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Deep artificial neural networks with spatially repeated process-
ing (a.k.a., deep convolutional ANNs) have been established as
the best class of candidate models of visual processing in pri-
mate ventral visual processing stream. Over the past five years,
these ANNSs have evolved from a simple feedforward eight-layer
architecture in AlexNet to extremely deep and branching NAS-
Net architectures, demonstrating increasingly better object cat-
egorization performance and increasingly better explanatory
power of both neural and behavioral responses. However, from
the neuroscientist’s point of view, the relationship between such
very deep architectures and the ventral visual pathway is in-
complete in at least two ways. On the one hand, current state-
of-the-art ANNs appear to be too complex (e.g., now over 100
levels) compared with the relatively shallow cortical hierarchy
(4-8 levels), which makes it difficult to map their elements to
those in the ventral visual stream and to understand what they
are doing. On the other hand, current state-of-the-art ANNs ap-
pear to be not complex enough in that they lack recurrent con-
nections and the resulting neural response dynamics that are
commonplace in the ventral visual stream. Here we describe
our ongoing efforts to resolve both of these issues by develop-
ing a ""CORnet" family of deep neural network architectures.
Rather than just seeking high object recognition performance
(as the state-of-the-art ANNs above), we instead try to reduce
the model family to its most important elements and then grad-
ually build new ANNs with recurrent and skip connections while
monitoring both performance and the match between each new
CORnet model and a large body of primate brain and behav-
ioral data. We report here that our current best ANN model de-
rived from this approach (CORnet-S) is among the top models
on Brain-Score, a composite benchmark for comparing models
to the brain, but is simpler than other deep ANNSs in terms of
the number of convolutions performed along the longest path of
information processing in the model. All CORnet models are
available at github.com/dicarlolab/CORnet, and we plan to up-
date this manuscript and the available models in this family as
they are produced.
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Introduction

The apparently effortless human ability to rapidly recognize
visually presented objects in various contexts has long fasci-
nated neuroscientists, cognitive scientists, and computer vi-

sion researchers alike. To investigate the underpinnings of
this process, DiCarlo et al. (2012) operationalized the behav-
ioral domain core object recognition (COR) in which each
subject must discriminate from all other possible objects a
dominant object with the viewing duration of a natural fixa-
tion (~200 ms) in the central visual field (10 deg) under high
view and background variation. Over the past five years, deep
artificial neural networks with repeated spatially-local pro-
cessing (a.k.a. deep convolutional ANNG5) that are optimized
to solve COR-like tasks have emerged as the leading class of
models in that they very accurately predict — for any image in
central 10 deg — both the detailed pattern of COR behavioral
responses and the neural patterns of responses at successive
stages of the ventral visual stream (see Yamins and DiCarlo
(2016) for an overview) that causally support COR behavior
(Holmes and Gross, 1984; Horel et al., 1987; Afraz et al.,
2015; Moeller et al., 2017; Rajalingham and DiCarlo, 2018).

As first shown by (Yamins et al., 2013, 2014), models in the
deep convolutional ANN class whose parameters are opti-
mized to achieve high performance tend to develop internal
"neural" representations that are closest to those observed in
the highest levels of the ventral visual stream (V4 and IT).
While this result implies that continued discovery and opti-
mization of even higher performing ANN models will lead
to even better models of the ventral visual stream and COR
behavior, that implication cannot hold forever without addi-
tional constraints from neuroscience. For example, the high-
est performing deep convolutional ANNs have abandoned
their original tether to the approximate number of cortical
processing stages in the ventral visual stream (4-8) and are
now well over 100 stages in depth. While that architectural
evolution has — at least in the case of large amounts of su-
pervised trained data — led to higher performing models as
judged by the current metrics of computer vision (esp. Ima-
geNet categorization performance; Russakovsky et al., 2015),
the connection to neurobiology has grown far more murky
in that it is unclear which, if any, model layer(s) are pu-
tative models of specific ventral stream cortical areas (e.g.,
V1, V2, V4, IT). Moreover, these newer ANN models are
invariably feedforward, in contrast to abundant lateral and
feedback connections and their resulting response dynamics
known to exist in the ventral visual stream.

