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In the field of molecular evolution, we commonly calculate site-
specific evolutionary rates from alignments of amino-acid se-
quences. For example, catalytic residues in enzymes and interface
regions in protein complexes can be inferred from observed relative
rates. While numerous approaches exist to calculate amino-acid
rates, it is not entirely clear what physical quantities the inferred
rates represent and how these rates relate to the underlying fitness
landscape of the evolving proteins. Further, amino-acid rates can
be calculated in the context of different amino-acid exchangeabil-
ity matrices, such as JTT, LG, or WAG, and again it is not well un-
derstood how the choice of the matrix influences the physical inter-
pretation of the inferred rates. Here, we develop a theory of mea-
surement for site-specific evolutionary rates, by analytically solving
the maximum-likelihood equations for rate inference performed on
sequences evolved under a mutation–selection model. We demon-
strate that for realistic analysis settings the measurement process
will recover the true expected rates of the mutation–selection model
if rates are measured relative to a naïve exchangeability matrix, in
which all exchangeabilities are equal to 1/19. We also show that rate
measurements using other matrices are quantitatively close but in
general not mathematically equivalent. Our results demonstrate that
insights obtained from phylogenetic-tree inference do not necessar-
ily apply to rate inference, and best practices for the former may be
deleterious for the latter.

Protein evolution | Theory of measurement | Rate heterogeneity

A quantity of broad interest in molecular evolution is the
site-specific rate of evolution, defined as the rate at which

a given nucleotide, amino-acid, or codon position evolves in
a gene or genome (1). Site specific evolutionary rates can be
used, for example, to identify sites of structural or functional
importance in proteins, as those sites tend to evolve at the
lowest rates (2–10). Several methods have been proposed to
measure site-wise rate of evolution in protein sequences (11–18).
These methods all measure rates as scaling factors in front of a
fixed exchangeability matrix describing the relative likelihood
that certain amino acids are substituted by other ones. The
exchangeability matrix is usually not estimated from the data,
because it contains many more parameters than can be reliably
estimated from moderately sized alignments. Significant effort
has been expended into empirically deriving exchangeability
matrices from large sequence databases (19–27). However,
recent analysis has shown, somewhat surprisingly, that rate
estimates are largely insensitive to the choice of exchangeability
matrix used in the inference process (16). And yet, a simplistic
equal-rates exchangeability matrix could uniquely identify
rapidly-evolving sites that models with empirically-derived
exchangeabilities could not (16). These observations highlight
that the optimal choice of the exchangeability matrix is both
non-obvious and consequential in practical applications.

The rate parameters of interest are generally estimated

via maximum likelihood or Bayesian methods, and they are
expressed as scalar variables inside the model likelihood func-
tion. While the estimation process for such scalar parameters
is well understood from a statistical modeling perspective,
the statistical perspective does not provide insight into the
physical meaning of the estimated rate parameters. What ac-
tual physical quantities do the parameter estimates represent?
To make progress on this question, it helps to think of the
model fitting process as a measurement process. By fitting
a likelihood model to an alignment of sequence data, we are
choosing numbers (the parameter estimates) that are in some
quantifiable way linked to the reality that created the data.
Importantly, how changes in the real world are reflected in
the estimated parameters is not obvious from inspecting the
likelihood function. It requires a careful calculation of the ex-
pected parameter estimates given specific underlying realities.
The link between a parameter estimate and the real world
is called a theory of measurement (28), and we develop here
such a theory for site-specific evolutionary rates in amino-acid
sequences.

Our overall approach is to assume we know the process that
generates the data (i.e., describes the real world), and then we
use maximum likelihood to calculate evolutionary rates under
different estimation procedures. We show that this procedure
can be performed analytically for a broad class of generating
models and it produces meaningful closed-form solutions. Our
analysis reveals that by measuring rates with a naïve, equal-
rates exchangeability matrix we can recover the true expected
rates of the generating process. Thus, in a precise, quantifiable
sense, we can state that the naïve exchangeability matrix is
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the ideal matrix for performing meaningful measurements of
evolutionary rates. Our analysis also explains why commonly
used exchangeability matrices yield rate inferences that are
similar to each other and to the naïve substitution matrix.

