being stored. For example,
heading position is represented by a ring attractor network [Kim et al., 2017; Seelig and
Jayaraman, 2015]. These connections must either be hardwired or learned for each type
of information, and so the network is not able to flexibly represent novel, unexpected,
stimuli.

Models that represent working memory as a result of transient dynamics in neural
activity have similar constraints on flexibility. They require learning to embed the dy-
namics, to decode the temporally evolving representations, or to fine tune connections
such that the dynamics are orthogonal to mnemonic representations [Brody et al., 2003;
Druckmann and Chklovskii, 2012; Jaeger, 2002; Rajan et al., 2016; Seung et al., 2000;
Vogels et al., 2005].

Other models capture the flexibility of working memory, such as those that hypothesize
working memory representations are encoded in short-term synaptic plasticity or changes
in single-cell biophysics [Egorov et al., 2002; Fransén et al., 2006; Hasselmo and Stern,
2006; Loewenstein and Sompolinsky, 2003; Mongillo et al., 2008]. However, these models
do not directly explain the limited capacity of working memory and do not capture many
of the neurophysiological characteristics of working memory, such as the coexistence of
persistent and dynamic representations seen in neural data.

Here we propose a flexible model of working memory that relies on random reciprocal
connections to generate persistent activity. As the connections are random, they are
inherently untuned with respect to the content being stored and do not need to be learned,
allowing the network to maintain any representation. However, this flexibility comes at a
cost - when multiple memories are stored in the network, they begin to interfere, resulting
in divisive-normalization-like reduction of responses and imposing a capacity limit on the
network. Thus, our model provides a mechanistic explanation for the limited capacity of
working memory; it is a necessary trade-off for its flexibility.

2

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 4, 2018. ; https://doi.org/10.1101/407700doi: bioRxiv preprint 

https://doi.org/10.1101/407700


Results

A flexible model of working memory

We model a simplified two-layer network of Poisson spiking neurons (Fig. 1A; see Methods
for a detailed description). The first layer is the ‘sensory network’ and consists of 8
independent ring-like sub-networks (each modeled here with 512 neurons). These sub-
networks mimic simplified sensory networks and can be thought of as encoding the identity
of stimuli at different locations in space. Therefore, we can vary working memory load
by varying the number of sensory sub-networks receiving inputs.

Neurons within each sensory sub-network are arranged topographically according to
selectivity. Position around the ring corresponds to specific values of an encoded feature,
such as orientation or color. Consistent with biological observations [Funahashi et al.,
1989; Kiyonaga and Egner, 2016; Kuffler, 1953], connections within a sensory sub-network
have a center-surround structure: neurons with similar selectivity share excitatory con-
nections while inhibition is broader (Fig. 1A, inset). However, recurrent excitation within
each sub-network is too low to maintain memories by themselves. For simplicity, each
sensory sub-network is independent (i.e. there are no connections between them).

The second layer is the ‘random network’ (modeled here with 1024 neurons). Neurons
in this layer are randomly and reciprocally connected to neurons in the sensory sub-
networks. Each neuron in the random network has bi-directional excitatory connections
with a random subset of neurons in the sensory network (with a likelihood γ; here,
0.35). Importantly, all sensory neurons converge onto the same random network. The
connections between the sensory and random networks are balanced, such that individual
neurons receive an equal amount of excitatory and inhibitory drive (i.e. the summed input
weight to each neuron in the random network from the sensory network is zero; as are
connections to the sensory network from the random network). To achieve this, all pairs of
random and sensory neurons without excitatory connections have direct, weak, inhibitory
connections, such that the sum of excitatory weights equals the sum of inhibitory weights
for any given neuron (see Methods for details). Such excitation-inhibition balance is
consistent with neurophysiological findings [Mariño et al., 2005; Vogels and Abbott, 2005;
Vogels et al., 2011].

Despite this simple architecture, the network is able to maintain stimulus inputs over
an extended memory delay (Fig. 1B). This is due to the bi-directional and reciprocal
connections between the sensory and random networks. Activity in the sensory network
feeds-forward into the random network, activating a random subset of neurons (Fig. 1B,
bottom). In turn, neurons from the random network feedback into the sensory net-
work, maintaining activity after the stimulus input is removed (Fig. 1B, top, sensory
sub-networks 1-4). The reciprocal nature of the connections ensures the synaptic drive
fed back into a sensory sub-network from the random network closely matches its own
representation (Fig. S1). In this way, the network can flexibly maintain the representation
of any input into the sensory network.

Neurons from the random network project back to multiple sensory sub-networks.
However, activity in the random network does not lead to sustained representations in
other sensory sub-networks. As feedback connections are random and balanced they ‘de-
structively interfere’ at other locations (i.e. the expected value of feedback projections is
zero). Therefore, there is a slight increase in noise but no spuriously sustained represen-
tations (Fig. 1B, top, sensory sub-networks 7 and 8). In other words, the feedback input
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from the random network to other sensory sub-networks is orthogonal to their inherent
dynamics and therefore is not sustained.

Neurons in the sensory network show physiologically realistic tuning curves, due to
their center-surround architecture (as illustrated in Fig. 2A,B). This tuning is effectively
inherited by the random network, although with greater complexity (Fig. 2C,D), matching
neurophysiological findings [Funahashi et al., 1989; Mendoza-Halliday et al., 2014; Zaksas
and Pasternak, 2006]. However, there is no consistency in the tuning of neurons in the
random network across inputs to different sensory networks (Fig. 2E). This is due to
the fact that connectivity is random and therefore inconsistent across sensory networks.
This leads to neurons in the random network showing ‘conjunctive’ coding (Fig. 2F),
preferentially responding to different input values for different sensory sub-networks (e.g.
different colors at different locations, as is observed in prefrontal neurons) and responding
to unique combinations of inputs into multiple sensory sub-networks [Fusi et al., 2016;
Rigotti et al., 2013].

Interference between memory representations imposes a capacity
limit

Multiple memories can be stored in the network simultaneously (Fig. 1B). For a few items
(typically < 3), memories do not significantly interfere - there is sufficient space in the
high-dimensional random network for multiple patterns to be maintained. However, as the
number of inputs to the sensory networks is increased, interference in the random network
increases, eventually causing memory failures (seen in Fig. 1B, sensory sub-networks 5
and 6). Figure 3A shows the percentage of correct memories at the end of the delay
period, as a function of load (e.g. number of items presented; see Methods for details).
This closely matches behavioral results in both humans and monkeys [Buschman et al.,
2011; Cowan, 2010; Luck and Vogel, 1997]. Also consistent with behavior, the speed of
forgetting during the delay period increases with load (Fig. 3B). As with all of our results,
this is not due to tuning of network parameters; parameters were set to maximize the
total number of items that were remembered across all loads, not to match any behavioral
or electrophysiological results (see Methods).

Consistent with behavioral studies [Bays et al., 2009; Ma et al., 2014; Pertzov et al.,
2013, 2017; Rademaker et al., 2018; Zhang and Luck, 2008], errors in working memory
increased with the number of items held in memory (Fig. 3C and S2A). As with forget-
ting, these errors increased over time in a load-dependent manner (Fig. 3D and S2B).
The increase in error was not just due to forgetting of inputs – even when an input
was successfully maintained, there was an increase in error with increasing memory load
(Fig. 3E,F). This is consistent with behavioral studies that have shown increases in mem-
ory error, even below working memory capacity limits [Bays et al., 2009; Ma et al., 2014;
Pertzov et al., 2017; Rademaker et al., 2018].