We do not criticize the machine learning and computer vi-
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sion communities for pursuing these less biologically-tied
newer models (e.g., deeper, more supervised training data,
etc.) because higher system performance is indeed an impor-
tant technological goal, and gains clearly are being made by
this approach, at least for the near term. However, as brain
and cognitive scientists, our job is to harness the aspects of
those newer models that are mostly likely to inform an un-
derstanding of the brain and cognition and, ideally, to use
that deeper understanding to make further long-term gains in
machine learning and computer vision.

To do that we are continuously building ANNs that: better ap-
proximate the brain architecture, adopt the latest ideas from
state-of-the-art ANNs, and maintain or improve their func-
tional match to brain and behavioral data associated with core
object recognition. We refer to these ANNs as the CORnet
family. In this paper, we report on our current progress and
release to the community three members of the CORnet fam-
ily that we hope will be useful to others. Our best model
so far, CORnet-S, holds one of the current best scores a set
of quantitative benchmarks for judging a model’s match to
neural and behavioral responses (Brain-Score.org; Schrimpf
et al., 2018) yet it is much more compact than competing net-
works from computer vision.

Model criteria
General criteria (based on Kubilius, 2018)

1. Predictive: Our major requirement is to have models
that are the most explanatory of neural and behavioral
benchmarks. We use Brain-Score (Schrimpf et al.,
2018) to quantify this aspect of the goodness of our
models.

2. Compact: Among model that score well on Brain-
Score, we prefer the simpler ones as they are poten-
tially easier to understand and more efficient to exper-
iment with. We introduce the notion of Feedforward
Simplicity as one measure of simplicity.

3. Computable: Ideally, a model should act just like any
other participant in an experiment, receiving the same
instructions and producing outputs without any free pa-
rameters left for a researcher to fine-tune. We thus pre-
fer models that fully specify all computation details:
how to go from inputs to outputs, specific weights and
hyper-parameters, and so on. In other words, we ex-
pect any proposed model to be a concrete commitment
that could be potentially falsified by experimental data.

Specific criteria for Core Object Recognition models

1. Internally mappable: Since we are modeling the
brain, we are not only interested in having correct
model outputs (behaviors) but also internals that match
brain’s anatomical and functional constraints. We pre-
fer neural network models because neurons are the
units of online information transmission and models
without neurons cannot be obviously mapped to neu-
ral spiking data (Yamins and DiCarlo, 2016).
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2. Few layers: The human and non-human primate ven-
tral visual pathway consists of only a handful of areas
that process visual inputs: retina, LGN, V1, V2, V4,
and a set of areas in the inferior temporal cortex (IT).
While the exact number of areas is not yet established,
we ask that models have few areas (though each area
may perform multiple operations).

3. Single canonical circuitry in all model areas: We
have no strong reason to believe that circuitry should
be different across areas in the ventral visual pathway.
We therefore prefer models where the operations and
connectivity in each model area are the same.

4. Recurrent: While core object recognition was origi-
nally believed to be the result of largely feedforward
mechanism because of its fast time scale (DiCarlo
et al., 2012), it has long been suspected that recur-
rent connections must be relevant for some aspects of
object perception (Lamme and Roelfsema, 2000; Bar
et al., 2006; Wagemans et al., 2012), and recent studies
have shown a potential role of recurrent processes even
at the fast time scale of core object recognition (Kar
et al., 2018a; Tang et al., 2018; Rajaei et al., 2018).
Moreover, even if recurrent processes are not critical
to core object recognition, responses in the visual sys-
tem still have a temporal profile, so a good model at
least should be able to produce responses over time.

