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Abstract: Bronchial premalignant lesions (PMLs) are precursors of lung squamous cell carcinoma, 
but have variable outcome, and we lack tools to identify and treat PMLs at highest risk for progression 
to invasive cancer.   Profiling endobronchial biopsies of PMLs obtained from high-risk smokers by 
RNA-Seq identified four PML subtypes with differences in epithelial and immune processes.  One 
molecular subtype (Proliferative) is enriched with dysplastic lesions and exhibits up-regulation of 
metabolic and cell cycle pathways and down-regulation of ciliary processes.  RNA-Seq profiles from 
normal-appearing uninvolved large airway brushings could identify subjects with Proliferative lesions 
with high specificity.  Expression of interferon signaling and antigen processing/presentation 
pathways are decreased in progressive/persistent Proliferative lesions and immunofluorescence 
indicates a depletion of innate and adaptive immune cells in these lesions.  Molecular biomarkers 
measured in PMLs or the uninvolved airway can enhance histopathological grading and suggests that 
immunoprevention strategies may be effective in intercepting the progression of PMLs to lung 
cancer.  
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Introduction 
 
Lung cancer (LC) is the leading cause of cancer death taking about 160,000 U.S. lives each year, 
more than colorectal, pancreatic, breast, and prostate cancers combined.  In order to decrease 
mortality, we need innovative strategies to intercept cancer development by diagnosing the disease at 
its earliest and potentially most curable stage.  Recent advances based on results from the National 
Lung Screening Trial(1) are dramatically altering the landscape of early LC detection as computed 
tomography (CT) screening of high-risk individuals significantly reduces mortality. Despite this 
progress, biomarkers are needed to select individuals for LC screening as eligibility criteria account 
for less than 27% of individuals diagnosed with LC in the US(2) and to distinguish between benign or 
cancerous indeterminate pulmonary nodules as screening has very high false positive rate (>90%).  
There is also urgent and unmet need to develop personalized therapies earlier in the disease process 
to “intercept” LC prior to its development in this high-risk population.  

 
Development LC risk biomarkers and LC interception strategies requires a detailed understanding of 
the earliest molecular alterations involved in lung carcinogenesis that occur in the respiratory 
epithelium(3, 4). Exposure to cigarette smoke creates a field of injury throughout the entire respiratory 
tract by inducing a variety of genomic alterations that can lead to an “at-risk” airway where 
premalignant lesions (PMLs) and LCs develop.  Lung squamous cell carcinoma (LUSC) arises in the 
epithelial layer of the bronchial airways and is often preceded by the development of a stepwise 
histological progression from normal epithelium to hyperplasia, squamous metaplasia, dysplasia 
(mild, moderate and severe), carcinoma in situ (CIS), and finally to invasive and then metastatic 
LUSC(5). In fact, the presence of high-grade persistent or progressive dysplasia (moderate or severe) 
is a marker of increased LC risk both at the lesion site (where they are the presumed precursors of 
squamous cell lung cancer) and elsewhere in the lung, although many dysplastic lesions do have 
varied outcomes(6).  Currently, however, we lack effective tools to identify PMLs at highest risk of 
progression to invasive carcinoma(7).   The development of markers of disease progression would 
identify patients at high-risk, suggest novel lung cancer chemoprevention agents, and provide 
molecular biomarkers for monitoring outcome in lung cancer prevention trials.   