Results

The evolution of a genetic sequence can be thought of as a
single ancestor sequence changing over time and diverging into
multiple descendant sequences. Different sites evolve at differ-
ent rates (1), which will cause the descendant sequences to vary
at some sites from each other and from the ancestor sequence
(Figure 1A). The evolutionary divergence of sequences over
time is commonly modeled with a continuous-time Markov
model (29), and most models currently in practical use assume
that each site evolves independently and thus can be described
by its own Markov chain (but see (30, 31)). A mutation may
occur at any site, and it subsequently either fixes or is lost to
drift. The Markov model simplifies the substitution process
by capturing only the mutations that fix (32–35), and the
states of the Markov chain correspond to the set of possible
mutations that can arise and fix.

Here, we specifically study the evolution of protein se-
quences, and therefore the state space of a Markov chain
describing the evolutionary process of an individual site con-
sists of the 20 amino acids. We write the probability of being
in the state corresponding to amino acid i as πi. State changes
from amino acid i to j occur according to the generator matrix
Q = qij , which describes the transition probabilities dur-
ing an infinitesimally small time interval. For finite times t,
transition probabilities can be written as P (t) = etQ, where(
P (t)

)
ij

= pij(t) is the probability that amino acid i is sub-
stituted by amino acid j during a time interval t.

In a conventional data analysis scenario, we will know the
sequences from which we want to infer rates but we don’t
know the process that guided the evolution of these sequence.
Here, to obtain insight into the inference process, we assume
that we know the sequence-generating process, and that it can
be described by a Markov process as described in the previous
paragraph. We will call this model the “true model”, and
we denote it with a subscript T, as follows: P (k)

T (t) = etQ
(k)
T .

Here, the superscript k indicates the site in the sequence
described by this model. We assume we have multiple sites,
all with their own generating matrix Q(k)

T . However, t is not
site dependent. It is shared by all sites. We emphasize that in
an actual inference scenario, neither t nor QT nor PT(t) would
be known.

To measure site-wise rates of evolution from the sequences
generated by the true model, we fit a different Markov model to
the sequences. We call this model the “measurement model”,
and we denote it with a subscript M, as follows: PM(t̂, r̂(k)) =
et̂r̂

(k)QM . The measurement model is similar but not identical
to the true model. First, because we don’t know the elements
of the true model matrix QT, we cannot guarantee that the
measurement matrix QM is identical to the true matrix at
any site. In fact, for most of this paper, we assume the same
matrix QM is used at all sites. Second, instead of a single
scalar parameter t describing divergence time/branch length,
we have two, t̂ and r̂(k). t̂ is the estimated branch length,
shared among all sites, and r̂(k) is the estimated evolutionary
rate at site k. Because the three quantities t̂, r̂(k), and QM

enter the term PM(t̂, r̂(k)) via a product, the choice of QM will
generally affect the inferred branch length t̂ and site-specific
rate of evolution r̂(k). We also note that t̂ and r̂(k) always
appear as the product t̂r̂(k), and hence they are only uniquely
specified up to a multiplicative constant. We resolve this
ambiguity by enforcing the mean of r̂(k) over all sites k to be
one.

Because our inference model a priori makes no specific
assumptions about the elements of the measurement matrix
QM, we have a wide range of different choices. We can arrange
these choices along a line from most realistic to least realistic
when compared to the true matrix. At one end of this line
lies the true matrix Q(k)

T (Figure 1B). At the other end lies
the completely uninformative, naïve matrix, which has no
knowledge about the substitution rates between amino acids.
It assumes that all rates of substitution are equal to each
other. Thus, it can be thought of as a Jukes-Cantor-like
matrix (36) for amino acids, and we refer to it as QJC (Figure
1B). Commonly used substitution matrices, such as JTT (19),
WAG (20), and LG (21) fall somewhere in between these two
extremes. They will be more realistic (and hence closer to the
true matrix) than QJC, but they certainly are not equal to
Q

(k)
T , in particular since the true substitution process has to be

assumed to be different at each site. Because any matrix QM
we may use falls somewhere on this line from completely true
to entirely uninformative, we can systematically explore how
the choice of measurement matrix influences the estimates
of site-wise rates. In particular, we can analytically solve
the inference equations at the two extreme ends, and we can
also solve the inference equations in the limit of t → 0. In
combination with numerics for cases where an analytic solution
is not available, this analysis provides for a comprehensive
characterization of the choice of measurement matrix on the
inference process.