Brief history of modeling vision

Modeling human visual processing traces back at least to
Hubel and Wiesel where response properties of simple cells
in visual area V1 were formalized as feature detection of
edges and properties of complex cells were conceptualized
as a set of operations that were spatially repeated over the
visual field (Hubel and Wiesel, 1962, i.e., translationally in-
variant). These computational principles inspired the first
models of object recognition, most notably, the Neocognitron
(Fukushima, 1980) and the HMAX model family (Riesenhu-
ber and Poggio, 1999; Serre et al., 2007), where feature de-
tectors and pooling operators were used in turns to build deep
hierarchical models of object recognition. However, such
models lacked robust feature representations as it was not
clear at the time how to either build in or otherwise train these
networks to learn their spatially-repeated operations from in-
put statistics — particularly for areas beyond visual area V1
(Olshausen and Field, 1996; Lowe, 1999; Torralba and Oliva,
2003). These issues were first addressed by the AlexNet
ANN (Krizhevsky et al., 2012) in that it demonstrated at least
one way to train a deep neural network for a large-scale in-
variant object recognition task (Russakovsky et al., 2015).
Concurrently, deep networks optimized for such invariant ob-
ject recognition tasks were demonstrated to produce internal
"neural" representations that were by far the best models of
the responses of neurons in non-human primate visual areas
V4 and IT (Yamins et al., 2013; Cadieu et al., 2014; Yamins
et al., 2014). Later work in humans confirmed these gains in
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Fig. 1. CORnet family of architectures. All models in this family have four areas that are pre-mapped to cortical areas V1, V2, V4, and IT. Retinal and LGN processing
is currently not modeled (greyed-out areas). All areas can be either feedforward or recurrent (within area) but currently we do not consider models with skip or feedback
connections between areas (grayed-out dashed arrows). In this paper, we consider three flavors of CORnet, each serving distinct functions: CORnet-Z is a lightweight
AlexNet alternative, CORnet-R is a simple recurrent model with biologically-plausible unrolling in time, and CORnet-S is our highest-performing model on Brain-Score at the

moment. Diagrams in the bottom panel depict circuitry within an area of each model.

explanatory power at the courser experimental level of fMRI
and MEG (Khaligh-Razavi and Kriegeskorte, 2014; Giiclii
and van Gerven, 2015; Cichy et al., 2016), with detailed mea-
sures of behavioral response patterns in both humans and
non-human primates (e.g., Rajalingham et al., 2015; Kubilius
et al., 2016; Rajalingham et al., 2018), and with non-human
primate neural spiking measures from the cortical area V1
(Cadena et al., 2017).

Today, the best known models for core object recognition,
as measured by Brain-Score, are very deep feedforward net-
works, such as ResNet-101 (He et al., 2016) and DenseNet-
169 (Huang et al., 2017). In this work, we aimed to simplify
these model classes as much as possible while maintaining
their brain predictivity and meeting other requirements listed
in the Introduction that we believe good models of the ven-
tral stream should feature.
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CORnet family of architectures

CORnet family of architectures (Fig. 1) has four computa-
tional areas, conceptualized as analogous to the visual ar-
eas V1, V2, V4, and IT, and a linear category decoder that
maps from the population of neurons in the model’s last vi-
sual area to its behavioral choices. Each visual area imple-
ments a particular neural circuitry with neurons performing
simple canonical computations: convolution, addition, non-
linearity, response normalization or pooling over a receptive
field. In each of the three CORnet models presented here
(Z, R, S), the circuitry is identical in each of its visual areas,
but we vary the total number of neurons in each area. Be-
low we describe three particular circuitries that we identified
as useful for predicting brain responses (Fig. 1, bottom, and
Table 1).

The decoder part of a model implements a simple linear clas-
sifier — a set of weighted linear sums with one sum for each
object category. When training on ImageNet, responses of
last model area (and last time step in the case of recurrence)
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Network Unrolling in Time

How Inputs are Transformed into Outputs over Time

decoder decoder decoder decoder decoder

Non-biological
(—
unrolling

input
t=2

input
t=0

input
t=1

T decoder

Y

~ 1 [output

Q.