Our model provides a simple, mechanistic explanation for the limited capacity of
working memory: it is due to interference in neural representations in the shared random
network. This is a natural consequence of the convergent, random connectivity between
the two non-linear networks; as multiple inputs are presented to the sensory networks,
their representations interfere in the random network, disrupting maintenance of repre-
sentations. This is an unavoidable consequence of the convergence and does not depend
on network parameters (as we show below). In this way, our model suggests capacity
limits are a necessary tradeoff for the flexibility of working memory.
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The model makes specific predictions about how multiple memories should impact
neural activity. First, increasing the number of stimuli provided to the sensory sub-
networks increases the overall average firing rate in the random network, saturating at
the capacity limit of the network (∼3-4 items; Fig. 4A). This is consistent with experimen-
tal observations of gross activity levels in prefrontal and parietal cortex; both BOLD and
evoked potentials increase as the number of items to be remembered is increased, saturat-
ing at an individual’s capacity limit [Curtis and D’Esposito, 2003; Vogel and Machizawa,
2004].

Second, the model predicts that the response of selective neurons in the random net-
work will be reduced when multiple memories are maintained (Fig. 4B). This is consistent
with experimental observations, which have shown divisive-normalization-like regulariza-
tion of mnemonic responses in single neurons and across the population [Buschman et al.,
2011; Sprague et al., 2014]. Our model provides a potential circuit mechanism for such
divisive-normalization-like regularization, suggesting it is the result of balanced excita-
tion/inhibition between networks. Neurons in the random network that respond to a
single stimulus are more likely to be inhibited than excited by a second stimulus (with
a ratio of 1−γ

γ
). This results in an overall reduction in the response of these neurons

(Fig. 4B).
This effect can be seen across the population. Figure 4C shows the relative response

of neurons in the random network to two stimuli either presented separately (x-axis) or
together (y-axis). As noted above, the overall average response increases with the addition
of a second item (y-intercept of linear fit is 0.13 when fitting all neuron responses; 0.32
when restricting to central portion without extrema). However, the response to the pair
of stimuli was not a summation of the response to each stimulus alone; rather it was a
sublinear mixture (slope is ∼ 0.50 for both the full and central data). This is consistent
with electrophysiological results during perception [Reynolds et al., 1999] and working
memory [Buschman et al., 2011; Sprague et al., 2014]. It is also consistent with divisive
normalization models that predict the response to two stimuli should be the average of the
response to each stimulus alone (resulting in a slope of 0.5). Divisive normalization has
been observed in many cognitive domains [Carandini and Heeger, 1994, 2012; Heeger,
1992]; our results demonstrate excitation/inhibition balance within a convergent, non-
linear, network could provide one potential circuit mechanism for these effects.

The divisive-normalization-like regularization of neural responses in the random net-
work reduces the amount of information carried about a stimulus in memory (Fig. 4D). As
noted above, neurons in the random network show selectivity for the identity of stimulus
inputs into a sensory sub-network, allowing them to carry information about the item in
memory (Fig. 4D, blue). The addition of other items into memory reduces this selectiv-
ity, leading to a reduction in information (Fig. 4D, brown and orange for 2 and 3 items,
respectively). This is consistent with electrophysiology and imaging results showing a
decrease in information with increasing memory load [Buschman et al., 2011; Sprague
et al., 2014].

Interference between memory representations also provides a simple mechanistic ex-
planation for the observed decay in recall precision as a function of load [Bays et al.,
2009; Bays and Husain, 2008; Ma et al., 2014; Wilken and Ma, 2004]. In our model, the
memory representations drift over time, due to the accumulation of noise from Poisson
variability in neural spiking [Burak and Fiete, 2012]. Greater interference in the random
network leads to weaker feedback, allowing noise to have a greater impact and causing
increased drift in the representations (as seen in Fig. 3C-F). In addition, reducing overall
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neural activity (as a result of the excitation/inhibition balance), reduces the ability to
accurately decode the memory representation [Bays, 2014, 2015].

Given the suggested role of interference in memory performance, our model makes the
prediction that reducing interference between memories should improve working memory
performance and accuracy. Indeed, how much the representations of a pair of stimuli
overlapped in the random network strongly determined the ability to accurately maintain
both memories. As seen in Fig. 5A memory performance was impaired for pairs of
memories with less correlated representations, reflecting greater interference between the
memories. Conversely, more correlated memories were better remembered (Fig. 5A and
S3). Surprisingly, memory representations were not static, but evolved over time in a
way that reduced interference between memories (Fig. 5B). Both of these predictions
are testable hypotheses that could be addressed with future electrophysiology or imaging
experiments.

Stable and dynamic encoding of memories

The model captures several more key electrophysiological findings related to working
memory. First, we observe persistent mnemonic activity, consistent with electrophysio-
logical results in both monkeys and humans [Funahashi et al., 1989; Fuster, 1973; Rainer
and Miller, 2002; Vogel and Machizawa, 2004]. This is true, even on the first trial of be-
ing exposed to a stimulus, as observed in monkeys [Constantinidis and Klingberg, 2016].
Second, working memory activity is distributed across multiple networks, reflecting the
distributed nature of working memory representations in the brain [Christophel et al.,
2017]. Third, as noted above, the random nature of connections in our model yields
high-dimensional, mixed-selective, representations in the random network; as has been
seen in prefrontal cortex [Fusi et al., 2016; Rigotti et al., 2013]. Finally, as we show next,
our model shows the same combination of stable and dynamic representations seen in
neural data [Barak et al., 2010; Jun et al., 2010; Murray et al., 2016; Rainer and Miller,
2002; Stokes et al., 2017, 2013].

Recent work has highlighted the dynamic nature of working memory representations,
suggesting that representations are not stable during a trial. In particular, neural repre-
sentations early in the trial are not well correlated with representations later in a trial
(e.g. stimulus presentation vs. memory delay, [Stokes et al., 2013]). This argues against
the classic view of a static mnemonic representation. In contrast, Murray et al [2016]
suggested that much of these dynamics are orthogonal to the space in which memories
are represented, such that although responses are dynamic, their encoding is stable.

Our model can capture both effects. Figure 6A shows the cross-correlation across
time of neurons in the random network responding to a single stimulus. Consistent with
experimental observations, representations early in the trial are not well correlated with
later representations (Fig. 6B). However, representations within the memory delay are
relatively more stable. To account for the difference in representation during stimulus
presentation, a direct projection from the input into the random network was added.
In addition, weak recurrent activity within the random network was added to increase
dynamics throughout the trial (see Methods for details). These biologically-plausible
changes did not perturb memory performance (Fig. S5).

However, despite these dynamics, the subspace in which a memory is represented is
stable. Following the approach from Murray et al. [2016], we estimated the ‘mnemonic
subspace’ of the random network by finding the first two dimensions that explained
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the most variance of the time-averaged response to eight different stimulus inputs (see
Methods for details and Fig. S6B). Projecting the response of the random network
over time revealed the representation was stable (Fig. 6C; note that this subspace is not
constrained to minimize temporal variability). Furthermore, despite the randomness of
connections, the representational subspace of the stimuli was a mixture of two orthogonal
sinusoids, reflecting the circular nature of inputs into the sensory network (Fig. 6D, solid
lines). Remarkably, this matches the stable subspace found in prefrontal cortex [Murray
et al., 2016]. Together, these results show how the low (two) dimensional space of each
stimulus network is embedded in the higher dimensional space of the random network.

Previous experimental work has largely focused on the representation of single items
in working memory. Our model makes several predictions for how these representations
should change when the number of items in working memory is increased. First, we found
that increasing working memory load decreased the cross-correlation over time (Fig. 6E).
This is due to a decrease in signal-to-noise ratio with load as well as interactions between
memory items, as discussed above. Second, we found an increase in the drift of rep-
resentations through the mnemonic subspace (Fig. 6G). These simulations only include
those where the memory was successfully maintained, therefore this does not reflect drift
toward a null state (where the memory is forgotten). Instead, it reflects the weaken-
ing of memory representations due to interference. This reduces the discriminability of
memories (Fig. 6H, solid line), impairing working memory performance.