Rate measured with an arbitrary measurement matrix for
t � 1. We assume that the measurement model is fit to the
sequence data by maximum likelihood (ML). As is customary,
we assume that the measurement model and the true model are
time-reversible (29). For analytic tractability, we consider the
simplest possible case of two sequences that have diverged for
some time t. Because site-wise parameters cannot be reliably
inferred from an alignment consisting of only two sequences,
we employ a mathematical trick and assume each site in the
alignment is duplicated n times. As part of our derivation,
we can show that the choice of n is irrelevant, and our re-
sults remain valid (on average) in the limit of n → 1. The
detailed mathematical formulation of our theory and detailed
derivations are provided in the SI Appendix.

First, we analytically derive site-wise rates measured with
an unspecified measurement matrix Q(k)

M in the limit of t→ 0.
In this limit, we can assume that the estimated time t̂ is
proportional to the true time t, t̂ = Ct for some constant
C. Without loss of generality, we set C = 1. (We implicitly
obtain the correct C when we normalize the rates r̂(k).) In
this scenario, we find (SI Appendix)

r̂(k) =
∑

i,j 6=i π
(k)
i q

(k)
T,ij∑

i,j 6=i π
(k)
i q

(k)
M,ij

/
〈r̂〉 [1]
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Fig. 1. Inference context and framework. (A) We study the process of site-specific rate inference at the amino-acid level in a phylogenetic context. As a protein sequence
evolves, substitutions (shown by colored dots and letters) along specific branches introduce site-specific variation. Some sites (e.g., here, site 3) change much faster than
others (e.g., sites 1, 4, or 5). The goal of rate inference is to obtain a numeric value that accurately represents the rate at which a site changes. (B) Substitution matrices
used for rate inference can have different degrees of realism, indicated along a line from left to right. All the way to the left, we assume there is a true substitution matrix that
describes the exact physical process governing the evolution of site k. This matrix exists only hypothetically and it can never be known for a natural system. All the way to the
right, we have the completely uninformative Jukes-Cantor-like matrix QJC, which assumes that all substitution rates are the same for all possible amino-acid substitutions. In
between these two extremes reside actual matrices used for rate inference, such as JTT, WAG, or LG.

Fig. 2. Comparison of the inferred rates and the analytically derived rates, in a model of two sequences diverged for time t and with n = 100, 000 site duplicates. Rates are
inferred with the Jukes-Cantor-like matrix and normalized to their mean across sites. The black line represents the analytically derived rate for arbitrary time t (equation 3). The
blue line represents the analytically derived rate when time t is small (equation 4). The green line represent the analytically derived rate when time t is large (equation 5). The
red dots represent the mean inferred rate at each time point across 30 simulations. The error bars represent the standard error. For all points, the bars are smaller than the
symbol size. The horizontal line at 1 represents the average rate in the sequence. (A-D) Rate over time for sites 1, 2, 4, and 5, respectively, in egg white lysozyme (PDB ID:
132L)(37). Convergence to the predicted mean rate with increasing number of site duplicates n is shown in Fig. S1.

with
〈r̂〉 = 1

m

∑
k

r̂(k). [2]

Here, m is the total number of sites in the sequence, and 〈r̂〉
is the mean rate across sites, which we use for normalization.
By π

(k)
i we denote the stationary probabilities of the true

model at site k. Note that
∑

i,j 6=i π
(k)
i q

(k)
T,ij is the steady-

state rate of substitutions under the true model at site k,
and

∑
i,j 6=i π

(k)
i q

(k)
M,ij is the rate with which the process would

leave the true-model steady state if the transition matrix were
switched to the measurement matrix. Thus, the inferred rate
r̂(k) is the ratio of the true steady-state substitution rate to
the substitution rate under the measurement matrix, starting
from the true equilibrium state.