decoder decoder decoder decoder decoder

[V R, Y o V4 JE g V4 JEERE »>
Biological /’ /‘ / /'
unrolling Q-0 >0 >0>0
A

g ?;{é{e ? """ g ? """ A ? """ > ?
. T input input input input input
input

t=0 t=1 t=2 t=3 t=4

Fig. 2. Network unrolling in time. A recurrent network needs to pass information through its computational units multiple times. This poses a problem: What is the order of
computations? In standard machine learning implementations of recurrent models (/eft), information is passed at each time step from inputs to outputs (i.e., to decoder in our
case). In contrast, in biological systems (right), inputs are transformed to outputs in a stepwise fashion. At ¢ = 0, only the first area (V1 in this case) processes an input and
sends the output of this computation to V2. At ¢t = 1, V2 processes V1’s output, while V1 is already processing a new input with an updated internal state. It takes four time
steps for the original input to finally reach IT, whereas in a non-biological unrolling of a network the input reaches IT at the same time as it is fed to V1. The diagram on the
right illustrates how we apply recurrence in CORnet-R. The horizontal dashed lines are the implementation of the within area recurrence shown as dashed lines in Fig. 1. The
difference between the two kinds of unrolling would become most dramatic when a feedback connection is introduced (dim gray dashed arrows from V4 to V1). In standard
recurrent networks, information from V4 would be sent down to V1 but since V1 has already processed its inputs, this information would not be utilized. In biological systems,
at t = 1 feedback from V4 would be combined with inputs to V1, so it would readily affect further processing downstream of V1.

are further passed through a softmax nonlinearity to perform
a 1000-way classification. To reduce the amount of neural
responses projecting to this classifier, we first average re-
sponses over the entire receptive field per feature map.
There are no across-area bypass or across-area feedback con-
nections in the current definition of CORnet family. Retinal
and LGN processing are omitted (see Discussion). Also, due
to high computational demands, the first area in CORnet-S is
simplified to only include two convolutions (see below).

CORnet-Z (a.k.a. "Zero") is our simplest model, derived by
observing that (i) AlexNet is already nearly as good in pre-
dicting neural responses as deeper models (Schrimpf et al.,
2018) and (ii) multiple fully-connected layers do not appear
necessary to achieve good ImageNet performance, as most
architectures proposed after VGG (Simonyan and Zisserman,
2014) contain only a singe 1000-way linear classification
layer. Thus, CORnet-Z’s area circuits consist of only a sin-
gle convolution, followed by a ReLU nonlinearity and max
pooling.

CORnet-R (a.k.a. "Recurrent") introduces recurrent dy-
namics that would propagate through the network in a
biologically-valid manner (see Fig. 2 for a comparison be-
tween biological and non-biologicall network unrolling). In
CORnet-R, recurrence is introduced only within an area (no
feedback connections between areas), so the particular way
of unrolling has little effect (apart from consuming much
more memory), but we chose to use biologically-valid un-
rolling nonetheless to make this model useful for investigat-
ing neural dynamics.

The input is first downscaled twofold while increasing the
number of channels twofold by passing it through a convolu-
tion, followed by normalization and a nonlinearity. The state
(initially zero) is added to the result and passed through an-
other convolution, normalization, and nonlinearity, and the
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result is saved as a new state of the area. We used group
normalization (Wu and He, 2018) and ReLU nonlinearity.

CORnet-S (a.k.a. "Skip") aims to rival the best models on
Brain-Score by transforming very deep feedforward architec-
tures into a shallow recurrent model. Specifically, CORnet-S
draws inspiration from ResNets that are some of the best
models on our behavioral benchmark (Rajalingham et al.,
2018; Schrimpf et al., 2018). Liao and Poggio (2016) pro-
posed that ResNet structure could be thought of as an un-
rolled recurrent network and recent studies further demon-
strated that weight sharing was indeed possible without a sig-
nificant loss in CIFAR and ImageNet performance (Jastrzeb-
ski et al., 2017; Leroux et al., 2018).

