Title: HIV-1 Vpr accessory protein interacts with REAF and mitigates its associated anti-viral activity.

Short title: Vpr mitigates REAF

Authors: Joseph M Gibbons¹, Kelly M Marno¹, Rebecca Pike¹, Wing-yiu Jason Lee¹, Christopher E Jones¹, B. W. Ogunkolade¹, Claire Pardieu¹, Gary Warnes¹, Paul A Rowley², Richard D Sloan³,⁴ and Áine McKnight¹

Abstract: The accessory protein Vpr of Human Immunodeficiency Virus type 1 (HIV-1) enhances replication of the virus in macrophages (1-7). Virus particle packaged Vpr is released in target cells shortly after entry, suggesting it is required early in infection (8, 9). Why it is required for infection of macrophages and not cycling T-cells and why it induces G2/M arrest in cycling cells are unknown. Here we observe, by co-immunoprecipitation assay, an interaction between Vpr and endogenous REAF (RNA-associated Early-stage Antiviral Factor, RPRD2), a protein shown previously to potently restrict HIV infection (10). After HIV-1 infects macrophages, within 30 minutes of viral entry, Vpr induces the degradation of REAF. Subsequently, as replication continues, REAF expression is upregulated – a response which is curtailed by Vpr. REAF is more highly expressed in differentiated macrophages than in cycling T-cells. Expression in cycling cells is cell-cycle dependent and knockdown induces cell-cycle perturbation. Therefore, our results support the long held hypothesis that Vpr induces the degradation of a factor involved in the cell cycle that impedes HIV infection in macrophages.

¹The Blizzard Institute, Queen Mary University of London School of Medicine and Dentistry, QMUL, UK. ²Department of Biological Sciences, The University of Idaho, Moscow, Idaho, USA. ³Division of Infection and Pathway Medicine, The University of Edinburgh, UK. ⁴ZJU-UoE Institute, Zhejiang University, P.R. China.
Summary

Human Immunodeficiency Virus type 1 (HIV-1) has so called accessory proteins which modulate the activity of host proteins, enabling efficient replication of the virus. The precise function of one such accessory protein, Vpr, has so far not been revealed. REAF is a host protein that limits the capacity of HIV-1 to infect cells. Here, we show that Vpr interacts with REAF. Shortly after infection, only when Vpr is present, REAF is degraded in primary macrophages. Vpr further curtails the cells subsequent increase in REAF production. Additionally, when the ability of cell to produce REAF is prevented, the population accumulates in the G2/M phase of the cell cycle. In infection, Vpr sends cells into G2/M arrest. This study therefore supports the long held hypothesis that Vpr is responsible for the degradation of a cellular factor involved in the cell cycle and one which impedes the completion of HIV-1 replication.

Introduction

Human Immunodeficiency Virus type 1 (HIV-1) infects CD4+ T-cells and macrophages in vivo and causes Acquired Immunodeficiency Syndrome (AIDS). HIV-1 has four non-structural accessory genes nef, vif, vpu and vpr that mitigate host innate immunity. A function for Vpr has been elusive, but it is required for replication in macrophages and for pathogenesis in vivo (1, 2). Substantial amounts are incorporated into viral particles and released from the major capsid protein (CA) after entry into the cell (8, 9). Concurrently, reverse transcription transcribes the RNA genome into DNA, which integrates into the host cell DNA. It is released early from the CA (11) suggesting it has an early function up to integration. Here we show that within 30 minutes of cellular entry, Vpr containing virus induces the degradation of RNA-associated Early-stage Antiviral Factor (REAF, also known as RPRD2). REAF, formerly described as Lv2, limits the
completion of pro-viral DNA synthesis and integration (10).

Results and Discussion

HeLa-CD4, knocked down for REAF (HeLa-CD4 shRNA-REAF, Figure 1A), were challenged with HIV-1 89.6WT or virus deleted for vpr (89.6Δvpr), vif (89.6Δvif) or vpu (89.6Δvpu). Figure 1B shows that despite a standard virus input (50 FFU/ml as measured on HeLa-CD4), the removal of REAF using shRNA alleviates the need for Vpr. There is significantly greater rescue of HIV-1 89.6Δvpr (>60 fold, p<0.0001) compared to HIV-1 89.6WT or virus lacking vpu or vif (20 fold). Thus vpr overcomes REAF restriction.

REAF is transiently knocked down in HeLa-CD4 shortly after HIV-1 infection (12). Here, HeLa-CD4 infected with HIV-1 89.6WT or HIV-1 89.6Δvpr were quantified for REAF nuclear or cytoplasmic protein over time by imaging flow cytometry. Following infection with HIV-1 89.6Δvpr, REAF levels increase in both the nucleus (~25%, Figure 1C) and cytoplasm (~10%, Figure 1D) within 30 minutes with nuclear levels remaining high for 180 minutes. In the presence of Vpr (HIV-1 89.6WT) however this increase in REAF is curtailed at 30 minutes, with a steady decline as time progresses. The decline is most marked in the nucleus with ~20% reduction by 60 minutes and ~30% at 120 minutes. By 180 minutes, levels of REAF recover.