Despite the addition of multiple memories, the mnemonic subspace for decoding the
memory from one sub-network did not change. The subspace for the first item, when
it was remembered with 3 other items, was a combination of two orthogonal sinusoids
(Fig. 6D, dashed lines). Furthermore, we found that the subspace that encoded a stimulus
in a sensory sub-network was stable across memory loads. This means one could use the
decoding subspace for a memory when it was presented alone to decode that same item
when it was remembered with other stimuli. Indeed, decoding performance was equal,
or a bit better, when using the mnemonic subspace from a single item compared to the
subspace defined at each load (Fig. 6H and Figure S7B). This is critical for being able
to use the representations within the random network – as the subspace doesn’t change,
any learning done at one memory load would generalize to other loads.

These results also highlight how the mnemonic subspaces for each sensory network
are nearly orthogonal to one another when projected into the high-dimensional space of
the random network. This can also account for how dynamics in the random network
do not impact memory representations – as long as the dynamics are orthogonal to the
mnemonic subspace of the sensory network, they will not alter memories. Indeed, the
structure embedded in the sensory network (through the center-surround connectivity)
can help to constrain dynamics within the random network to irrelevant dimensions.

The network is robust to changes in architecture, parameters and
connectivity

Our model demonstrates how random connections can support the flexible maintenance
of memories. To highlight the flexibility of the model with respect to the architecture of
sensory inputs, we replaced four of the ring-like sensory sub-networks with line networks,
modeling a one-dimensional psychometric spaces such as brightness or spatial frequency
(Fig. S8A). Without changing any parameters, the network was able to maintain inputs
into both circular and linear spaces (Fig. S8B). This highlights the strength of the model
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– it does not rely on finely tuned attractors for each type of information that must be
maintained. In order to maintain ease of comparison with the extant theoretical and
experimental literature, we focused our simulations on circular sensory sub-networks.

As noted above, network parameters were set to maximize the total number of remem-
bered stimuli and minimize the number of spurious memories, at all loads (see Methods
for details). Maintenance of working memory representations in our model relies on suffi-
cient recurrent activity between the sensory and random networks. This constrains both
the weights and the pattern of connectivity between the sensory and random networks.

First, to maintain a representation, feedforward and feedback weights between the
sensory and random networks must be set such that a single action potential in the
sensory network leads to roughly one action potential in the random network on average
(and vice versa). This is important to sustain representations between the networks.
However, the exact value can be partially relaxed without loss of functionality. First,
what matters is the product of feedforward and feedback weights. Thus, several possible
values of feedforward/feedback weights give nearly identical network performance as an
increase in feedforward weight can be compensated by a decrease in feedback weight (or
vice versa, Fig. 7A, inset). Second, the product can also be changed up to 5% without
significant loss of function (Fig. 7A). Beyond this range, there is either insufficient drive
to sustain activity (weights are too low), leading to loss of representations (Fig. 7A, below
−5%); or there is unchecked amplification of activity (weights are too high), leading to
spurious representations throughout the network (Fig. 7A, above +5%).

Similarly, the fraction of connectivity between neurons in the random network and
the sensory networks (γ) can be significantly changed without any qualitative change
in network behavior (assuming the connection weights are adjusted to meet the above
criterion). Fraction of connectivity ranging from approximately 30% to 95% show similar
flexibility and capacity limits (Figure 7B). Here we chose γ = 0.35 to maximize main-
tenance, minimize spurious memories, and minimize connections (thereby minimizing
structural costs).

The final constraint on connectivity is that the neurons between the sensory and
random network are reciprocally connected. This is consistent with wiring in the brain
– neurons are more likely to be reciprocally connected than expected by chance (see
below for biological mechanisms, [Holmgren et al., 2003; Ko et al., 2011; Markram et al.,
1997; Song et al., 2005]). However, as with the other parameters in the model, the
reciprocal nature of connections can be relaxed significantly without degrading network
performance. To demonstrate this, we randomly reassigned a proportion of the feedback
excitatory connections from one sensory neuron to another (even in a different sensory
network; all model parameters were left unchanged). The model was robust to at least
10% of excitatory connections being randomly switched with an inhibitory connection
(to any sensory sub-network; Fig. 7C). However, biological connection errors are more
likely to be spatially localized and so we tested whether the network is also robust to
distributing excitatory feedback connections to nearby neurons within a sensory network.
The network is robust to these changes, able to sustain memories without a significant
decrease in performance, even when distributing half of the connection weight over more
than 45◦ away from its initial position in the sensory sub-network (i.e. κ ≥ 1, Fig. 7D
and S9). In fact, when connections were distributed over a small range of nearby neurons
(κ ∼ 2), performance of the network was improved due to the fact that smoothing
feedback connections reduced the impact of stochasticity in neural activity. This suggests
the local distribution of connections observed in the brain may actually be advantageous.
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Altogether, these results demonstrate that our network architecture is fairly robust
to changes in parameters. Importantly, for all parameters tested the network was flexible
and had a limited capacity.

Discussion
We present a simple model of working memory that relies on random and recurrent
connectivity between a structured sensory network and an unstructured random network.
Despite its simplicity, the model captures several key behavioral and neurophysiological
findings. In particular, the model demonstrates how random, convergent connections can
support the flexibility of working memory. However, this flexibility comes at the cost of a
limited capacity. Interference between multiple memories leads to divisive-normalization-
like regularization of responses which, in turn, leads to an increase in memory error and,
eventually, to a failure to maintain some memories (forgetting). Additionally, the model
explains 1) how working memory representations can be both static and dynamic; 2)
observations that working memory is distributed across the cortex; 3) both the general
increase in neural activity with working memory load as well as regularization at the single
neuron level; and 4) the conjunctive stimulus tuning properties of neurons in associative
(e.g. prefrontal) cortex.

Biological Plausibility

The sensory networks in our model are intended to capture two key aspects of generic
sensory cortex. First, neurons receive tuned inputs, giving rise to selectivity in their
responses [Funahashi et al., 1989; Mendoza-Halliday et al., 2014; Zaksas and Pasternak,
2006]. Second, there is a center-surround architecture with respect to tuning. Pyramidal
neurons with similar selectivity are more likely to be connected to one another [Holmgren
et al., 2003; Ko et al., 2011; Markram et al., 1997; Song et al., 2005] while inhibitory
interneurons spread inhibition across the population (likely through parvalbumin-positive
inhibitory interneurons [Atallah et al., 2012; Packer and Yuste, 2011; Wilson et al., 2012]).
Such structure is thought to emerge through unsupervised learning mechanisms, such
as Hebbian plasticity [Hebb, 1949]. In this way, it reflects the statistics of the world,
embedding knowledge about how stimuli relate to one another. This is critical to the
model, as it constrains the activity in the random network such that it stays within a
biologically meaningful subspace, allowing it to be easily interpreted for behavior.

In contrast to the sensory network, the random network in our model is unstructured.
Similar to reservoir pool computing approaches in machine learning [Jaeger, 2002], the
random connections to the random network create a high dimensional space where any
type of information can be represented. This is what endows our model with its flexibility.
Experimental results have suggested that associative regions, such as prefrontal cortex
or the hippocampus, may have such high-dimensional representations [Fusi et al., 2016;
McKenzie et al., 2014; Rigotti et al., 2013] and therefore could be a possible physical
instantiation of the random network. In particular, prefrontal cortex is known to have
strong bi-directional connections throughout sensory cortex, making it particularly well-
suited to play the functional role of the random network [Duncan, 2001; Miller and Cohen,
2001]. Indeed, lesioning prefrontal cortex severely impairs working memory performance
[Jacobsen et al., 1936; Levy and Goldman-Rakic, 1999; Petrides, 1995].