CORnet-S stacks two more convolutions (each followed by
a normalization and nonlinearity) on top of CORnet-R’s cir-
cuit. Moreover, following ResNet’s bottleneck block struc-
ture, the second convolution expands the number of channels
fourfold while the last one decreases them back. We also
included a skip connection, such that the result of adding
the state to the input is combined with the output of the
last convolution just prior to applying a nonlinearity. Given
that CORnet-S only has within-area recurrent connections,
in order to minimize memory footprint we trained this model
without making use of any network unrolling in time (i.e. no
unrolling as depicted in Fig. 2, but weights are still shared
over repeated computations). In particular, the first time in-
formation is processed, the third convolution and the skip
convolution use a stride of two to downscale inputs. The out-
put is then used instead of the original input for further recur-
rent processing (referred to as "gate" in Fig. 1). We used
batch normalization (Ioffe and Szegedy, 2015) and ReLU
nonlinearity in this model, and batch normalization was not
shared over time as suggested by (Jastrzebski et al., 2017).
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CORnet-Z CORnet-R CORnet-S
operation output shape | operation output shape | operation output shape
input 224x224 %3 224x224 %3 224x224 %3
conv 7x7 /2 112x112x64 | convTx7/4  S6x56x64 | O 7x7/2 H2>112x64
Vi maxpool 3x3/2  56x56x64 | conv3x3  56x56x64 | MaXPOol3x3/256x56x64
conv 3x3 56x56x64
conv 1x1 56x56x128
V2 conv 3x3 56x56x128 conv3x3/2 28x28x128 conv 1x1 56x56x768
maxpool 3x3/2 28x28x128 | conv3x3 28x28x128 | conv3x3/2 28 %28 %768
conv 1x1 28x28x 128
conv 1x1 28%x28x256
V4 conv 3x3 28x28 %256 conv3x3/2 14x14x256 conv 1x1 28x28x 1536
maxpool 3x3/2 14x14x256 | conv 3x3 14x14%x256 | conv3x3/2 14x14x1536
conv 1x1 14x14x256
conv 1x1 14x14x512
IT conv 3x3 14x14x512 conv3x3/2 Tx7x512 conv 1x1 14x14x3072
maxpool 3x3/2 7xT7x512 conv 3x3 TxTx512 conv3x3/2 Tx7x3072
conv 1x1 TxTx512
avgpool Ix1x512 avgpool Ix1x512 avgpool Ix1x512
decoder flatten 512 flatten 512 flatten 512
linear 1000 linear 1000 linear 1000

Table 1. Architectural parameters of each model.

Implementation details
* Framework: PyTorch 0.4.1
* Data:

— Dataset: ImageNet 2012 (Russakovsky et al., 2015)
— Preprocessing:
* Train: Random crop to 224 x 224 px image, ran-

dom left/right flip, mean subtraction and division
by standard deviation

+ Validation: Central crop to 224 x 224 px image,
mean subtraction and division by standard devia-
tion.

— Batch: 256 images, trained on a single (CORnet-S and
CORnet-R) NVIDIA Titan X GPU / GeForce 1080Ti or
divided over 2 GPUs (CORnet-S)

— Training duration: 25 epochs (CORnet-Z and
CORnet-R); 43 epochs (CORnet-S)

* Learning rate: We use similar learning rate scheduling to
ResNet with more variable learning rate updates (primarily
in order to train faster):

— CORnet-Z: 0.01, divided by 10 every 10 epochs;

— CORnet-R: 0.1, divided by 10 every 10 epochs;

— CORnet-S: 0.1, divided by 10 every 20 epochs.

* Optimizer: Stochastic Gradient Descent with momentum
9

* Loss: cross-entropy between image labels and model pre-
dictions (logits)

* Code and weights: github.com/dicarlolab/CORnet
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Benchmarking

Brain-Score (Schrimpf et al., 2018) is a composite bench-
mark that measures how well models can predict (a) the mean
neural response of each neural recording site to each and ev-
ery tested naturalistic image in non-human primate visual ar-
eas V4 and IT (data from Majaj et al., 2015) and (b) mean
pooled human choices when reporting a target object to each
and every tested naturalistic image (data from Rajalingham
et al., 2018).

Neural predictability. A total of 2760 images containing a sin-
gle object pasted randomly on a natural background were pre-
sented centrally to passively fixated monkeys for 100 ms and
neural responses were obtained from 88 V4 sites and 168 IT
sites. For our analyses, we used normalized time-averaged
neural responses in the 70-170 ms window. A regression
model was constructed for each neuron using 90% of im-
age responses and tested on the remaining 10% in a 10-fold
cross-validation strategy. The median over neurons of the
Pearson’s r between the predicted and actual response con-
stituted the final neural fit score for each visual area. In COR-
nets, we used designated model areas and the best time point
to predict corresponding neural data. In comparison models,
we used the most predictive layer.