Imaging flow cytometry software determined the ‘nuclear enrichment score’ over time after infection with HIV-1 89.6WT or HIV-1 89.6Δvpr (Figure 1E). The lower the score the less REAF in the nucleus relative to in the cell overall. By 60-120 minutes, a significant (p<0.05) segregation emerges. In the presence of Vpr, relative nuclear levels of REAF are suppressed between 30 and 120 minutes (p<0.05). Lower levels of REAF were also observed in the cytoplasm over time but to a much lesser extent. The virus carries limited quantities of Vpr (11), potentially
explaining why REAF levels return to normal or above by 180 minutes. Our results support the current model for Vpr activity - it interacts with the cullin4A-DDB1 (DCAF1) E3 ubiquitin ligase and induces proteasomal degradation of an unknown substrate (13). We reported that REAF is degraded by the proteasome by HIV-1 infection in HeLa-CD4 (12) consistent with these observations. Furthermore, Figure 1F shows that Vpr and REAF interact with each other, either directly or as part of a complex, as they are co-immunoprecipitated. This supports our proposition that Vpr induces the degradation of REAF.

Other targets of Vpr have been proposed. It recruits SLX4-SLX1/MUS81-EME1 endonucleases to DCAF1, activating MUS81 degradation and triggering arrest in G2/M (14). It also degrades helicase-like transcription factor (HLTF) (15). We show here both HLTF (Figure 1G) and MUS81 (Figure 1H) are depleted by virus concomitantly with REAF within 60 minutes of infection. Interestingly, HLTF and REAF were identified in the same screen for proteins that interact with single-stranded DNA (16). We previously showed that REAF binds cellular and viral DNA and viral DNA-containing reverse transcripts (12). The depletion of REAF after infection is transient, with the recovery by 120 minutes likely reflecting the limited quantities of Vpr carried in the virus particle (11). In contrast, HLTF and MUS81 levels remain diminished for at least 48 hours suggesting they have a role later in virus life cycle (27, 22). Unlike REAF, neither SLX4-MUS81-EME1 nor HLTF have so far been directly linked with HIV-1 restriction (17).

We defined the cell cycle phase (G1/0, S and G2/M) of primary human monocytes and analysed REAF expression. Levels are lowest in G1, increase through S phase, and peak in G2/M (Figure 2A). REAF levels during the cell cycle were further followed after synchronization at the G2/M border (Figure 2B, Figure S1). When synchronised cells cycled from G2 into M, REAF levels declined but recovered after 8 hours. The major decline in REAF expression coincides with
phosphorylation of histone H3 (Ser10/Thr11), a mitotic cell marker (Figure 2B) (18).

Using imaging flow cytometry we further analysed the subcellular localisation of REAF during mitosis (Figure 2C). An asynchronous population had a nuclear enrichment score of 0.92. Nocodazole-treated cells diverged into two populations: one with a low score (0.13) and another with a high score (1.53) (Figure 2C, left). Phospho-histone H3 (Ser28) staining confirmed cells in mitosis had a low score of 0.17, and thus lower levels of REAF in the nucleus relative to the cell overall (Figure 2C, right and 2D). Using confocal microscopy, REAF is observed in both the cytoplasm and nucleus through interphase, prophase and prometaphase but excluded from chromatin during metaphase, anaphase and telophase (Figure 2E). Furthermore, down modulation of REAF in HeLa-CD4 shRNA-REAF induces accumulation of cells at G2/M (Figure 2F). Flow cytometry of DNA content in PI stained cells shows they accumulated (25%) in G2/M compared to parental (14%).

Vpr has been shown to varying degrees to be more beneficial for replication in macrophages than in cycling T-cells (3-7). We compared the susceptibility of mitotic HeLa-CD4 (92.5%) to an asynchronous population (2.6% mitotic, Figure 3A) using HIV-1 89.6 (VSV-G) with a GFP reporter as challenge virus. Mitotic cells were 12 fold more susceptible (Figure 3B). This was confirmed using HIV-1 89.6WT expressing HIV-1 envelope (Figure S2). Thus REAF exclusion from chromatin during mitosis may provide an opportunity to evade restriction in cycling T-cells. The results concur with previous reports suggesting cell cycle arrest in G2/M promotes early HIV-1 infection (19) and that there is delayed replication kinetics of vpr mutants in T-cells (20). Figure 1 C-D above suggested that nuclear intensity of REAF is key to HIV restriction. We measured expression of REAF in the nucleus of resting or activated CD4+ T-cells, monocytes or macrophages and dendritic cells (DC) (Figure 3C). Expression levels are higher in MDMs
compared to T-cells again concurring with the need for HIV-1 Vpr to infect macrophages but not T-cells. The differential expression of REAF protein in monocytes and MDMs was confirmed by Western blotting (Figure 3D).

