






Fig 11. Correlations between parameter pairs (Model 1). Each subplot shows
the 95% confidence regions (solid ellipses) of the approximate parameter posterior
distributions and the sample points (dots). The subplots on the s-th row and s0-th
column show the correlation of µs and αss0. Recipient and donor species are listed in
rows and columns, respectively. Only a representative subset of parameter pairs is
presented (there are a total 12,090 pairs).

perfect strong scaling (speedup increases linearly with the number of cores).
In rMAP-based uncertainty quantification, the main computational challenge was

the repetitive solution of the optimization problems. However, such challenge can be
overcome by using the existing solution information. The required number of iterations
in NLP solver can be greatly reduced when a good starting point (initial guess of the
solution) is available (often referred to as warm start). Since only small modifications
are made to the original problem to formulate the rMAP problem, the NLP solution of
rMAP problem is very similar to that of the original problem. Thus, by warm-starting
the NLP with the original NLP solution, the computational efforts to solve rMAP
problem can be significantly reduced. In particular, most rMAP sampling problem was
solved in less than 10 NLP iterations while the original problem required NLP 78
iterations.

We also assessed computational capability in estimation problems with the larger
number of species in the microbial community (which increases the number of
differential equations and parameters). Here, we generated synthetic data using
simulations for larger communities. The generated data are summarized in Table 2. The
number of the parameters and of data points scales nearly quadratically with respect to
the size of the community. The computation times are shown in Fig 13. The results
indicate that, by using PIPS-NLP, one can solve estimation problems with up to 48
species in less than 15 minutes and 40 NLP iterations(using 12 parallel computing
cores). We highlight that, to the best of our knowledge, problem S4 is the largest
estimation problem reported in computational biology literature. This problem contains
2,304 differential equations, 2,352 parameters, and 20,352 data points. The
corresponding NLP contains 1.3 million variables and constraints.
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Fig 12. Performance comparison of general solver Ipopt and the
structure-exploiting solver PIPS-NLP (Model 1). (a) Solution time for P2 using
Ipopt and PIPS-NLP. The y-axis shows the solution time and the x-axis shows the
number of cores used. For Ipopt the single core solution time is given by the horizontal
blue line. (b) The y-axis represents the speed-up (the single-core solution time divided
by the multi-core solution time). The blue line is the single-core solution time of
PIPS-NLP divided by the single-core solution time of Ipopt. The grey dashed line
represents the strong scaling line.
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Fig 13. Computational scalability with larger communities (Model 1). (a)
Number of variables against community size (total number of species). (b) The
computation times for problems S1-S4 (see Table 2). The problems were solved with
PIPS-NLP on 12 parallel cores (Intel(R) Xeon(R) CPU E5-2698 v3 processor running at
2.30GHz).

Concluding Remarks

The high computational efficiency achieved with the proposed framework can enable
kinetic modeling of complex biological systems ranging from biomolecular networks to
high-dimensional microbial communities [71]. Indeed, the proposed framework can be
used to construct and analyze high-fidelity models of whole-cells or microbiomes [72, 73].
In particular, these methods can be applied to develop predictive dynamic models of
multi-gene synthetic circuits interacting with host-cell processes for accurately
predicting cell growth and synthetic circuit activity [74] or kinetic models of metabolite
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transformations driving community dynamics. These methods will advance our
capability of integrating mechanistic modeling frameworks with large-scale experimental
data. Furthermore, uncertainty quantification and observability analysis can provide
valuable information to guide and accelerate experimental data collection. These
capabilities are also essential in diagnosing structural model errors. The proposed
framework uses state-of-the-art and easy-to-use modeling and solution tools that can be
broadly applied to diverse biological systems and accessible to a wide range of users.
Together, these advances will ultimately transform biology into a predictive and
model-guided discipline.
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