 
We hypothesize that molecular characterization of bronchial biopsies containing a mixture of epithelial 
and immune cells would allow us to identify transcriptomic alterations associated with high-grade 
histology and premalignant lesion progression.  In this study, we used mRNA sequencing to profile 
endobronchial biopsies and brushings obtained through serial bronchoscopies from high-risk smokers 
undergoing lung cancer screening by auto-fluorescence bronchoscopy and chest CT.  Using the 
bronchial biopsies, we identified four molecular subtypes associated with clinical phenotypes and 
biological processes.  One subtype (Proliferative subtype) is enriched with biopsies having dysplastic 
histology, high basal cell and low ciliated cell signals, and expression of proliferation-associated 
pathways. Genes involved in interferon signaling and T cell mediated immunity were down-regulated 
among progressive/persistent lesions within the Proliferative subtype and these pathways correlated 
with decreases in both innate and adaptive immune cell types. Molecular classification of biopsies 
into a high-grade/progressive disease group may be used to stratify patients into prevention trials and 
to monitor efficacy of the treatment.  The results also suggest that personalized lung cancer 
chemoprevention targeting specific cancer-related pathways or the immune system may have 
potential therapeutic benefits. 
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Results  
 
Subject population 
 
In this study, we used mRNA sequencing to profile endobronchial biopsies and brushings obtained 
through serial bronchoscopy of high-risk smokers undergoing lung cancer screening by auto-
fluorescence bronchoscopy and CT at the Roswell Park Comprehensive Cancer Center (Roswell) in 
Buffalo, NY. The Discovery Cohort samples were obtained from the Roswell subjects between 2010 
and 2012 (DC; n=29 patients, n=191 biopsies, n=91 brushes), and the Validation Cohort samples 
were obtained between 2012 and 2015 (VC; n=20 patients, n=111 biopsies, and 49 brushes).  The 
subjects are predominantly older smokers, many of which have a history of lung cancer, chronic 
obstructive pulmonary disease (COPD), and occupational exposures that confer a high-risk of 
developing lung cancer.  Clinical characteristics such as sex, age, smoking status (ever or never) 
reported at baseline visit, prior history of lung cancer, COPD status, and occupational exposures 
were not significantly different between the two cohorts (Table 1).  After sample filtering based on 
several quality metrics, the DC had 190 biopsies and 89 brushes while the VC had 105 biopsies and 
48 brushes.  Ninety-four percent of subjects had at least one lung anatomic location sampled 2 or 
more times via endobronchial biopsy.  The DC and VC contained 37.9% and 35.2% biopsies with a 
histological grade of dysplasia or higher and 23.1% and 19.0% had progressive/persistent dysplasia, 
respectively (Table 2). We used a previously described smoking-associated signature(8) to predict 
the smoking status of each sample, as smoking status was only available at baseline, and found that 
the DC had a higher percentage of biopsies predicted to be current smokers (62.6%) compared with 
the VC (36.2%).  There is no significant difference in smoking status among the bronchial brushings 
between the two cohorts since only 1 brush is collected per time point. In terms of RNA sequencing 
quality, the DC had significantly greater total reads, percent uniquely mapping reads, and median 
transcript integrity number scores among the biopsies than the VC, but these differences between 
cohorts were not reflected in the brushes (Table S1). 
 
LUSC PMLs within the discovery cohort divide into distinct molecular subtypes  
 
In order to identify gene expression differences associated with LUSC PML histological severity using 
the endobronchial biopsies, we used a discovery-based approach to identify de novo molecular 
subtypes based on distinct patterns of gene co-expression (gene modules).  The approach was 
chosen given that there is histological heterogeneity within biopsies and that pathological analyses 
were conducted using biopsies adjacent to biopsies profiled via mRNA-Seq.  First, we sought to 
select a set of gene modules that are present across different LUSC datasets.  Using weighted gene 
co-expression network analysis(9) (WGCNA), gene modules were derived in the DC biopsies (n=190 
samples, n=16653 genes, n=15 gene modules), the DC brushes (n=89 samples, n=16058 genes, 
n=47 gene modules), TCGA squamous cell carcinoma (LUSC) tumors(10) (n=471 samples, n=17887 
genes, n=55 gene modules), and tracheobronchial samples from mice treated with n-nitrosotris-(2-
choroethyl)urea (NTCU) (n=25 samples, n=14897 genes, n=40 gene modules).  DC biopsy gene 
modules that were highly correlated (r>0.85) to at least one other non-DC biopsy module within each 
of the 4 datasets were selected.  Genes in the selected modules were filtered by requiring that each 
gene was also present in at least one of the correlated non-DC biopsy modules, resulting in a set of 9 
gene modules that consisted of 3,936 genes in total (Table S2). These gene modules identified 4 
molecular subtypes within the DC biopsies via consensus clustering: Proliferative (dark blue, n=52 
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samples, 27.4%), Inflammatory (dark green, n=37 samples, 19.5%), Secretory (light blue, n=61 
samples, 32.1%), and Normal (light green, n=40 samples, 21.1%) (Fig. 1A, Table 3).   
 