Antiviral factors are often upregulated in response to pathogen associated molecular patterns. Polyriboinosinic:polyribocytidylic acid (poly(I:C)) is a double-stranded RNA, used to stimulate viral infection associated molecular pattern recognition pathways. Figure 3E shows poly(I:C) induction of REAF in THP-1, a macrophage cell line.

To decipher a role for Vpr and REAF in primary macrophages, MDMs were challenged with either HIV-1 89.6WT or HIV-1 89.6Δvpr. Western blot analysis shows that REAF levels decline within 30 and up to 60 minutes of challenge with HIV-1 89.6WT (Figure 3F). Basal levels return by 240 minutes. This contrasts with HIV-1 89.6Δvpr infection where REAF levels do not decline and indeed rise from 60 to 240 minutes (Figure 3G). Thus, MDMs respond to HIV-1 infection by upregulating REAF, but Vpr mitigates this by inducing REAF’s degradation.

The subcellular fluctuation of REAF levels in MDMs after challenge with HIV-1 89.6WT or HIV-1 89.6Δvpr was determined using imaging flow cytometry. With Vpr, nuclear REAF decreases between 60 and 120 minutes (P< 0.05, Figure 3H), similar to HeLa-CD4. In contrast, without vpr, nuclear REAF increases at 120 minutes (~25%). Similar to the response to poly(I:C) in THP-1, cytoplasmic REAF expression increases within 30 minutes of infection with either virus (Figure 3I). Interestingly REAF cytoplasmic upregulation was even greater for HIV-1 89.6WT than for the mutant virus without Vpr possibly reflecting exclusion from the nucleus. These results support the proposition that Vpr overcomes REAF restriction in MDMs where REAF expression is high and is induced further by viral replication. Figure 3J confirms that the HIV-1 89.6Δvpr virus used in these experiments is restricted to replication in MDMs when compared with the wild type
virus expressing Vpr (HIV-1 89.6WT).

REAF has many properties of restriction factors (21, 22). It interacts with HIV-1 reverse transcripts, impeding reverse transcription and integration (12). It is germline encoded, constitutively expressed in cells, regulated by the proteasome system, suppressed by Vpr and upregulated by poly(I:C).

IFNα induces many HIV restriction factors (23, 24). We used RNA-Seq to determine if IFNα upregulated REAF mRNA in MDMs. Figure 4A shows IFNα induced upregulation of antiviral genes, including HIV restriction factors APOBEC3G, IFITM1-3, MX2, tetherin and Viperin (21) but with little or no upregulation of REAF mRNA. Further, there was no change in either subcellular distribution or overall levels by Western blotting or image flow cytometry (a slight increase by Western blotting was observed in some donors, Figure S3). Nor was REAF mRNA or protein upregulated in CD4+ T-cells (Figure S4) or in THP-1 in response to IFN α, β, or γ (Figure S5).

Restriction factors are often under evolutionary positive selection at sites that interact with virus. We found no evidence of positive selection of REAF in the primate lineage (Figure 4B) and so it fits better with a model of purifying selection. This could reflect a role in G2/M progression, precluding changes to its primary sequence. REAF is unlike the evolving HIV restriction factors like APOBEC3G, SAMHD1, TRIM5 or BST2/tetherin and is more similar to SERINC3 and 5 which are not under positive selection (25, 26). We propose that REAF is a multi-functional or ‘moonlighting’ protein with at least two cellular roles (27). In cycling T-cells, REAF is associated with G2/M transition, so depletion of it by Vpr induces an accumulation in G2/M. In non-cycling cells, Vpr is important for HIV infection of macrophages where REAF is highly expressed.
Materials and methods:

Ethics Statement

Leucocyte cones from blood donors, from which PBMCs were isolated, were obtained from the NHS Blood Transfusion service, St. George’s Hospital, London. Donors were anonymous and thus patient consent was not required. The local ethical approval reference number is 06/Q0603/59.

Cell lines

HEK-293T (ATCC), THP-1, C8166, HeLa-CD4 parental (all NIBSC AIDS Reagents) and shRNA-REAF (HeLa-CD4 shRNA-REAF, previously described) were maintained at 37°C in 5% CO₂ (10). Cells were grown in Dulbecco’s Modified Eagle Medium (DMEM, ThermoFisher) supplemented with fetal bovine serum (5-10%, Thermo Fisher) and appropriate antibiotics. HeLa-CD4-shRNA-REAF were selected for resistance to puromycin in media supplemented with 10µg/ml puromycin.