9

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 4, 2018. ; https://doi.org/10.1101/407700doi: bioRxiv preprint 

https://doi.org/10.1101/407700


One molecular mechanism that could support reciprocal random connectivity are pro-
tocadherins, a subclass of cell adhesion molecules. Protocadherins undergo a recombina-
tion process such that each neuron expresses a unique set of these cell adhesion molecules
[DeWit and Ghosh, 2016]. Neurons with overlapping expression profiles of protocadherins
are more likely to make synaptic connections [Kostadinov and Sanes, 2015]. Generally,
this is important for functioning of neural networks: randomization of initial connec-
tions is critical for effective learning in artificial neural networks. Here, we propose that
this randomization facilitates the formation of a reservoir pool in the random network,
providing the architecture for the flexibility of working memory.

Our network uses balanced excitation and inhibition to constrain neural activity to a
stable regime. This is consistent with recent experimental work that has found excitation
and inhibition are tightly balanced within the cortex [Mariño et al., 2005; Vogels and
Abbott, 2005; Vogels et al., 2011]. Although long-range connections, such as modeled
between the sensory and random networks, are largely excitatory in the brain, feed-
forward inhibition within the target region can ensure these projections are effectively
excitation/inhibition balanced.

Although the model is biologically plausible, it is intentionally simple. Several simpli-
fying assumptions were made: neurons do not obey Dale’s law, there are no cell types, and
there are no interactions between sensory sub-networks. Here, our goal was to demon-
strate the explanatory power of the simplest network. This highlights the computational
power of random, convergent, connections, showing how they can account for the flexi-
bility of working memory, as well as its limited capacity.

However, a few aspects of working memory representations remain unexplained by
our model. For example, recent results suggest short-term memory relies, at least in
part, on short-term synaptic changes [Mongillo et al., 2008; Postle, 2017; Stokes, 2015;
Stokes et al., 2017] or oscillations [Lundqvist et al., 2016]. The simplified biophysics of
our neurons do not capture these effects; future work will investigate whether extending
the model can explain these additional findings.

Model Predictions

In addition to capturing existing behavioral and electrophysiological results, the model
makes several testable hypotheses. First, the model predicts that memory performance
should be a function of how strongly neural representations interfere with one another.
As we show above, interference between two items can be estimated from the correlation
between representations when each item is presented alone. Our model predicts increas-
ing interference should reduce behavioral performance. Furthermore, it suggests that
memories should drift over time in a way that reduces interference between memories.

Second, the model predicts that disrupting random connectivity in the cortex should
disrupt working memory performance. Indeed, recent results suggest this may be true –
mice with reduced diversity in protocadherins have impairments in sensory integration
and short-term memory [Yamagishi et al., 2018]. At the single neuron level, the model
would predict a reduction in the diversity of conjunctive representations in associative
cortex when protocadherin diversity is impaired.

Finally, the model predicts that maintaining a stimulus presented at one location
should increase neural activity in other locations in sensory cortex. This activity should
be consistent from trial to trial, but unstructured with respect to the content held in
memory. Although, in vivo, lateral projections within sensory cortex (which are not
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included in our model) may provide some structure to the distributed activity or act to
reduce noise.

Filtering of complex top-down projections by local structure

Our results show how complex representations in higher order cortical regions can be
filtered by the structure of lower cortical regions. The random network represents mul-
tiple items in a high dimensional space. However, because of the structure within each
sensory sub-network, only the component relevant to that sensory sub-network affected
representations. In this way, the complex representations observed in higher-order brain
regions (e.g. PFC, Rigotti et al. [2013]) can influence activity in lower-order, sensory
regions. While our model shows how this can be used to hold items in working memory,
this same concept can apply to other forms of top-down control, such as cognitive control
or attention.

The necessity for local structure in filtering top-down projections is not due to the
random connections used in our current model. Any degree of convergence along the
cortical hierarchy will mean that the specificity of representations in higher order cortex
must be lower than that of lower order cortex. Therefore, in order for top-down pro-
jections to act at the specificity of lower cortical regions, additional constraints must be
added. Our model shows structure within the lower cortical region could provide these
constraints.

Finally, filtering by structure in lower cortical regions may also facilitate learning of
top-down control signals. Learning in high-dimensional spaces is an unavoidably difficult
problem; by filtering the top-down signal through the local network, only the relevant
components will impact behavior, limiting the effective dimensionality in which the con-
trol signal must be learned.

The trade-off between flexibility and stability

The random architecture of our model supports its flexibility. However, this comes at the
cost of a limited capacity when multiple memories interfere with one another. This inter-
ference could be reduced by forming independent networks for each type of information
one wants to maintain in working memory. While this comes at the loss of flexibility, it
would form a more stable representation. There is some evidence for such network spe-
cialization in the brain: spatial location, such as heading direction, may be represented
in specialized ring attractors ([Kim et al., 2017; Seelig and Jayaraman, 2015]).