Behavioral predictability. A total of 2400 images containing a
single object pasted randomly on a natural background were
presented to 1472 humans for 100 ms and they were asked to
choose from two options which object they saw. 240 of those
images with around 60 responses per object-distractor pair
were used in further analyses, totalling in over three hundred
thousand unique responses. For all models tested, we used
the outputs of the layer just prior to transformation into 1000-
value ImageNet-specific category vectors to construct a linear
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Fig. 3. (left) Comparison of various scores on several popular models and three CORnet models. CORnet-Z and CORnet-R predict neural and behavioral responses
close to AlexNet level, while CORnet-S is comparable to the state-of-the-art models. (right) Feedforward Simplicity versus Brain-Score. Most simple models perform
poorly on Brain-Score, while best models for explaining brain data are complicated. CORnet-S offers the best of both worlds with the best Brain-Score and the highest degree
of simplicity we could achieve to date. Note that dots were slightly jittered along the x-axis to improve visibility. Most of these jittered datapoints come from either MobileNet v1
(Feedforward Simplicity around .27) or v2 (Feedforward Simplicity around .2), so all models have the same simplicity (due to the same architecture) but varying Brain-Score

(due to varying numbers of neurons).

(logistic regression) decoder from model features. We used
the regression’s probabilities for each class to compare model
choices against actual human responses.

Feedforward Simplicity. Given equally predictive models,
we prefer a simpler one. However, there is no common met-
ric to measure model simplicity. We considered several alter-
natives. One possibility was to use the total number of pa-
rameters (weights). However, it did not seem appropriate for
our purposes. For instance, a single convolutional layer with
many filter maps could have many parameters yet it seems
much simpler than a multilayer branching structure, like the
Inception block (Szegedy et al., 2017), that may have less
parameters overall.

Moreover, our models are always tested on independent data
sampled from different distributions than the train data. Thus,
after training a model, all these parameters were fixed for the
purposes of benchmarks, and the only free parameters are
the ones introduced by the linear decoder that is trained on
top of the frozen model’s parameters (see above for decoder
details).

We also considered computing the total number of convolu-
tional and fully-connected layers, but some models, like In-
ception, perform some convolutions in parallel, while others,
like ResNeXt (Xie et al., 2017), group multiple convolutions
into a single computation.

We therefore computed the number of convolutions and fully-
connected layers along the longest path of information flow.
For instance, the circuits in each of CORnet-S areas have
the length of four since information is passed sequentially
through four convolutional layers. Note that we counted re-
current (shared parameter) paths only once. If recurrent paths
were counted the number of times information was passed
through them, models with shared parameters would be no
simpler than those using unique parameters at every time
(i.e., feedforward models), which is counterintuitive to us.
We also wanted to emphasize that the difference between a
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path length of 5 and a 10 is much greater than between 105
and 110, so the path length was transformed by a natural log-
arithm. Finally, we wanted a measure of simplicity, not com-
plexity, so the resulting value was inverted, resulting in the
following formulation of Feedforward Simplicity,

1
In (Longest path in model)

Feedforward Simplicity =

Computability. All deep neural networks commonly used
for predicting brain data fully specify how image pixels are
transformed into high-level features. What remains unspeci-
fied, however, is at least the following:

* how these high-level features are transformed into be-
havioral choices and neural responses;

* which areas in the model correspond to which areas in
the visual cortex.

These choices are left open to a researcher. Ideally, however,
there would be no free parameters at all. CORnets attempt
to make more commitments than other models by specifying
which model areas correspond to which brain areas, mak-
ing CORnet family more computable than alternatives. Im-
portantly, this commitment also means that, for example, if
model’s area V1 is worse than area V4 at predicting neural
responses in visual area V1, then this model would be falsi-
fied.

Results

CORnet-Z is a lightweight AlexNet alternative. CORnet-
Z is very fast, achieving 48% ImageNet top-1 performance
in less than 20 hours of training on a single Titan X. Despite
worse performance than AlexNet (58%), it produces com-
parable V4, IT, and behavioral prediction scores with less
computations (five convolutional and fully-connected layers
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versus eight; Fig. 3). (If desired, CORnet-Z’s ImageNet per-
formance can be easily matched to AlexNet’s by adding an
extra area after model’s IT area with 1024 output channels.)
However, we observed that V4 data is predicted slightly bet-
ter (by about .01) by model’s V2 area rather than V4. Since
we committed to a particular model-to-brain mapping in
CORnets, we use model’s area V4 for V4 neural prediction,
but this mismatch already reveals a shortcoming in CORnet-
Z.