Transfections and virus production

The infectious molecular clone for HIV-1 89.6 was obtained from the Centre for AIDS Research (NIBSC, UK). Infectious full-length and chimeric HIV clones were prepared by linear polyethylenimine 25K (Polysciences), Lipofectamine 2000 (Invitrogen) or Lipofectamine 3000 (Invitrogen) transfection of HEK-293T. Plasmid constructs HIV-1 89.6Δvif, HIV-1 89.6Δvpr and HIV-1 89.6Δvpu were generated from the HIV-1 89.6 molecular clone, using overlap extension PCR (24). Clones were confirmed by plasmid sequencing (Source BioScience). Primer sequences are available on request.
HEK-293T were plated at 2x10^4/cm^2 in 8-well chamber slides (confocal microscopy), or 10cm dishes (virus production) 48 hours prior to transfection. For virus production, supernatant was harvested 72 hours post-transfection and cleared of cell debris by centrifugation at 500 x g for 5 minutes before storage at -80⁰C. Mutant virus with low titer were amplified by C8166 for 48 hours before harvesting. HIV-1 89.6 (VSV-G) was generated by combining the transfer vector pCSGW with the envelope pMDG VSV-G and the core construct p8.91-89.6gag in HEK-293T as above and has been previously described (12).

Titration of replication competent virus

HeLa-CD4 were seeded at 1.5x10^4 cells/well in 48-well plates to form an adherent monolayer of cells. Cell monolayers were challenged with serial 1/5 dilutions of virus and titre was assessed after 48 hours by *in situ* intracellular staining of HIV-1 p24 to identify individual foci of viral replication (FFU), as described previously (12). For infection time course experiments, 400-500μl of 1x10^5 FFU/ml (HeLa-CD4) or 3x10^3 FFU/ml (MDMs) virus was added per well to cells cultured in 6-well trays for 24 hours (HeLa-CD4) or 7 days (for MDMs). In Figure 3J, cells were challenged with 50ng p24 in 6-well plates with 2x10^6 MDMs per well. Supernatants were harvested on days 0, 2, 8, 21 and 28 post challenge and p24 concentration analysed by ELISA.

cDNA synthesis and qPCR

Total RNA was extracted from MDMs using an RNeasy Plant Mini Kit (QIAGEN), and cDNA was synthesised with SuperScript™ III First-Strand Synthesis System (Invitrogen), according to manufacturer’s instructions. cDNA was subjected to real-time quantitative PCR (qPCR) using
REAF, OAS1 and β-actin primer pairs with SYBR® Green detection of amplified transcripts (QuantiTect SYBR Green PCR Kit, QIAGEN). Data acquisition and analysis were performed using the ABI PRISM™ 7500 SDS software. Primer sequences are available upon request.

Gene expression microarray

Prior to microarray analysis, MDM RNA was prepared using the Illumina™ TotalPrep™ RNA Amplification Kit (Ambion), according to manufacturer’s instructions. The probes were hybridised on an Illumina™ HT12v3 bead array following the manufacturer’s standard hybridisation and scanning protocols. Raw measurements were processed by GenomeStudio software (Illumina), and quantile normalised. All microarray data are publicly available in the Gene Expression Omnibus (GEO) database with accession number GSE54455.

IFN, Poly(I:C) and treatment

MDMs, CD4+ T-cells and THP-1 were treated with IFN (100-500IU/ml, specified) for 24 or 48 hours (specified) before harvest for RNA extraction; analysis by Western blotting or imaging flow cytometry. THP-1 were treated with poly(I:C) (25μg/ml, HMW/LyoVec™, Invitrogen) for 48 hours before analysis by Western blotting or imaging flow cytometry. Prior to IFN or poly(I:C) treatment, THP-1 were treated with phorbol 12-myristate 13-acetate (PMA, 62 ng/ml) for 3 days and then PMA-free DMEM for 2 days to allow differentiation and recovery. For Figure 4B and Figure S4, recombinant IFNα was purchased from Sigma (Interferon-αA/D human Cat. No. I4401-100KU) and is a combination of human subtypes 1 and 2. For Figure S3 and 5, recombinant human IFNs are from Peprotech.
Western blotting

Cells were harvested and lysed in 30-50μl of radioimmunoprecipitation (RIPA) buffer supplemented with NaF (5µM), Na$_2$VO$_3$ (5µM), β-glycerophosphate (5µM) and 1x Protease Inhibitor Cocktail (Cytoskeleton). The protein concentration of each sample was determined using the BCA Protein Assay Kit (Pierce). 25μg or 12.5μg of total protein was separated by SDS-PAGE (4-12% Bis-Tris Gel, Invitrogen), at 130V for 1 hour 30 minutes in MOPS SDS Running Buffer (Invitrogen). Separated proteins were transferred onto nitrocellulose membrane (0.45μm pore size, GE Healthcare) at 45V for 2 hours, in ice-cold NuPAGE™ Transfer Buffer (ThermoFisher). Membranes were blocked for 1 hour at room temperature in 5% (w/v) non-fat milk powder in TBST buffer. Specific proteins were detected with primary antibodies by incubation with membranes overnight at 4°C and with secondary antibodies for 1 hour at room temperature. All antibodies were diluted in blocking buffer. Proteins were visualised using ECL Prime Western Blotting Detection Reagent (GE Healthcare) and imaged using either ChemiDoc Gel Imaging System (Bio-Rad) or exposed to CL-XPosure films (ThermoScientific) and developed.