This trade-off between flexibility and stability exists for all systems in the brain.
Behaviors can be represented in specialized networks, such as when learning a motor skill
(e.g. walking or chewing gum). Such independent representations are robust to noise
and reduce interference with other behaviors. However, they require extended periods
of learning (either across evolution or during an organism’s lifetime). In contrast, our
network architecture provides the structure needed for generalized behavior. Indeed,
the flexible representations encoded in our model are reminiscent of the selectivity seen
in prefrontal cortex [Fusi et al., 2016; Rigotti et al., 2013] and as predicted by flexible
models of cognitive control [Duncan, 2001; Miller and Cohen, 2001]. Our results show
how such dynamic, adaptive representations can interact with the knowledge embedded in
structured networks to constrain representations to be behaviorally relevant, supporting
cognitive control of behavior.
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Figure 1 – Flexible working memory through interactions between a structured network and a random
network. (A) Model layout. The sensory network is composed of 8 ring-like sub-networks (although other architectures
can be used, see Fig. S8). The inset represents the center-surround connectivity structure of a sensory sub-network
(excitatory connections in green, inhibitory connections in red). The connections to the random network are randomly
assigned and balanced. The unstructured nature of these connections endows the network with its flexibility. (B) Raster
plot of an example trial with 8 sensory sub-networks (512 neurons each) randomly connected to the same random network
(1024 neurons). Six sensory sub-networks receive a Gaussian input for 0.1 seconds during the ‘stimulus presentation’ period
(shaded blue region). Representations are maintained (without external drive) for four of the inputs.
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Figure 2 –Tuning in the sensory and random networks. (A) Neurons in the sensory sub-networks have physiologically
realistic tuning curves. Response of neurons (y-axis) is shown at the end of the delay period, relative to each neuron’s
preferred stimulus input (x-axis). Tuning decreases with increased working memory load (colored lines). (B) Example
tuning curves of a subset of neurons in the sensory network, distributed across space. (C) Neurons in the random network
show physiologically realistic tuning, inherited from the sensory network. As in A, tuning is shown relative to the preferred
stimulus input. As in the sensory network, tuning decreases with memory load (colored lines). (D) As in B, example
tuning curves of a subset of neurons in the random network. (E and F) Neurons in the random network show conjunctive
tuning. First, as seen in E, neurons respond to the conjunction of stimulus identity and location. The preferred stimulus of
neurons from the random network is uncorrelated between sensory sub-networks, due to the random projections between
networks (shown here as preferred input for sensory sub-network 1, x-axis, and sub-network 2, y-axis). Second, as seen
in F, neurons in the random network preferentially respond to a conjunction of stimulus inputs across sensory networks.
This is shown here by the two-dimensional tuning curve of neurons from the random network when sensory sub-network 1
and sensory sub-network 2 receive an input during stimulation. The firing rate (color axis) is aligned on the x-axis with
respect to the preferred input for sensory sub-network 1, and on the y-axis with respect to the preferred input for sensory
sub-network 2, showing a peaked response at the conjunction of the two stimuli.
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Figure 3 – Memory performance decreases with working memory load. (A) The network has a limited memory
capacity. The percentage of memories maintained (measured as memory representations ≥ 3 Hz after the delay period,
see Methods for details) decreases with memory load (‘number of items’). (B) The speed of forgetting during the delay
period is load-dependent. There is a sharper decrease in memory performance for higher memory loads. (C) Memory
precision decreases with working memory load. The precision was measured as the standard deviation of the circular error
computed from the maximum likelihood estimate of the memory from the sensory network (decoding time window lasts
0.1s and started 0.8s after the stimulus onset). (D) Memory precision decreases over time and with load. Decoding time
window is 0.1s forward from the time point referenced. (E-F) Memory precision decreases with memory load, even when
all memories are maintained. This shows that the decay in precision is not entirely due to forgetting. The panels display
the same measure as in C-D, respectively, but only the simulations where all memories are maintained are considered.
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Figure 4 – The effect of working memory load on neural responses. (A) The average firing rate of neurons in
the random network increases with memory load, and saturates at the capacity limit of the network. Inset: The mean
firing rate during the second half of the delay period as a function of initial load (‘number of items’). (B) The firing rate
of selective neurons in the random network is reduced by the addition of inputs to other sub-networks. Selective neurons
(N=71, 6.9% of the random network) were classified as those with a response to a preferred input that was at least 40 Hz
greater than the response to other, non-preferred, inputs into other sensory networks (preferred is blue, solid; non-preferred
is blue, dashed; see Methods for details). The response to a preferred stimulus (blue) is reduced when it is presented with
one or two of the other non-preferred items (brown and yellow, respectively). (C) Divisive-normalization-like regularization
of neural response is observed across the entire random network. This is shown by the response of neurons in the random
network to two inputs in two sub-networks (y-axis, ‘sensory interaction’ is measured as response to the ‘pair’ of both the
‘probe’ and the ‘ref’ inputs) as a function of the response to one input alone (‘selectivity’, the ‘probe’ input, here provided
into sub-network 2). All responses were relative to the response to the ‘reference’ input (here, an input into sub-network
1). A linear fit to the full distribution (green) or the central tendency (blue) shows a positive y-intercept (consistent with
A) and a slope of 0.5, indicating the response to the pair of inputs is an even mixture of the two stimulus inputs alone.
(D) The selectivity of neurons decreases with working memory load. The information about the identity of an input into
one sensory sub-network decreases as memory load is increased (colored lines as in B). Information was measured as the
percent of variance in the firing rate of neurons in the random network that could be explained by input identity (see
Methods for details).
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Figure 5 – Interference between two inputs reduces performance and accuracy. (A) Performance (blue, as in
Fig. 3A) increased as two inputs into two sensory sub-networks are more correlated in the random network. Correlation
was measured as the dot product of the vector of random network responses to two inputs into two different sensory
sub-networks. Random network responses were estimated by projecting the sensory input through the feedforward weight
matrix. An increase in correlation reflects increasing overlap of each memory’s excitatory/inhibitory projections into
the random network. Therefore, an increase in correlation reduces interference between memories and improves working
memory performance. This was also true for memory accuracy, even when both memories were maintained (red, as in
Fig. 3E). (B) Memory representations change over time in a way that increases correlation and, thus, reduces interference.
Correlation was computed as in A, but using the maximum likelihood estimate of memory representations from the sensory
network to estimate correlation (instead of the sensory input directly).
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Figure 6 – Neural dynamics are orthogonal to the mnemonic subspace. Caption next page.

23

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 4, 2018. ; https://doi.org/10.1101/407700doi: bioRxiv preprint 

https://doi.org/10.1101/407700


Figure 6 –Neural dynamics are orthogonal to the mnemonic subspace. As noted in the main text, these simulations
used a network with weak direct sensory input into the random network and weak recurrence within the random network (see
Methods for details). (A) Cross-correlation of neural activity in the random network. As has been observed experimentally,
correlation is low between stimulation and delay time periods, reflecting dynamic changes in the representation of memory.
Dynamics during the delay period also reduce correlation across time. This is not due to forgetting: in these simulations the
memory is always maintained. Correlation (color axis) is measured between the vector of firing rates in the random network
for two different timepoints (along x and y axes). The color axis was chosen to be non-linear to highlight the differences
between the stimulation and the delay periods. (B) Slices of the matrix represented in A: correlation of population
state from the first 50ms of the stimulus period (purple) and the last 50ms of the delay period (orange) against all other
times. Correlation is highest for nearby time periods, reflecting dynamics in memory representations. (C) Neural activity
is dynamic, but memory encoding is stable. Here the response of the random network population is projected onto the
mnemonic subspace (defined by the first two principal components of time-averaged activity, see Methods for details). Each
trace corresponds to the response to a different input into sensory sub-network 1, shown over time (from lighter to darker
colors). (D) Mnemonic subspace is defined by two orthogonal, quasi-sinusoidal representation of inputs, capturing the
circular nature of sensory sub-networks. (E-G) Same as A-C but for a load of 4. Only includes simulations for which the
memory in sensory sub-network 1 was maintained (other three memories can be forgotten). (H) The mnemonic subspace
is stable across working memory load. Decodability of memory (here measured as discriminability, d’, between inputs, see
Methods for details) is similar regardless of whether mnemonic subspace was defined for a single input (dashed line) or
specific for each individual load (solid line). Decodability was not significantly different across subspaces for load 2, 3, 6,
7 and 8 (two-sample Wald test gives p = 0.22, p = 0.063, p = 0.32, p = 0.87 and p = 0.42, respectively). For load 4 and
5, decodability was better for the single input subspace (p = 0.0076 and p = 0.0042 respectively). In general, as expected,
decodability is reduced with load (p < 0.001).
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Figure 7 – The network is robust to changes in parameters. (A) ROC plot showing how changing feedfor-
ward/feedback weights influences network performance. The probability of correctly maintaining a memory (hit rate;
y-axis) and the probability of creating a spontaneous (spurious) memory in non-stimulated sensory sub-networks (false
alarm; x-axis) varies as the product of the feedforward and feedback weights are changed relative to optimal values (darker
colors move away from optimal value). Isolines show network performace across memory load when the product of feed-
forward and feedback weights is changed by 5%, 10%, and 15%. Performance decreases with memory load (colored lines)
for all parameter values. Here γ = 0.35. Inset: Network performance (color axis) as a function of feedforward and
feedback weights. Network performance was taken as the percent of trials with successfully remembered memories mi-
nus the percent of trials with spontaneous memories (see Methods for details). There is a large space of well-performing
parameters, although network performance most critically depends on the product of feedforward and feedback weights.
Here γ = 0.35. (B) Optimal feedforward and feedback weights can be found for a broad range of γ values that maximize
the percent of inputs maintained (solid lines) and minimize the number of spontaneous memories (dashed line). Again,
memory performance is decreased with load (colored lines), for all parameters. (C and D) Network behavior is robust to
changes in connectivity. The percent of remembered inputs (y-axis) for different memory loads (colored lines) decreases
as connections between random and sensory networks are either (C) randomly re-assigned (breaking symmetry) or (D)
locally redistributed. As seen in C, the network is partially robust to breaking symmetrical connections between sensory
and random networks. However, the network is much more robust when these connections are locally distributed within a
sensory network (D). See Methods for details and Fig. S9 for examples of redistribution for different values of κ. Due to bit
depth constrains, Von Mises are only calculated for log10 κ < 2.8. The symbol ∞ is used for the limit of no redistribution,
thus corresponding to a Dirac delta function.
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Methods