In order to characterize each molecular subtype, we first focused on identifying biological pathways 
over-represented in the genes comprising each gene module, as the pattern of gene module 
expression defines each PML subtype.  Each gene module was found to be associated with distinct 
epithelial and immune biological processes (Fig. 1A and Tables S2 and S3).  The Proliferative 
subtype is specifically characterized by increased expression of genes involved in energy metabolism 
and cell cycle pathways (Modules 4 and 5).  The Secretory and Normal subtypes both have increased 
expression of genes in cilium-associated pathways (Module 6), however, the Normal subtype 
specifically has decreased expression of genes involved in inflammation, regulation of lymphocytes 
and leukocytes, and antigen processing and presentation pathways (Modules 8 and 9). The Secretory 
subtype exhibits decreased expression of genes involved in protein translation (Module 7), while RNA 
processing genes (Module 2) are expressed more highly in the Inflammatory subtype.   
 
We further characterized our molecular subtypes by their associations with clinical phenotypes and 
established LUSC tumor molecular subtypes(11, 12).  Sample smoking status, the subject from whom 
the sample was derived, and sample histology demonstrated significant associations with subtype 
(p<0.01, Fig. 1B, Table S4, Fig. S1).  Our Proliferative and Secretory subtypes are enriched for 
current smokers and this association drives the subject enrichment as 79% of subjects maintain their 
smoking status throughout the study. Additionally, the Proliferative subtype is enriched for biopsies 
with dysplasia histology (Fig. 1B).  The Proliferative subtype has high expression of genes involved in 
cell cycle processes including the proliferation marker MIKI67, which is significantly up-regulated 
among samples in this subtype compared with samples in other subtypes (FDR=1.0e-30, based on 
differential expression analysis between samples in the Proliferative versus the non-Proliferative 
subtypes across all genes).  The gene remained significantly up-regulated in the Proliferative subtype 
within samples with normal/hyperplasia histology (FDR=3.4e-10) and samples with dysplasia 
histology (FDR=3.1e-8), and these observations are supported by an increase in protein expression 
in representative samples (p=0.02) (Fig. 1C-E and Fig. S2). The Proliferative subtype samples also 
had high concordance with the LUSC-Classical subtype (Fig. 1B).  In the TCGA LUSC tumors, the 
LUSC-Classical subtype was associated with alterations and overexpression of KEAP1 and NFE2L2 
as well as amplification of 3q26 with overexpression of SOX2, TP63 and PIK3CA(11).  Similarly, our 
Proliferative PMLs have increased expression of KEAP1, NFE2L2, TP63, and PIK3CA (FDR=1.4e-6, 
4.5e-12, 1.4e-9, and 0.03, respectively) (Fig. S3A).  Furthermore, the LUSC-Classical subtype was 
found to be associated with increased expression of genes involved in energy metabolism, and our 
Proliferative subtype is in part defined by high expression of Module 4, which is enriched for genes 
associated with oxidative phosphorylation and the electron transport chain. In contrast, the 
Inflammatory and Secretory PML subtypes demonstrate enrichment for the LUSC-Secretory subtype. 
The LUSC-Secretory subtype was associated with processes related to the immune response, and 
the Inflammatory and Secretory PMLs have the highest expression of Module 8 that is enriched for 
genes in these same pathways.   
 