Antibodies

Primary rabbit polyclonal antibody to REAF (RbpAb-RPRD2) has been previously described (12). For imaging flow cytometry and confocal microscopy, RbpAb-RPRD2 was detected using goat anti-rabbit IgG conjugated with Alexa Fluor 647 (Invitrogen). FITC-labelled anti-phospho-histone H3 (Ser28) was used (BD Bioscience) for imaging flow cytometry and confocal microscopy. MsmAb-IFITM1 (clone 5B5E2, Proteintech), was detected by goat anti-mouse IgG Alexa Fluor 555 (ThermoFisher) for imaging flow cytometry, and by anti-mouse IgG antibody conjugated to HRP (GE Healthcare) for Western blotting, as were MsmAb-Mus81 and MsmAb-GFP (both
Abcam). Also for Western blotting, RbpAb-RPRD2, RbmAb-IFITM3 (EPR5242, Insight Biotechnology), RbpAb-GAPDH, RbpAb-βActin, RbmAb-phospho-histone H3 (Ser10/Thr11) and RbpAb-HLTF (all Abcam) were detected with secondary antibody: donkey anti-rabbit IgG conjugated to HRP (GE Healthcare).

Immunoprecipitation

HEK-293T, transfected with either VPR-GFP or GFP control expression vector, were lysed 72hrs post transfection in RIPA buffer supplemented with NaF (5µM), Na₂VO₃ (5µM), β-glycerophosphate (5µM) and 1x Protease Inhibitor Cocktail (Cytoskeleton). Total protein concentration was determined using BCA Protein Assay Kit (Pierce). GFP-TRAP® magnetic agarose beads were equilibrated in ice cold dilution buffer (10 mM Tris/Cl pH 7.5; 150 mM NaCl; 0.5 mM EDTA) according to manufacturer’s instructions (Chromotek). Cell lysates containing 100µg of total protein were incubated with 10µl of equilibrated beads for 2 hours at 4°C with gentle agitation. Beads were washed three times with PBST buffer before analysis by Western blotting.

Magnetic separation of primary human lymphocytes

Peripheral blood mononuclear cells (PBMCs) were isolated from leukocyte cones (NHS Blood Transfusion service, St. George’s Hospital, London) by density gradient centrifugation with Lymphoprep™ density gradient medium (STEMCELL™ Technologies). Peripheral monocytes were isolated from PBMCs, using the human CD14⁺ magnetic beads (Miltenyi Biotech) according to manufacturer’s instructions. CD4⁺ T-cells were isolated from the flow-through, using the human
CD4⁺ T-cell isolation kit (Miltenyi Biotech). CD14⁺ monocytes, and CD4⁺ T-cells were either differentiated, or fixed directly after isolation for intracellular staining. To obtain M1 and M2 macrophages (M1/M2 MDMs), monocytes were treated with either granulocyte-macrophage colony stimulating factor (GM-CSF, 100ng/ml, Peprotech) or macrophage colony stimulating factor (M-CSF, 100ng/ml) for 7 days, with medium replenished on day 4. To obtain dendritic cells (DC), monocytes were treated with GM-CSF (50ng/ml) and IL-4 (50ng/ml) for 7 days, with medium replenished on day 4. Activated CD4⁺ T-cells were obtained by stimulating freshly isolated CD4⁺ T-cells at 1x10⁶/ml with T cell activator CD3/CD28 Dynabeads (ThermoFisher), at a bead-cell-ratio of 1, for 7 days. Magnetic beads were removed prior to intracellular staining and flow cytometry.

Immunofluorescence

Transfected cells were washed with PBS and fixed in 2% paraformaldehyde/PBS for 10 minutes, at room temperature. Fixed cells were then permeabilised in 0.2% Triton-X100/PBS for 20 minutes, at room temperature. Cells were incubated with primary antibodies in PBS containing 0.1% Triton-X100 and 2% BSA overnight at 4⁰C. After 3 washes in PBS, cells were then labeled with secondary antibodies in the same buffer for 1 hour, at room temperature, and washed 3 times with PBS. For confocal microscopy, nuclei were counterstained with Hoechst 33342 (2μM, ThermoFisher) for 5 minutes, at room temperature. Labeled cells were mounted with ProLong™ Diamond Antifade Mountant (ThermoFisher) and analysed on a laser scanning confocal microscope LSM 710 (Carl Zeiss). Images were acquired with ZEN software and analysed with ImageJ.
Imaging flow cytometry