Eq. (1) provides several key insights. First, if the measure-
ment matrix equals the true matrix, then the relative rate
r̂(k) = 1. Second, for any measurement matrix for which all
the column sums are equal,

∑
i,n6=i q

(k)
M,in =

∑
j,n 6=j q

(k)
M,jn∀i, j,

the denominator drops out of the equation and the estimated
rate equals the steady-state rate under the true model. Third,
when the column sums of the measurement matrix are not
equal, the meaning of the inferred r̂(k) is unclear.

Rates measured at arbitrary t, using the naïve substitution
matrix. The two extremes described in Figure 1B, where the
measurement matrix is either the true matrix or the naïve
matrix, can be further analyzed for any divergence time t. If
the measurement matrix is the same as the site’s true substitu-

tion matrix, then the true model and the fitted model become
the same. In this case, the inference model recovers true time
(t̂ = t) and the estimated rate becomes 1 (r̂(k) = 1). So, for
any site, if inference is performed using the true substitution
matrix, then inference of a relative rate is meaningless, since
that rate will always be measured as 1.

Next we consider the case where the site-wise rate is mea-
sured using the naïve substitution matrix, which we also refer
to as the Jukes-Cantor-like matrix (JC). In this matrix, the
substitution rate from any amino acid to any other amino
acid is 1/19. After solving the ML equations, we find (SI
Appendix)

r̂(k)(t) = log
[
1− 20

19
∑
i,j 6=i

π
(k)
i p

(k)
T,ij(t)

]/
〈r̂(t)〉. [3]

We note that this equation depends on t; the estimated rate
is not constant. In the limit of t → 0, the estimated rate
becomes

r̂(k)(0) =
∑
i,j 6=i

π
(k)
i q

(k)
T,ij

/
〈r̂(0)〉, [4]

consistent with Eq. (1).
For completeness, we also report the limit of Eq. (3) for

t→∞, which is

r̂(k)(∞) = log
[
1− 20

19
∑
i,j 6=i

π
(k)
i π

(k)
j

]/
〈r̂(∞)〉. [5]

To test our theory numerically, we simulate sequences under
a given true model and then infer rates via the standard
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maximum likelihood approach. To generate realistic simulated
sequences, we use a mutation–selection (MutSel) model (38,
39) which we parameterize from predicted stability effects of
mutations in a protein structure (37). We find that when we
use QJC in the maximum likelihood inference, as assumed in
the derivation of equations 3–5, the predicted rate estimates
agree perfectly with the average inferred rate estimates, at all
times t (Figure 2).

Measurement using a matrix that is proportional to the true
matrix. As equation 3 shows, in the general case of measure-
ment using the JC-like matrix the estimated rates change with
divergence time t. Only in the limit of small t (equation 4) do
we recover the result that the estimated rate corresponds to
the mean substitution rate in the true model. To investigate
the cause of this time dependency, we derive the estimated
rate under the assumption that the measurement matrix is
proportional to the true matrix. Specifically, we assume that
the true matrix Q(k)

T = r(k)Q, where Q is any arbitrary sub-
stitution matrix, and we then set Q(k)

M = Q. In this case,
we can show that the fitted model recovers true time (t̂ = t)
and the true rate parameter modulating Q (r̂(k) = r(k)) (SI
Appendix).

To numerically validate this calculation, we simulate evo-
lution using a true model with Q(k)

T = r(k)QJC and the r(k)

at each site drawn from a gamma distribution (see Methods).
After performing rate inference with Q(k)

M = QJC, we recover
the original r(k), and the estimates do not depend on t as
predicted (Figure S2).

These results suggest that the time dependence of the in-
ferred rate seen in equation 3 and Fig. 2 is caused by the
mismatch between the true model and the JC inference model.
Even though the rate should be a separate parameter indepen-
dent of t, when we use a JC inference model the inferred rate
depends somewhat on divergence time. However, this artifact
disappears when the measurement matrix is proportional to
the true matrix, in which case ML can recover the true model
parameters. Of course, in any real-world application it is never
possible to have the measurement matrix be exactly propor-
tional to the true model matrix, and hence moderate time
dependence of the inferred rate parameter has to be expected
in all realistic rate-inference applications.