Finally, we wanted to examine the extent to which our PML molecular subtypes were driven by 
differences in epithelial and immune cell type composition by assessing expression of a number of 
canonical cell type markers.  The Inflammatory and Secretory subtypes have higher levels of 
expression of the white blood cell marker PTPRC (CD45) consistent with enrichment of the LUSC-
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Secretory subtype (Fig. S3B, FDR=0.12 and 0.01, respectively).   Consistent with the behavior and 
pathways enriched in Module 6, the ciliated cell marker TUB1A1 expression is decreased in the 
Inflammatory and Proliferative subtypes (FDR=1.1e-4 and 3.5e-19, respectively), and this is also 
shown by a decrease in acetylated a-tubulin staining in representative histological samples (Fig. 1E, 
Fig. S2). The Proliferative subtype has the highest expression (FDR=2.4e-15) of basal cell marker 
(KRT5) indicating enrichment of lesions with high-grade histology that tightly correlates with protein 
expression in representative histology samples (p=0.01) (Fig. 1E, Fig. S2, Fig. S3B, Table S5). 
Additionally, gene expression of MUC5AC, a marker of goblet epithelial cells, is increased in subtypes 
enriched for current smokers (Proliferative and Secretory) but is the most significantly increased in 
the Secretory subtype (FDR=3.4e-5).  In contrast, gene expression of SCGB1A1, a marker of club 
cells, is the lowest in the Proliferative subtype (FDR=6.1e-5).  The expression levels of these marker 
genes agree with cell type deconvolution methods to examine epithelial and immune cell content 
(Fig. S3C-D).  The summation of these characterizations highlights epithelial and immune cell 
associated pathways that are modulated by smoking and PML histology and identifies the 
Proliferative subtype as a subset of high-grade PMLs that express proliferative and cell cycle-related 
pathways.     
 
Phenotypic associations with the molecular subtypes are confirmed in the Validation Cohort 
 
Next, we wanted to determine if the heterogeneity captured in the DC biopsy-derived molecular 
subtypes was reproducible in the VC. We developed a 22-gene nearest centroid molecular subtype 
predictor by selecting genes representative of each of the 9 gene modules.  The predictor has 84.7% 
accuracy across DC biopsies (training set, Fig. 2A and Fig. S4) with the following misclassification 
rates per subtype 5/52 (9.6%) in Proliferative, 7/37 (18.9%) in Inflammatory, 9/61 (14.8%) in 
Secretory, and 8/40 (20%) in Normal.  The 22-gene classifier was used to predict the molecular 
subtype of the 105 VC biopsies (Fig. 2B).  The VC subtype predictions were evaluated by examining 
the concordance of metagene scores for each of the 9 modules (using the full set of genes for each 
module) between the predicted VC subtypes compared with the DC subtypes.  The average behavior 
of Principal Component 1 (PC1) across the subtypes was highly similar (Fig. S5) with few exceptions 
(namely, Module 3 that had the fewest genes).  Additionally, we compared the VC subtype 
predictions from the 22-gene classifier to subtypes derived in the VC biopsies using the same 
methodology used to derive the DC subtypes and found significant concordance (p=1.0e-7, with the 
Proliferative subtype having the greatest concordance between predictions, Fig. S4). 
 