Cells were fixed in FIX&PERM® Solution A (Nordic MUbio) for 30 minutes, and permeabilised with 0.2% Triton™-X 100/PBS. MDMs were blocked with human serum (1%). The staining buffer used was: 0.1% Triton™-X 100 0.5% FCS. Nuclei were stained with DAPI (1µg/ml) for two hours. Imaging flow cytometry was performed using the Amnis ImageStream®x Mark II Flow Cytometer (Merck) and INSPIRE® software (Amnis). A minimum of 10,000 events were collected for each sample, gating strategy is shown in Figure S6. IDEAS® software (Amnis) was used for analysis and to determine the ‘nuclear enrichment score’. The nuclear enrichment score is a comparison of the intensity of REAF fluorescence inside the nucleus to the total fluorescence intensity of the entire cell. A lower nuclear enrichment score indicates a lower proportion of overall REAF is located within the nucleus.

Statistics

Statistical significance in all experiments was calculated by Student’s t-test (two tailed). Data are represented as mean ± standard deviation (error bars). GraphPad Prism and Excel were used for calculation and illustration of graphs.

Cell synchronisation

HeLa-CD4 were synchronised at the G2/M border by nocodazole (200ng/ml) for 16 hours. Where synchronised cells were infected with virus, an initial S phase block with thymidine (4mM) was induced for 24 hours followed by a PBS wash and a treatment with nocodazole (100ng/ml) for a further 16 hours. Collecting only those cells that were in suspension, as well as those that detached easily with a manual “shake-off”, enriched the population of mitotic cells.
Cell cycle analysis

Cell cycle phase distribution was determined by analysis of DNA content via either flow cytometry (BD FACS Canto™ II) or imaging flow cytometry. Cells were fixed in ice-cold ethanol (70%), treated with ribonuclease A (100µg/ml) and stained with propidium iodide (PI, 50µg/ml) or fixed in FIX&PERM® Solution A (Nordic MUbio) and stained with DAPI (1µg/ml). Mitotic cells were also identified by flow cytometry using the anti-phospho-histone H3 (Ser28) antibody. Cell lysates were assessed by Western blotting using the anti-phospho-histone H3 (Ser10/Thr11) antibody as an additional mitotic marker. Chromatin morphology and anti-phospho-histone H3 (Ser28) were used to determine the cells in indicated phases of the cell cycle and mitosis in confocal microscopy experiments.

Evolutionary analysis

To ascertain the evolutionary trajectory of REAF, we analysed DNA sequence alignments of REAF from 15 species of extant primates using codeml (as implemented by PAML 4.2) (28). The evolution of REAF was compared to several NSsites models of selection, M1, M7 and M8a (neutral models with site classes of dN/dS <1 or ≤1) and M2, M8 (positive selection models allowing an additional site class with dN/dS >1). Two models of codon frequencies (F61 and F3x4) and two different seed values for dN/dS (ω) were used in the maximum likelihood simulations. Likelihood ratio tests were performed to evaluate which model of evolution the data fit significantly better. The p-value indicates the confidence with which the null model (M1, M7, M8a) can be rejected in favor of the model of positive selection (M2, M8). The alignment of REAF was analysed by GARD to confirm the lack recombination during REAF evolution (29). Neither
positively selected sites nor signatures of episodic diversifying selection were detected within REAF by additional evolutionary analysis by REL and FEL or MEME (30).

Data availability

All microarray data is available in the gene expression omnibus (GEO) database with accession number GSE54455.
References (1-30):

Acknowledgements: The monoclonal antibodies to HIV-1 p24 (EVA365 and 366) were provided by the EU Programme EVA Centre for AIDS Reagents, NIBSC, UK (AVIP Contract Number LSHP-CT-2004-503487). We thank Paul Clapham, Robin Weiss and Ari Fasatti for critical review of the manuscript.
Figure 1:

A

B

C

D

E

F

G

H

Figure 1:

(A) Western blot analysis of REAF and GAPDH in HeLa-CD4 and HeLa-CD4 shREAF cells.

(B) Infectious focus forming units (ffu/mL) for HeLa-CD4 and HeLa-CD4 shREAF.

(C) % Change REAF in the nuclear fraction over time for HIV-1 WT and HIV-1 Δvpr.

(D) % Change REAF in the cytoplasmic fraction over time for HIV-1 WT and HIV-1 Δvpr.

(E) Nuclear envelope score for HIV-1 WT and HIV-1 Δvpr.

(F) Lysates and IP GFP of GFP, VPR-GFP, and REAF.

(G) Western blot analysis of REAF, HLTF, and GAPDH over time.