Rate measured with commonly used matrices. We have been
able to analytically solve the maximum likelihood equations for
the JC-like matrix, but in practice that matrix is rarely used
for rate inference. Instead, commonly used matrices include
matrices such as JTT, WAG, and LG, as shown in Figure
1. Moreover, we have solved the ML equations for a pair of
diverged sequences and with site duplicates, but in a realistic
application we would perform inference on individual sites in
a multiple sequence alignment and corresponding phylogenetic
tree. To assess the extent to which matrix choice affects rate
inference, we use the JTT, WAG, and LG matrices in addition
to the JC-like matrix for inference on simulated multiple
sequence alignments without site duplicates. For reference, we
compare the inferred rates to the predicted rates at small t
(equation 4), which we hypothesize to generalize to inference
on multiple sequences. We find that the rates inferred with
JTT, WAG, and LG behave very similar to each other and to
the JC matrix for all branch lengths (Figures 3 and S3). In
addition, and as expected from the results in the preceding

section, the inferred rates are also similar to the analytically
derived rates. In aggregate, these results are consistent with a
recent study on the impact of matrix choice on rate inference,
which has found that inferred rates are largely independent of
the chosen matrix (16).

Any general time-reversible model can be decomposed into
a symmetric matrix called the exchangeability matrix and
a vector of equilibrium frequencies (29). Strictly speaking,
the various matrices JTT, WAG, and LG are exchangeability
matrices that need to be combined with equilibrium frequencies
to specify the full model matrix. If we were to use any of these
matrices as is, we would implicitly assume uniform amino-acid
frequencies. This is not normally done, however. Instead,
the observed amino-acid frequencies in the multiple sequence
alignment are commonly used as equilibrium frequencies, and
we follow this practice here for JTT, WAG, and LG (see
Methods). By contrast, our theoretical derivation with the
JC-like matrix uses the matrix as is and thus assumes uniform
frequencies in the measurement model. To assess the impact
of this choice, we also perform inference with the JC-like
matrix and observed frequencies. We find that the choice of
assumed equilibrium frequencies in the measurement model
has virtually no effect on the inferred rates (Figure S4).

Codon rates measured with a naïve amino acid substitution
model. Gene sequences in natural organisms do not evolve
according to an amino acid matrix Q. Protein sequences are
encoded in DNA, and the DNA is the substrate that mutates
and evolves. Yet inference models are frequently formulated
as amino-acid models. To investigate the effect of this model
mismatch, we derive expected inferred rates when the true
model is a codon model and the inference model is an amino-
acid model using the JC-like matrix (SI Appendix). The
derivation follows the same logic as before, and for small t we
find

r̂(k) =
∑
i,j 6=i

∑
a∈Ci

∑
b∈Cj

π(k)
a q

(k)
T,ab

/
〈r̂〉. [6]

Here, π(k)
a is the true codon equilibrium frequency for a codon

a and q(k)
T,ab is the true substitution rate between codons a and

b. Ci is the set of codons that encode amino acid i, and the
first sum (over i and j) runs over all possible amino-acid pairs.
As before, our analytic predictions of inferred mean rate agree
well with simulations (Figure S5).

Equation 6 demonstrates that the inferred rate reproduces
(on average) the true mean substitution rate between all non-
synonymous codons. Thus, it is meaningful to perform an
amino-acid based inference on codon-level data. However,
because this inference only considers changes between amino
acids, we cannot infer rates between synonymous codons.

Discussion

The conventional inference approach in molecular evolution
consists of fitting a series of models by maximum likelihood
or Bayesian methods, identifying the best fitting model via
likelihood ratio test or some information criterion, and then
taking the inferred parameters of the best fitting model as the
best estimate for the parameter(s) of interest. However, an
increasing body of work shows that this process can go wrong
when the model is misspecified (39–42). In particular, the
estimates for parameters of biological interest can be much
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Fig. 3. Relationship between analytically derived rates and rates inferred with either the Jukes-Cantor-like (JC) matrix (top row) or the LG matrix (bottom row). Sequence
alignments were simulated for binary trees with 512 taxa and 124 sites, parameterized using data from egg white lysozyme (see Methods). No site duplicates were used in
these simulations. The inference with LG matrix assumed that each amino acid’s equilibrium frequency is equal to the frequency of that amino acid in the entire alignment. The
inference with JC matrix assumed that each amino acid’s equilibrium frequency is 1/20. The inferred rates plotted above are mean inferred rates over 50 simulations for each
time point and site. The analytically derived rate was calculated with equation 4. The numbers on top of the plot panels indicate the time t used for each simulation. The labels
on the right indicate the substitution matrix used for inference. Each point represents one site, and the diagonal line represents x = y.