Computational model

We consider a two-layer network of Poisson spiking neurons. Model parameters were
adapted from [Burak and Fiete, 2012]. Each neuron i generates Poisson spikes based on
its time-varying firing rate ri(t). The firing rate of neuron i is a non-linear function of
the weighted sum of all pre-synaptic inputs:

ri(t) = Φ(
∑
j

Wijsj(t)) (1)

spikes(t+ dt) ∼ Pois(ri(t)) (2)

whereWij is the synaptic strength from pre-synaptic neuron j to post-synaptic neuron
i; sj(t) is the synaptic activation of pre-synaptic neuron j; and Φ is a baseline-shifted
hyperbolic tangent: τΦ(g) = 0.4(1 + tanh(0.4g − 3)). The synaptic activation produced
by neuron j is computed by convolving its spike train with an exponential function:

ṡj +
sj
τ

=
∑
α

δ(t− tαj ) (3)

where tαj are the spike times of neuron j. For simplicity, we choose the synaptic time
constant τ = 10ms to be equal for all synapses. As noted in the main text, we are using
a simplified model of neural activity; neglecting cell-types, the existence of refractory
periods, and bursts of neural activity.

Previous work has shown the variability in spiking activity plays a significant role
in the diffusion of memories over time ([Burak and Fiete, 2012]), which motivated our
choice of using spiking neurons instead of a rate model. All variability in spiking arises
from the inhomogeneous Poisson process used to generate spike events (i.e. no noise was
added).

The model consists of two interacting layers of neurons: a ‘sensory’ network and a
‘random’ network (Fig. 1A). The sensory network consists of 8 independent ring-like sub-
networks. These sub-networks are each composed of Nsensory = 512 neurons and mimic
simplified sensory networks, with neurons around the ring corresponding to specific values
of a continuously encoded feature, such as shape, orientation, or color (here graphically
represented as color). Every neuron i has an associated angle θi = 2πi/Nsensory. Con-
sistent with biological observations [Funahashi et al., 1989; Kiyonaga and Egner, 2016;
Kuffler, 1953], connections within a sensory sub-network have a center-surround struc-
ture (Fig. 1A, inset). The synaptic weight between any pair of neurons is rotationally
invariant, with nearby excitation and surround inhibition. The synaptic weight between
any pair of neurons i, j within a sensory sub-network depends only on θ = θi−θj through:

W sens
ij = w(θ) = A exp(k1(cos θ − 1))− A exp(k2(cos θ − 1)) (4)

where k1 = 1 is the width of the excitation kernel, k2 = 0.25 is the width of the suppression
kernel, and A = 2 is the amplitude. Self-excitation is set to 0 (w(0) = 0).

Different sub-networks reflect independent sensory inputs (either stimuli at different
locations in space or different sensory features or modalities). In the current model the
sensory sub-networks are independent (unconnected), although adding weak inhibition
between sub-networks did not qualitatively change our results.
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The random network is composed of Nrand = 1024 neurons randomly connected to
each of the 8 simulated sensory sub-networks (four-fold compression). As there is a single
random network, all sensory sub-networks converge onto it through a random feed-forward
connectivity matrix (W FF ). Each neuron in the random network then feeds back into the
same random subset of neurons in the sensory network that provided excitatory inputs. In
other words, the connections were bi-directional and therefore, the feedback connectivity
matrix (W FB) from the random network to the sensory network is the transpose of the
feedforward connectivity matrix, with distinct weight values (i.e. W FB ∼ W FF T ). The
likelihood of an excitatory connection between any pair of neurons across the sensory
and random networks was defined by γ (default is 0.35). Therefore, the number of
inter-network excitatory connections (Nexc) for any given neuron followed a binomial
distribution (with p = γ). The strength of the excitatory feedforward and feedback
connections were defined by the parameters α and β, respectively (how these were chosen
is detailed below).

Connection weights between the sensory and random networks were balanced in two
ways. First, in order to balance the total excitatory drive across neurons, feedforward (or
feedback) weights were scaled by Nexc. Second, the connections between the sensory and
random networks were balanced such that individual neurons receive an equal amount of
excitatory and inhibitory drive (i.e.

∑
jW

FF
ij =

∑
jW

FB
ij = 0). To achieve this, an equal

inhibitory weight was applied to all inputs for each neuron ( −α
8∗Nsensory ). This method

of balancing is intended to reflect broad inhibition in the target network due to local
inhibitory interneurons.

Thus, after balancing, excitatory feedforward connections from the sensory to random
network neuron i had weight Wi,exc = α

Nexci
− α

8∗Nsensory while inhibitory feedforward
connections had weightWi,inh = −α

8∗Nsensory . Similarly, neuron j in the sensory network will
receive excitatory feedback connections with weight Wj,exc = β

Nexcj
− β

Nrand
and inhibitory

feedback connections with weight Wj,inh = −β
Nrand

.

Presentation of stimuli to the sensory network

Sensory stimuli were provided as synaptic drive (sext) to the sensory sub-networks:

rsensi (t) = Φ(
∑
j∈rand

W FB
ij sj(t) +

∑
j∈sens

W sens
ij sj(t) + sexti (t)) (5)

All inputs were presented for 100 ms, indicated by the blue shaded region in all figures.
Inputs were Gaussian, with the center of the input (µ) chosen randomly for each sensory
sub-network. The width of the input (σ) was defined as a fraction of the total number of
neurons in the sensory sub-network, σ = Nsensory

32
, which was 16 neurons for the presented

network. Inputs beyond three σ were set to 0. Therefore, the sensory input to neuron i
was

sexti =

{
Sext 1√

2πσ2
e−

(i−µ)2

2σ2 if i ≤ b3σc
0 if i > b3σc

(6)

where Sext was the strength of external sensory input (here, Sext = 10).
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Adding direct sensory input and recurrence within random net-
work

The baseline model used for most analyses is intentionally simple. The activity of neurons
in the sensory network was given by Equation 5 and the activity of neurons in the random
network was:

rrandi (t) = Φ(
∑
j∈sens

W FF
ij sj(t)) (7)

However, to investigate the dynamics of activity within the network, two biologically-
motivated connections were added (only for results presented in Fig. 6). First, inputs
were projected directly into the random network (in addition to inputs into the sensory
network). A random weight matrix, W ext

i,j defined the feedforward connectivity of sensory
inputs into the random network. Similar to the weight matrix from the sensory network,
the likelihood of an excitatory connection from any given input was γext (default is 0.2)
with weight proportional to αext. As with other connections in the network, inhibitory
connections were added to all neurons in the random network in order to balance excita-
tion and inhibition. Second, recurrence within the random network was added. Again, a
random weight matrix was constructed (W rec

i,j ) with a likelihood of excitatory connection
defined by γrec (default 0.2) and with weight proportional to αrec. As with feedforward
and feedback connections, these connections were balanced such that overall excitatory
drive was constant across neurons and excitation and inhibition were balanced within a
neuron.

Therefore, in the network used to investigate dynamics (Fig. 6), the activity of neurons
in the random network was:

rrandi (t) = Φ(
∑
j∈sens

W FF
ij sj(t) +

∑
j∈rand

W rec
ij sj(t) +

∑
j∈input

W ext
i,j s

ext
j (t)) (8)

Performance of the network

Network performance or ‘percent maintained’, in Figures 3, 5 and 7 was defined by the
proportion of successfully maintained memories with respect to the number of initial
inputs to sensory sub-networks. A memory was ‘maintained’ if the norm of the activity
vector for a given sub-network exceeded 3Hz. We did not choose a similarity metric with
the initial representation of inputs, because that would not allowed for taking memory
drift into account. Similarly, a sub-network carried a ‘spontaneous’ memory if it did not
receive any input during stimulation but had activity that exceeded the same threshold.