(H) Western blot analysis of MUS81 and GAPDH over time.
Figure 1: HIV-1 Vpr interacts with REAF and overcomes restriction. (A) REAF protein in HeLa-CD4 parental and HeLa-CD4 expressing shRNA targeting REAF (HeLa-CD4 shRNA-REAF). GAPDH is a loading control. (B) HeLa-CD4 shRNA-REAF challenged with HIV-1 89.6WT or mutants HIV-1 89.6Δvpr, Δvif or Δvpu. HIV-1 89.6Δvpr is >60 fold more sensitive to REAF restriction than HIV-1 89.6WT or other mutants. Input of approximately 50 FFU/ml on HeLa-CD4. Error bars indicate standard deviation and asterix indicate statistical significance (***=p<0.0001, Student’s t-test). (C-E) Imaging flow cytometry measured mean fluorescence intensity (MFI) of REAF in the nucleus (C) and cytoplasm (D) of Hela-CD4 over time after challenge with HIV-1 89.6WT or HIV-1 89.6Δvpr. Results are representative of three separate experiments. A lower nuclear enrichment score (E) indicates a lower proportion of overall REAF is located in the nucleus (p<0.05). Statistical significance was calculated by Student’s t-test. (F) Co-immunoprecipitated REAF was detected by Western blotting of VPR-GFP IP (right) but not GFP control IP (left). (G) Western blotting of REAF and HLTF in THP-1 over time post challenge with HIV-1 89.6WT. GAPDH is a loading control. (H) Western blotting of MUS81 in Hela-CD4 over time post challenge with HIV-1 89.1WT. GAPDH is a loading control.
Figure 2:
Figure 2: REAF expression fluctuates in the cell cycle and depletion results in cell accumulation G2/M. (A) Imaging flow cytometry of cell cycle phase and REAF expression in DAPI stained primary monocytes. (B) REAF expression in HeLa-CD4 over time after release from nocodazole induced cell cycle arrest. Phospho-histone H3 (Ser10/Thr11) is a mitotic marker and GAPDH is a loading control. Cell cycle profiles were determined and accompanying plots are in Figure S1. (C-D) Imaging flow cytometry of subcellular REAF in nocodazole treated HeLa-CD4. A lower nuclear enrichment score indicates a lower proportion of overall REAF in the nucleus - untreated: 0.92, nocodazole-treated: 0.13 (one population), 1.53 (another population) (left). Phospho-histone H3 (Ser28) staining confirmed mitotic cells had a lower score of 0.17 (right). Representative images (D) of subcellular REAF in mitotic and non-mitotic cells. (E) Confocal microscopy of subcellular REAF in HeLa-CD4. Phospho-histone H3 (Ser28) staining and chromatin morphology (Hoechst) were used for cell cycle phase identification. (F) Flow cytometry of cell cycle phase in PI stained HeLa-CD4 shRNA-REAF (black outline) and HeLa-CD4 (grey outline).
Figure 3:
Figure 3: Mitotic cells are more susceptible to HIV-1 infection. Vpr down-modulates REAF in MDMs. (A, B) Thymidine/nocodazole treated HeLa-CD4 were released from cell cycle arrest at the G2/M border. After 2 hours of cycling into mitosis they, and untreated HeLa-CD4, were challenged in triplicate with HIV-1 89.6 (VSV-G) with a GFP reporter. Flow cytometry confirmed the synchronized population was significantly enriched for mitotic cells at the time of infection (identified using phospho-histone H3 (Ser28)) (A). Fold increase in viral infectivity was assessed 48 hours post challenge by flow cytometry. GFP fluorescence identified infected cells (B). (C) Nuclear expression of REAF in indicated cell types from two blood donors measured by imaging flow cytometry. (D) Western blotting of REAF expression during monocyte to macrophage differentiation with M-CSF. GAPDH is a loading control. (E) REAF protein in poly(I:C) treated, PMA differentiated, THP-1. GAPDH is a loading control. (F, G) MDMs were challenged with HIV-1 89.6WT (F) or HIV-1 89.6Δvpr (G), harvested at indicated times post challenge, and analyzed for REAF expression. GAPDH is a loading control. Densitometric quantitation of 200kDa REAF is presented. (H, I) MDMs, challenged with HIV-1 89.6WT or HIV-1 89.6Δvpr, were analyzed by imaging flow cytometry for REAF expression in the nucleus (H) and cytoplasm (I) at the indicated times post challenge. (J) The infectivity of HIV-1 89.6WT compared with HIV-1 89.6Δvpr in primary human macrophages. Viral input was equivalent at 50ng.
Figure 4:

A

B

Chimp (Pan troglodytes)
Bonobo (Pan paniscus)
Human (Homo sapiens)
Gorilla (Gorilla gorilla)
Sumatran orangutan (Pongo abelii)
White-cheeked gibbon (Nomascus leucogenys)
Crab eating macaque (Macaca fascicularis)
Rhesus macaque (Macaca mulatta)
Olive baboon (Papio anubis)
Drill (Mandrillus leucophaeae)
Snub-nosed monkey (Rhinopithecus roxellana)
Marmoset (Callithrix jacchus)
Owl Monkey (Aotus nancymaeae)
Squirrel Monkey (Saimiri sciureus)
White-headed capuchin (Cebus capucinus)