closer to the true value in poorly fitting models (as evaluated
by an information criterion) than in the best fitting models
(39). A recent paper has proposed the term phenomenological
load to describe this effect (41). On the flip side, models with
very different information scores can also produce substantively
similar parameter estimates (16). We believe that the approach
we have described here, which relies neither on good model fit
nor on proper model specification but instead treats the model
fitting as a measurement process, can provide a solution to the
problems of model misspecification, phenomenological load,
and model selection. If we know what kind of a measurement
a model performs on a given dataset, we immediately obtain
an interpretable result, from one fit of one single model. For
example, in the case described here, measurement with the
Jukes-Cantor-like matrix returns rates that correspond to
the mean substitution rate in the true model. Of course, as
our calculations have shown, this statement is strictly true
only in the limit of low sequence divergence. However, the
systematic deviations for higher sequence divergence tend to
be moderate, in particular when compared to the measurement
noise inherent in making singe-site estimates, and hence we
believe that making rate measurements with the Jukes-Cantor-
like matrix is a principled approach that is as good as or better
than the alternatives at any sequence divergence level.

In phylgenetic inference, it remains an open question which
empirical matrix is the most appropriate, though LG tends
to produce better likelihood scores than do JTT or WAG
(21). We have seen here, however, that in the context of rate
inference, the rates inferred by LG, JTT, WAG, or JC are
nearly identical. A similar observation was recently published
in an empirical survey of different approaches to rate inference
(43). While JC is uninformative whereas LG, JTT, and WAG
are derived from natural protein sequences, we believe that all
these matrices are sufficiently similar to each other that they
are nearly identical for inference purposes. The explanation
for the matrices’ similarities lies in how they were derived
and what they represent. JC assumes that any amino acid is
permissible at any site, i.e., it assumes a completely flat fitness
landscape. JTT, WAG, and LG allow almost as wide of a

range of amino acids at each site (44), because they have been
derived by pooling data from many sites in many proteins,
thus averaging over the fitness differences between different
amino acids at different sites and not actually representing
any specific site in a protein (45). While one could conclude
from these observations that the choice of the inference matrix
is irrelevant (43), we believe that JC has a clear theoretical
advantage over the other matrices: Equation 4, which states
that in the limit of small divergence time t the inferred rate
converges to the mean substitution rate in the true model, is
generally not true for the other matrices, because of equation
1. The denominator of 1 cancels for the JC-like matrix but it
does not do so for the empirically derived matrices.

The model we have discussed here for measuring site-specific
rates has a separate rate parameter at each site, and thus is a
fixed-effects model. While some existing inference tools simi-
larly implement fixed-effects inference (43), others fit a rate
distribution to all sites at once, in a random-effects framework
(14, 15). A priori, our theory does not apply to random-effects
inference. However, empirically it is found, across a variety of
different modeling scenarios and frameworks, that fixed-effects
approaches and random-effects approaches yield rates esti-
mates that are highly correlated (43, 46, 47). Therefore, we
expect that our theoretical predictions will be approximately
correct for inference approaches based on random-effects frame-
works as well.