CORnet-R is a lightweight recurrent model. CORnet-R
slightly improved neural fits over CORnet-Z and exhibited
better behavioral predictability. It also improved in Ima-
geNet top-1, presumably due to an extra convolution in each
model’s area. Moreover, its recurrent nature allows for tem-
poral predictions and analyses in dynamic tasks. However,
similar to CORnet-Z, V4 neural responses were predicted
slightly better by model’s V2 area rather than V4.

CORnet-S is one of the best yet substantially sim-
pler brain-predicting models. While all models in COR-
net family are strong at neural prediction, CORnet-S also
achieves a high behavioral prediction score, making it one
of the best models tested on Brain-Score so far. Critically,
CORnet-S is substantially simpler than other top-performing
models on Brain-Score (Fig. 3, right) and commits to a par-
ticular mapping between model and brain areas.

However, note that CORnet family of models was developed
using Brain-Score as a guiding benchmark and although it
was never directly used in model search or optimization, test-
ing CORnets on Brain-Score is not a completely independent
test. Ideally, all models should be further validated on new
experimental data sets — work that is in progress now.

Discussion

Is CORnet-S the correct model of Core Object Recog-
nition? No it is not. It is simply the model that best achieves
our criteria at the moment. We believe that there are many
other models that could achieve these criteria just as well
or even better (e.g., Nayebi et al., 2018). As we find them,
we will upgrade CORnet to the next version. Moreover, one
should keep in mind that our current criteria are not necessar-
ily the only or the "correct" criteria. Indeed, we expect our
criteria to evolve as we acquire more data of the same kind
or expand our datasets to include more images, tasks, and re-
gions from which recordings or other data types are collected,
or develop new methods for comparing models and brain data
(see Discussion in Schrimpf et al., 2018).

Are there really only four areas in the ventral visual
stream? While this is an experimental question that depends
on one’s definition of "area", we can say that four-area neu-
ral networks appear to be sufficient to reach state-of-the-art
on Brain-Score. However, many researchers, including our
own group, often divide IT into several sub-areas such as
posterior IT (pIT), central IT (cIT), and anterior IT (aIT).

Kubilius, Schrimpf etal. | CORnet

While adding one more area in CORnet-Z, for instance, can
result in a 10% increase in ImageNet top-1 performance, cur-
rent brain-related metrics do not appear to be significantly af-
fected by having more areas, thus we chose to use four areas
for simplicity.

Is it correct to assume that multiple convolutions can
occur within a single cortical area? Each neocortical area
contains six cortical layers, with neurons in each layer poten-
tially involved in different types of computations. Because
neural types in each layer are replicated laterally across the
cortical area, similar operations are thought to be applied
across the area within each layer. Because the convolution
operator is one way to model this, it is not unreasonable to
assume that each cortical area includes the functional equiv-
alent of multiple convolutions applied to the incoming sen-
sory "image" transmitted from the previous area. Areas in
CORnet-S can thus be thought to very crudely approximate
the functions of the cortical microcircuitry considered at the
level of the entire cortical area. For feedforward processing
only, the minimum number of convolutions is two per area
(one for layer IV and one for layer II/III) to create a new "im-
age" transmitted to the next cortical area.

However, one must keep in mind that biological neurons
themselves need not be characterized as performing a sin-
gle weighted sum, followed by a non-linearity. Rather, such
computations could be performed by multiple groups of den-
drites, effectively reconceptualizing each biological neuron
as a multilayer perceptron (Mel, 2016). Thus, it is currently
difficulty to experimentally estimate how many convolutions
(or convolution-like) operations are achieved by each corti-
cal area, but the number enacted in each area of CORnet-S
(namely, four) is not out of the range of possibilities.