<table>
<thead>
<tr>
<th>M1 vs M2</th>
<th>M7 vs M8</th>
<th>M8a vs M8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codon freq. model</td>
<td>ω</td>
<td>$2^{*}\Delta \ln L$</td>
</tr>
<tr>
<td>Fcodon</td>
<td>0.4</td>
<td>0.67</td>
</tr>
<tr>
<td>Fcodon</td>
<td>1.2</td>
<td>0.67</td>
</tr>
<tr>
<td>F3x4</td>
<td>0.4</td>
<td>0.53</td>
</tr>
<tr>
<td>F3x4</td>
<td>1.2</td>
<td>0.53</td>
</tr>
</tbody>
</table>
Figure 4: REAF is not IFN stimulated or under positive selection. (A) RNA-Seq determined change in REAF mRNA compared to other antiviral factors in MDMs treated with IFNα (500IU/ml). (B) REAF DNA sequences from 15 extant primate species (tree length of 0.2 substitutions per site along all branches of the phylogeny) (top) were analysed using the PAML package for signatures of positive natural selection (bottom). Initial seed values for ω (ω₀) and different codon frequency models were used in the maximum likelihood simulation. Twice the difference in the natural logs of the likelihoods (2*ΔlnL) of the two models were calculated and evaluated using the chi-squared critical value. The p-value indicates the confidence with which the null model (M1, M7, M8a) can be rejected in favor of the model of positive selection (M2, M8).
Supporting Information Figures 1 – 6:

Fig. S1. Cell cycle flow cytometry plots accompanying Figure 2B. HeLa-CD4, synchronized at the G2/M border by treatment with nocodazole, were released from cell cycle arrest and allowed to cycle into mitosis. Cells, harvested over time after release and stained with DAPI, were analyzed for cell cycle phase by flow cytometry.
Fig. S2. Increased susceptibility of mitotic cells to HIV-1. HeLa-CD4, synchronized at the G2/M border by thymidine/nocodazole treatment, were released from cell cycle arrest and allowed to cycle synchronously into mitosis for 2 hours, at which point they were challenged with HIV-1 89.6WT. Asynchronous, untreated HeLa-CD4 were simultaneously infected. Viral infectivity was assessed 48 hours after infection by intracellular staining of HIV-1 p24 to identify focus-forming units (FFUs)(left). Flow cytometry was used to determine cell cycle profiles of cells at the time of infection using DAPI stain to determine DNA content and anti-phospho-histone H3 (Ser28) antibody to identify mitotic cells (center). Western blotting was used to confirm an enriched population of mitotic cells in the synchronized population using phospho-histone H3 (Ser10/Thr11) as an alternative mitotic cell marker and GAPDH as a loading control (right).
Fig. S3. No IFN induced increase in REAF protein expression or change in subcellular distribution in MDMs. (A) MDMs of three donors were treated with IFNa (100UI/ml) for 24 hours. Western blotting (left) and imaging flow cytometry (right) were used to determine REAF protein level and subcellular distribution with and without treatment. IFITM3 was used as a positive control for IFN induced protein upregulation and GAPDH as a loading control. (B) Imaging flow cytometry of REAF (left) and IFITM1 (right) expression in MDMs from a further donor treated with indicated IFNs (100UI/ml) for 24 hours. Expression of IFITM3 (right) was used as positive control for protein upregulation.
Fig. S4 No IFN induced upregulation of REAF mRNA in MDMs or CD4+ T-cells and no protein upregulation in CD4+ T-cells. MDMs and primary CD4+ T-cells were treated with IFNα (500IU/ml) for 48 hours. Increase in REAF mRNA, relative to that of β-actin, was measured by qPCR and OAS1 was used as a positive control for IFN induced upregulation (left). REAF protein expression (right) was also measured in CD4+ T-cells by Western blotting with GAPDH as a loading control.
Fig. S5. No upregulation of REAF protein expression in IFN treated PMA differentiated THP-1. PMA differentiated THP-1 were analyzed by Western blotting after treatment with indicated IFNs (100IU/ml) for 24 hours. 200 and 80kDa bands are indicated, not all REAF bands are detected in all experiments. IFITM1 was used as a positive control for IFN induced protein upregulation and β-Actin as a loading control.
Fig. S6. Sequential gating strategy used in imaging flow cytometry analysis with IDEAS software. (A) Single cells were gated by area versus aspect ratio of the brightfield cell images. (B) Cells within focus images were gated by gradient RMS (root mean square of the rate of change of the image intensity profile). Representative plot examples are shown.