In our theory, evolutionary distances between amino acid
sequences are measured by the site-wise rate r̂(k) and time t.
In all derivations, these two quantities appear as the product
t̂r̂(k). This product is invariant to a rescaling of r̂(k) = r(k)/C
and t̂ = Ct, and rate, therefore, is not unique. To obtain
unique rates, we have to impose a normalization condition.
We have here normalized site-wise rates by the average rate
among all sites of the sequence, 1

m

∑
l
r̂(l). This normalization

allows for simple interpretation of the rate as the relative
increase or decrease compared to the average rate of evolution
in the sequence. Alternatively, we could normalize rates to the
median, which may be advantageous when rate distributions
are overdispersed (43).
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We note several limitations to our findings. First, our cal-
culations assume that sites evolve independently of each other.
Yet epistatic interactions among protein sites are widespread,
in particular among sites that are in direct contact in the 3D
structure (48–51). Strictly speaking, our results do not hold
for interacting sites. However, we note that in our derivation,
interacting sites would only enter the true model, not the
measurement model. Thus, to the extent that the true evo-
lutionary dynamic (with interactions) generates a stochastic
process at individual sites that looks Markovian, our results
should carry over. Future work will have to test this hypothe-
sis more systematically. Second, in our simulations, we used
uniform mutation rates, so that the site-specific variation in
evolutionary rates was fully determined by fitness differences
among amino acids or codons. For more complex mutation
schemes, the inferred rates would be influenced by both the
mutation scheme and the fitness differences, and thus, with
the measurement process we describe here it is not possible
to disentangle mutation and selection. However, we empha-
size that similar problems arise in other inference approaches
(41) as well, and that the rate equations we have derived are
correct regardless of the chosen mutation scheme. Finally, our
entire analysis is true only on average and/or in the limit of
infinitely large samples. We have ignored what (if any) effect
the choice of the measurement matrix has on the variation in
the estimate at finite sample sizes. Numerically, it appears
that some matrix choices result in less variable estimates than
others (Figure 3). Future work will have to address whether
different measurement matrices generate different amounts of
variability in rate estimates.

Materials and Methods

For detailed mathematical derivations, see SI Appendix.

Parameterizing a MutSel model using stability effects of mutations
in a protein. To parameterize a MutSel model for simulation, we
need to define site-specific scaled selection coefficients S(k)

ij for all
pairs of amino acids i and j. To arrive at a somewhat realistic
parameterization, we used a recently proposed framework to link
protein stability to protein evolution (37). Under this framework,
we can write (SI Appendix)

S
(k)
ij = ∆∆G(k)

oi − ∆∆G(k)
oj . [7]

Here, S(k)
ij is the scaled difference in fitness between amino acid i

and amino acid j at site k and ∆∆G(k)
oi is the change in stability of

the protein structure when a reference amino acid (which can be
arbitrarily chosen) is substituted with amino acid i at site k. We
used ∆∆G(k)

oi data for egg white lysozyme (PDB ID: 132L) from
Ref. (37), and we calculated scaled selection coefficients for all sites
for which ∆∆G values were available (124 sites in total). From the
selection coefficients, we then calculated a substitution matrix Q
following standard MutSel theory (38) (see SI Appendix for details).

Generation of simulated sequence alignments. In all cases, we first
generated binary trees with chosen branch lengths and numbers of
taxa, using the R package ape (52). We then evolved sequences
along each tree using the python library pyvolve (53), and each site
was evolved according to a site-specific MutSel model. The MutSel
models were parameterized according to equation 7 as described
above, except in the case where Q(k)

T = r(k)QJC. In this latter case,
we did not have to choose scaled selection coefficients but instead
values of the true rate r(k) at each site. We assumed that the true
rates are gamma distributed, as is commonly observed in empirical
work, and we randomly drew true rates from a gamma distribution
with shape parameter α = 0.312 and rate parameter β = 1.027.

These are parameter values that have been estimated for HIV-1
integrase (Table 2 in (54)).

Generating amino-acid alignments to verify rate derivations. Our sim-
ulations directly mimicked the assumptions made in the analytical
derivations. We simulated two sequences that have evolved from
a common ancestor and that have diverged over time. We took
the first ten sites from the egg white lysozyme and duplicated
each site n times. The site duplicates were simulated to all evolve
independently under identically parameterized models.

In a first set of simulations, we set n = 100, 000 and varied branch
lengths across 25 different values. Each tree in our simulations had
2 branches of equal lengths, and the length of the branches ranged
from 0.02 to 0.5 in the increments of 0.02 (this is equivalent to a
time range from 0.04 to 1 in the increments of 0.04). We simulated
30 replicates per tree, for a total of 750 alignments.