Limitations: What these CORnet models
have not yet addressed

Retina and LGN are lacking. So far all models we trained
develop Gabor-like detectors in their first area. We call this
first model area “V1”, which thus implies that our models do
not have retina and LGN. One possibility is that given a dif-
ferent training strategy (e.g., unsupervised), retina-like and
LGN:-like functional properties would emerge in the first two
layers of a naive model architecture. Alternatively, it is possi-
ble that retinal and LGN neurons have particular genetically-
determined connectivity properties that cause their particular
selectivities to develop and that we will be unable to obtain in
model neural networks unless this particular circuitry is ex-
plicitly built into the model architecture. Whether explicitly
adding retinal and LGN architectures in front of the model
would alter model’s Brain-Score remains an interesting fu-
ture research direction.

Anatomy and circuitry are not precisely biomimetic.
While our long term goal is a model of all the mechanisms
of the ventral stream, we do not claim that CORnet models
are precisely biomimetic. For example, we ignored that vi-
sual processing involves the retina and lateral geniculate nu-

bioRxiv | 7


https://doi.org/10.1101/408385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/408385; this version posted September 4, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

cleus (LGN) (see above). However, we believe that the COR-
net models are closer approximations to the anatomy of the
ventral visual stream than current state-of-the-art deep ANNs
because we specifically limit the number of areas and we in-
clude some recurrence.

We note however, that many of our other model choices for
these three CORnet models are driven by engineering re-
quirements — most importantly, making sure the model’s non-
architectural parameters can by set by gradient descent (i.e.,
the model can be trained) and that the model occupies few
GPUs during train time. So, for instance, adding a skip con-
nection was not informed by cortical circuit properties but
rather proposed by He et al. (2016) as a means to alleviate
the degradation problem in very deep architectures (where
stacking more layers results in decreased performance). In
CORnet-S, it appears to also have helped with a faster con-
vergence on Brain-Score but we would be wary to claim bi-
ological significance. In that sense, it is possible that the cir-
cuit structures (a.k.a. areas) we selected are good for training
with gradient descent on today’s hardware rather than being
circuits that evolution converged upon.

On the other hand, we note that not just any architectural
choices work. We have tested hundreds of architectures be-
fore finding these and thus it is possible that the proposed
circuits could have a strong relation to biological implemen-
tations. Indeed, a high-level approach of searching for ar-
chitectures given a suitable learning rule and task or guided
by biological constraints may yield convergent circuits with
biology (Bashivan et al., 2018).

Going forward building new CORnet models, our continuing
goal will be to use models to ask which aspects of biological
anatomy need to be better approximated or even mimicked by
a CORnet model to achieve better functional matches to vi-
sual processing and COR behavior (i.e., better Brain-Scores).
Our overarching logic is that ANNs that are most functionally
similar to the brain will contain mechanisms that are most
like those used by the brain.

The model mechanisms that link from the neural pro-
cessing to the object choice behavior are static. These
linkage elements are referred to as the "decoder" portion of
the model (see above). In the CORnet models used here,
the decoder is a linear classifier, as it is one of the simplest
classifiers that could be implemented in a biological neural
network. However, the current decoder lacks dynamics and
the ability to integrate evidence over time in interesting ways
(Gold and Shadlen, 2007; O’Connell et al., 2018). For in-
stance, for training recurrent CORnets we only use the last
output of the IT layer. A more biologically-plausible decoder
should at least be able to integrate information over time (see
Kar et al., 2018b, for preliminary results).

Learning mechanisms are non-biological. These COR-
net models are only intended to be models of primate adult
processing and behavior of 200 msec of image processing
(the approximate duration of each natural primate fixation).
We do not attempt to explain how the actual ventral visual
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stream reached this adult end state. At the moment, we as-
sume an architecture (which might be delivered by evolution
and pre-natal development), and we use supervised training
and stochastic gradient descent (neither of which might be
applicable to biological post-natal development and learn-
ing). However, this procedure is the only one known thus
far to provide a reasonably accurate quantitative model of
adult mid- and high-level neural responses and behavioral
responses and therefore may be a suitable supervised proxy
to arrive at models that are similar to those obtained in the
future by more biologically-plausible learning mechanisms
(e.g., self-supervised tasks and local learning rules). This is
clearly an important and wide open area of future work.
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