Parameter estimation of the weight matrix between the sensory
network and the random network

The only constraint on network sizes is the fact that the random network is convergent
(Nrand < 8 ∗ Nsensory). Here we use a four-fold convergence, although changing this did
not qualitatively change network behavior. A limit case would be to have both networks
of the same sizes, with one-to-one, non-overlapping representation of inputs from the
sensory network to the random network, but this case is not in the interest of the study.

Feedforward and feedback connection weights (α and β, respectively) were set using
a grid search that optimized model performance over hundreds of simulated trials. As
described in the Results, the exact values of network parameters can be partially relaxed
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without changing network behavior. The parameters were fit to optimize two constraints:
1) maximize the number of inputs that were maintained throughout the stimulation and
the delay periods and 2) minimize the number of spontaneous memories. We chose these
criteria as they satisfied the minimal requirements for working memory: maintaining
items without hallucinating. The performance of a set of parameters was evaluated as
the sum of the proportion of maintaining a memory minus the proportion of creating a
spontaneous, summed for simulations for initial inputs number from 1 to 8 (Fig. 7A).
Despite attempting to optimize for overall network performance, no parameters were
found that escaped the capacity limitation.

For a broad range of γ, we can find α and β parameters that maintain stimulus
inputs and minimize spontaneous memories (Fig. 7B). We set γ to 0.35 as it roughly
maximized the number of maintained stimuli, minimized the number of spontaneous
memories, and minimized the number of connections. The corresponding best fit for
feedforward and feedback connections was α = 2100 and β = 200. This resulted in
an average excitatory feedforward connection weight of 0.95 and an average excitatory
feedback connection weight of 0.36. From the balance, we can compute that the inhibitory
feedforward connection weight is -0.51 and the inhibitory feedback weight is -0.20. Note
that, for all parameters tested, interference between inputs into the random network
limits memory maintenance and accuracy – the capacity of the network is unavoidable.

For the model that included direct sensory inputs into the random network and re-
currence within the random network, αexc and αrec were fit using a coarse grid search.
As for α and β, parameters were chosen to maximize maintenance of memories while
minimizing spurious memories. In addition, parameters were constrained to be positive
in order to ensure transient dynamics in neural activity. The best fit parameters were
αinput = 100 and αrec = 250. Figure S5 shows that the addition of these connections does
not qualitatively change the model behavior.

Estimating memory accuracy

Building on [Bays, 2014; Pouget et al., 2000], memories were decoded from the sensory
sub-networks using a maximum likelihood decoder on spiking activity in a 100 ms time
window (shortening the decoding interval to 50 ms or 10 ms did not qualitatively change
the results). In Figure 3C,D, and Figure S2, all simulations were taken into account, even
when the memories were forgotten. In Figure 3E,F, only the simulations where all the
memories were maintained were taken into account.

Measuring correlation between memories in the random network

In Figure 5 and S3, we show how memory performance increases as the correlation be-
tween memories in the random network is increased (i.e. there is a reduction in interfer-
ence). The correlation between memories was computed as the dot product of the sensory
inputs projected into the random network. This projection was done by multiplying the
sensory input by the feedforward connection matrix. When calculating the correlation
over time, we used the maximum likelihood decoded representation as our representation
in the sensory network.
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Measuring divisive-normalization-like regularization of neural re-
sponses with memory load

Neural responses are reduced with an increase in load, both in the sensory domain [Caran-
dini and Heeger, 1994, 2012; Heeger, 1992; Heeger et al., 1996] and in working mem-
ory [Buschman et al., 2011; Sprague et al., 2014]. We tested whether similar divisive-
normalization-like regularization was seen in our network model.

First, we tested whether the response of ‘selective’ neurons was reduced as memory
load was increased. To this end, we simulated trials where each of three different sensory
sub-networks received an input (s1, s2, or s3 into the first, second, or third sub-network,
respectively). This can be conceptualized as presenting a stimulus at one of three different
locations. Neurons in the random network were classified as ‘selective’ if their response
to any individual input (the ‘preferred’ input) was greater than the other two inputs
(‘non-preferred’ inputs). This follows the procedure typically used for electrophysiology
experiments. Requiring a difference of at least 40 Hz resulted in 71 selective cells (6.9%).
The response of selective neurons was then computed when the preferred input was
presented alone (load 1), with either of the other two non-preferred inputs (load 2), or
with all three inputs (load 3). We considered only the simulations where all inputs were
maintained over the delay period. As seen in Fig. 4B, increasing memory load reduced
the activity of selective neurons. Similar results were observed with selectivity thresholds
of 50 Hz or 60 Hz.

To quantify the impact of memory load on all neurons, we adapted the statistic from
[Reynolds et al., 1999] to measure the response of a neuron to a pair of stimuli, relative to
the response to each stimulus alone (Fig. 4C). The response of all neurons in the random
network were calculated for three conditions: a single input to sensory sub-network 1 (s1),
a single input to sensory sub-network 2 (s2), and inputs to both sensory sub-network 1
and 2 simultaneously (s1,2). As in [Reynolds et al., 1999], responses were normalized by
the maximum response for each neuron (max(s1, s2, s1,2)). Figure 4C shows the relative
change in response to the two single stimuli (x-axis, s2 − s1) against the pair of stimuli
(y-axis, s1,2 − s1). A linear fit was used to estimate the slope of the response. The
resulting slope of 0.5 indicates the response to a pair of stimuli (s1,2) is a mixture of the
two stimuli presented alone, as in [Reynolds et al., 1999].

Finally, we quantified whether increasing memory load reduced the selectivity of neu-
rons. To this end, we calculated the response of neurons in the random network to two
different inputs into the first sensory sub-network (sA1 and sB1 ). The two sensory inputs
were evenly separated (offset by 180◦). As above, neurons were classified as selective if
their response to the two inputs differed by at least 40 Hz (|r(sA1 ) − r(sB1 )| ≥ 40Hz).
This resulted in 67 selective neurons in the random network (6.5%). The response of
these selective neurons was then calculated when each input (sA1 and sB1 ) was presented
with a second (or third) input into sub-network 2 (or 3), reflecting an increasing memory
load. Again, we considered only the simulations where all inputs were maintained over
the delay period. Following [Buschman et al., 2011], we computed the information these
selective neurons carried about the identity of the stimulus in sensory sub-network 1 using
the percentage of explained variance (PEV) statistic. Specifically, we computed for each
selective neuron and for each time step, η2 = SSbetween/SStotal where SStotal =

∑
t

(rt− r̄)2

is the total squared error across trials (t) and SSbetween = (rA − r̄)2 + (rB − r̄)2 where
r̄A and r̄B are the average response to sensory input sA1 and sB1 , respectively. Figure
4D shows η2 decreases with increasing memory load, as seen experimentally [Buschman
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et al., 2011]. Similar results were seen with a threshold of 50 or 60 Hz.

Subspace Analysis

Analysis of the stable mnemonic space (Figs. 6 as well as S4 and S6) followed the
methods of [Murray et al., 2016]. To understand the subspace used for encoding, we
calculated the response of the network to 8 different inputs into the first sensory sub-
network (sk=1..8

1 ). The number of stimulus conditions was chosen to match [Murray et al.,
2016], corresponding to 8 angular locations evenly separated within the sub-network (i.e.
spaced by 45◦). For each input condition, 500 independent trials were simulated for the
same network. We took into account only the simulations for which the memory in the
first sensory sub-network is maintained after the delay period.

We assessed temporal dynamics of neural activity by computing the cross-correlation
of responses across trials with the same input. Correlations were then averaged across
input conditions, yielding the cross-correlation matrix in Fig. 6A. Slices of the cross-
correlation are displayed in Fig. 6B to match recent findings [Murray et al., 2016; Stokes
et al., 2013].