In a second set of simulations, we set branch length along the
two branches to 0.24 each (t = 0.48) and varied n from 10 to 100,000
in multiples of 10. We simulated 50 replicates per number of site
duplicates, for a total of 250 alignments.

Generating codon alignments to verify rate derivations. For the case
when the true model is a codon model, we simulated two codon
sequences according to a codon MutSel model. Each site was
simulated according to a codon substitution matrix, which was
derived and parameterized similarly to the amino-acid case. We
introduced codon scaled selection coefficients S(k)

ab
analogously to

equation 7. We set codon ∆∆G values equal to the ∆∆G of
the amino acid the codons translate to. The S(k)

ab
between two

synonymous codons a and b, therefore, was 0. The S(k)
ab

between
two non-synonymous codons a and b was set to equal the difference
in the ∆∆G values between the two codons. We set the mutation
rate between any two codons to 1. As in the amino-acid case,
we simulated 10 sites of egg white lysozyme with n = 100, 000
duplicates each. The sequences were evolved along 25 different trees.
Each tree had 2 branches of equal lengths, and the length of the
branches ranged from 0.02 to 0.5 in the increments of 0.02 (this is
equivalent to a time range from 0.04 to 1 in the increments of 0.04)
with one tree per branch length value. We simulated 30 replicates
per tree, for a total of 750 alignments.

Generating alignments to compare rates inferred with JTT, WAG, LG,
and JC matrices. We generated 4 binary trees with four different
branch lengths (0.00005, 0.0005, 0.005, and 0.05) and with 512
taxa each. We set the number of taxa to 512 because higher
numbers of taxa reduces the variation in inferred site-wise rates (55).
We simulated amino acid sequences with 124 sites parameterized
according to the ∆∆G values for egg white lysozyme, as described
above. No site duplicates were simulated, so that each site appeared
in each sequence exactly once. We simulated 50 replicates per tree,
for a total of 200 simulated alignments.

Rate inference. Similarly to our simulation approach, our inference
approach was intended to closely follow the assumptions made in
the analytical derivations of site-wise rate. We inferred rates and
time (branch length) from simulated sequences via HyPhy (11),
using code similar to the recently published LEISR model (43). For
all simulations, before inferring site-wise rates, we inferred time
t̂ by fitting a model with r̂(k) set to 1 jointly to all sites in the
alignment. Subsequently, we inferred site specific rates by fitting a
separate model at each site by maximum likelihood while fixing t̂
to the previously inferred global value.

To confirm rate derivations for equations 3–5, we performed
inference using the Jukes-Cantor-like (JC) matrix (every off-diagonal
element is 1/19 and every element on the diagonal is −1) with
uniform amino-acid equilibrium frequencies (the frequency of each
amino acid is equal to 1/20). We inferred one rate per site, with the
n duplicates counting as one joint site, for a total of 10 inferences
per 10 simulated sites. The rates were normalized by the average
inferred rate in the sequence.

To assess the effect of other measurement matrices, we performed
similar inferences on the simulated alignments. For each simulated
alignment, we inferred site-wise rates five times, once each for the
matrices JTT, WAG, and LG, and twice for the JC-like matrix, using
different assumptions of equilibrium amino acid frequencies. For
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JTT, WAG, and LG, the equilibrium frequencies were assumed to
be equal to the observed amino-acid frequencies. For JC, we inferred
rates once under the same assumption about equilibrium frequences,
and once under the assumption that the equilibrium frequency for
each amino acid is 1/20, the assumption made in the theoretical
derivations. Both assumptions yield almost identical rates (Figure
S4). We inferred one rate per physical site (no duplicates were
simulated). For each alignment, the final rates were normalized by
their mean.

When the true model was assumed to be a codon MutSel model,
we translated codon sequences to amino acid sequences prior to
inference. To match branch lengths between codon and amino-acid
alignments, we multiplied codon times by 0.77, the expected number
of amino-acid substitutions per nucleotide substitution according
to the genetic code. We inferred site-wise rates with the JC-like
matrix and uniform amino-acid frequencies. For each site, one joint
rate was inferred from the site’s duplicates. For each alignment, the
final rates were normalized by their mean.

Data availability. Code and processed data can be found at https:
//github.com/dariyasydykova/rates_measurement.
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