Next, we defined the mnemonic and temporal subspaces as in [Murray et al., 2016].
First, we averaged the activity of each neuron over trials. This resulted in a high-
dimensional state space defined by the firing rate of Nrand neurons, over time T , for
each of 8 input conditions (i.e. a Nrand x T x 8 matrix). Then, we defined the mnemonic
subspace as the first two principal components of the time-averaged response (which
would now be a Nrand x 1 x 8 matrix). Projecting the original full timecourse of neu-
ral activity onto this mnemonic subspace gave the 8 clusters of time-varying activity in
Fig. 6C.

In order to analyze how memory load impacted the mnemonic subspace (Fig. 6H
and Fig. S7), we repeated this process for memory loads 2 through 8. Memory load
was manipulated by providing a random input into sensory sub-networks 2 through 8, in
addition to the input to sub-network 1. We took into account only the simulations for
which the memory in the first sensory sub-network is maintained. The memories of the
other sensory sub-networks stimulated can be forgotten. This provided new mnemonic
subspaces for each load.

Discriminability was computed as the distance between the neural response to different
input conditions, normalized by the standard deviation of responses (d′). Neural responses
were calculated as the average response over the delay period. The response for each trials
was then projected into the mnemonic subspace defined for a stimulus presented alone
(the reference subspace, load = 1) or optimized for each memory load. d′ was calculated
for each pair of inputs, along the vector connecting each cluster’s barycenter. The overall
discriminability was then taken as the average d′ across all pairs of inputs. Standard error
was estimated by bootstrapping (1000 draws). Discriminability was computed within
the reference (load 1) subspace and within the subspace optimized for each load. As
seen in Fig. 6H, decodability was nearly equal across subspaces. For completeness, we
also built a nearest centroid classifier as in [Murray et al., 2016]. Decoder accuracy
was estimated by testing cross-validation performance on withheld trials, for both the
reference (load 1) subspace and the subspaces optimized for each load (Fig. S7). Standard
error was estimated by bootstrapping (1000 draws). This second analysis also shows that
decodability was nearly equal across subspaces.

As noted above, all subspace analyses used the model with direct sensory input into
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the random network as well as recurrence within the random network.

Software

All simulations were done with Python 2.7 (using numpy and scipy) and the Brian2
simulator [Goodman et al., 2014; Stimberg et al., 2013], using exact integration with
time-step dt = 0.1ms. For PCA and the nearest centroid classifier, we used the scikit-
learn package [Pedregosa et al., 2011].

The datasets generated from simulations and the script of the model will be provided
on GitHub after finalizing the manuscript.
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Supplemental Figures
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Figure S1 – The synaptic drive fed back into a sensory sub-network from the random network closely matches
its own representation. Related to Figure 1. (Left) Synaptic drive for the entire sensory network resulting from a
sensory input into sensory sub-network 1. (Middle) Synaptic drive to the random network resulting from the sensory
input (left). Estimated by passing synaptic drive from sensory network throughWFF . (Right) Feedback synaptic drive to
the sensory network from the random network. Estimated by passing synaptic drive to random network (middle) through
WFB .
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Figure S2 – Memory error increases with memory load. Related to Figure 3C,D. Absolute value of the circular error
computed from ML spike decoding after 1 second of network simulation, as a function of load (A), and over time (B).
Decoding time window is 100msec, forward in time from the indicated time.

Figure S3 – Memory error decreases with reduced interference. Related to Figure 5A. Absolute value of circular
error as a function of the correlation between two inputs in two sensory sub-networks. Simulations where both memories
are maintained (the error is not due to forgetting).

.
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Figure S4 – Dynamics in sensory network. Caption next page.
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Figure S4 – Dynamics in sensory network. PCA analysis of the sensory sub-network activity receiving one of 8 different
stimuli (equally separated). As noted in the main text, these simulations used a network with weak direct sensory input
into the random network and weak recurrence within the random network (see Methods for details). Figure layout follows
Figure 6 (which shows the same for the random network). textbf(A) Cross-correlation of neural activity in the sensory
network. Here time-lagged autocorrelation matrix of activity (correlation between the population state at one time point
and the state at another time point) shows activity during the stimulation is more correlated with activity during the delay
period than for the random network (Fig. 6). (B) Slices of the matrix represented in (A): correlation of population state
from the first 50ms of the stimulus period (purple) and the last 50ms of the delay period (orange) against all other times.
(C) The encoding is stable. Here the response of the sensory network population is projected onto the mnemonic subspace
(defined by the first two principal components of time-averaged activity, see Methods for details). Each trace corresponds
to the response to a different input into sensory sub-network 1, shown over time (from lighter to darker colors). (D)
Mnemonic subspace is defined by two orthogonal, quasi-sinusoidal representation of inputs, capturing the circular nature
of sensory sub-networks. (E-G) Same as A-C but for a load of 4. Only includes simulations for which the memory in
sensory sub-network 1 was maintained (other three memories can be forgotten). (H) The mnemonic subspace is stable
across working memory load. Decodability of memory (here measured as discriminability, d’, between inputs, see Methods
for details) is similar regardless of whether mnemonic subspace was defined for a single input (dashed line) or specific for
each load (solid line). Decodability was not significantly different across subspaces for load 3, 4, 5 and 6 (a two-sample Wald
test for optimized subspace versus reference subspace gives respectively p = 0.45, p = 0.28, p = 0.56, and p = 0.27). For
load 2, 7, and 8, decodability was significantly better for the load-specific subspace (p = 0.014, p = 0.034, and p = 0.0019
respectively). Decodability is reduced with load (p < 0.001).
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Figure S5 – Adding direct sensory inputs into the random network and recurrence within the random
network did not alter network performance. Related to Figure 6. Percentage of correct memories, after 1 second of
network simulation, as a function of load (as in Fig. 3A). Network included direct transient input into the random network
and weak recurrence within the random network (as in Fig. 6).
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Figure S6 – Dimensionality of encoding of a single stimulus is similar across memory load. Related to Figure 6.
Percentage of variance explained by each principal axis, for time-averaged delay activity. Computed for sensory sub-network
1 (A) and for the random network (B). Follows [Murray et al., 2016].

Figure S7 – Performance of centroid classifier is similar in the mnemonic subspace defined for any load.
Related to Figure 6. Performance of the nearest centroid classifier when the coding subspace was defined for the current
load (solid lines) or when the coding subspace was defined with a single item (load 1). Shown for both sensory network
(A) and random network (B). Decodability was not significantly different across subspaces (a two-sample Wald test for
load-specific subspace versus reference subspace gives p > 0.1 for all loads).
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Figure S8 –Network performance did not depend on architecture of sensory sub-networks. Related to Figure 1.
(A) Schematic of alternative model architecture. The sensory network is now composed of 4 ring sub-networks, and 4 line
sub-networks. All other parameters remained the same. (B) Raster plot of an example trial with 8 sensory sub-networks
(512 neurons each) randomly connected to the same random network (1024 neurons). 7 sensory sub-networks (4 ring, 3
line sub-networks) receive a Gaussian input for 0.1 seconds during the ‘stimulus presentation’ period (shaded blue region).
As for the original architecture, memories are maintained but the network has a capacity limit.
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Figure S9 – Example Von Mises distributions for spreading of feedback connections. Related to Figure 7.
In Fig. 7D, each feedback excitatory connections was distributed according to a Von Mises distribution with varying
concentrations. (A) Example Von Mises distributions for different concentration parameters. (B-D) An example of
feedback connectivity as a sum of VonMises from a neuron from the random network to a sensory sub-network (neuron 1
to 512) when (B) κ = 1, (C) κ = 10 and (D) κ = 100.
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