The statistical associations between the VC subtypes (via the 22-gene classifier) and clinical and 
molecular phenotypes across the VC biopsies are analogous to those observed across the DC 
biopsies (Fig. 2C, Table S4, Fig. S1 and S3).  Briefly, the Proliferative subtype is enriched for current 
smokers, biopsies with dysplasia histology, and the LUSC-Classical tumor subtype (Fig. 2C, Table 
S4). Epithelial and white blood cell marker gene expression across the VC biopsies reveals higher 
levels of the white blood cell marker PTPRC (CD45 expression) in the Inflammatory subtype 
(FDR=0.002) consistent with enrichment of the LUSC-Secretory subtype (Fig. S3F).   The 
Inflammatory and Proliferative subtypes have reduced ciliated cell marker expression (FOXJ1) 
consistent with Module 6 (FOXJ1 FDR=0.0005 and FDR=2.62e-6 and Module 6 FDR=5.73e-6 and 
FDR=4.34e-10, respectively). The Proliferative subtype has the highest expression of basal cell 
marker KRT5 (FDR=1.67e-7), proliferation marker MKI67 (FDR=3.03e-10), and cell cycle associated 
Module 5 (FDR=1.23e-18) indicating enrichment of lesions expressing characteristics associated with 
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high-grade histology.  Gene expression of SCGB1A1, a marker of club cells, is the lowest in the 
Proliferative subtype (FDR=1.8e-4).  Gene expression of MUC5AC, a marker of goblet epithelial cells, 
was increased in current smokers and most significantly in the Secretory subtype in the DC biopsies; 
however, in the VC biopsies this trend is not preserved as current smokers are not enriched in the 
Secretory subtype.  The expression levels of these marker genes agree with other deconvolution 
methods to examine epithelial and immune cell content (Fig. S3E-H).  
 
Normal appearing airway field brushes reflect biopsy molecular subtype  
 
Previously, we have shown that bronchial brushes from normal appearing areas of the mainstem 
bronchus could predict the presence of PMLs(13); however, that study lacked biopsies and brushes 
from the same subjects.   Above, in both the DC and the VC biopsies, the Proliferative subtype, 
represents a distinct subtype of PMLs enriched for dysplastic histology expressing metabolic and 
proliferative pathways.  Biopsies classified as the Proliferative subtype may represent a group of 
PMLs that need close monitoring and intervention.  As a result, we sought to explore whether or not 
we could predict the presence of Proliferative subtype biopsies using the brushes.  The Proliferative 
subtype is defined by the behavior of Modules 4, 5, 6, and 7 (Table 3), and therefore, we used the 
subset of 8 genes (from the 22-gene predictor) that correspond to these Modules to predict the 
presence of the Proliferative subtype across the DC and VC biopsies and brushes.  A prediction of 
the Proliferative subtype in a brush is specific (91% and 92% in the DC and VC biopsies, 
respectively), but not sensitive (39% and 32% DC and VC biopsies, respectively) at indicating the 
presence of at least one Proliferative PML detected at the same time point (Fig. 3A).  In order to 
understand the classifier’s performance in predicting the Proliferative subtype in brushes, we 
examined Gene Set Variation Analysis (GSVA)(14) scores for Modules 4, 5, 6, and 7 that define the 
Proliferative subtype in the DC and VC brushes (Fig. 3B).   In the DC and VC brushes, the GSVA 
scores were significantly different (FDR<0.05) in the Proliferative subtype versus all other samples 
only for Modules 5 and 6, and thus these likely contribute the most heavily to Proliferative subtype 
classification in the brushes.  Module 5 contains genes associated with cell cycle and proliferation 
while Module 6 contains genes associated with cilium assembly and organization.  Down-regulation 
of Modules 5 and 6 in the brushes specifically predicts the presence of a Proliferative subtype PML; 
however, the absence of these signals in the airway field of injury does not preclude the development 
of a Proliferative subtype PML.  
 
Immune-associated genes separate proliferative subtype progressive/persistent and regressive PMLs 
 
Previous studies of bronchial PMLs suggest that high-grade lesions (which occur more frequently in 
current smokers) are more likely to progress to invasive carcinoma(6).  Therefore, we sought to 
identify molecular alterations associated with subsequent PML progression/persistence (n=15) versus 
regression (n=15) among the Proliferative subtype DC biopsies, as these may be clinically relevant to 
identifying appropriate interception strategies.  Using GSVA scores calculated across all the DC 
biopsies for each of the 9 modules, we calculated which scores were statistically different between 
progressive/persistent versus regressive disease in the samples belonging to the Proliferative 
subtype (Table S6).  We found that the DC biopsy GSVA Module scores for Module 9 were 
significantly higher among regressive Proliferative PMLs (p=0.002, Fig. 4A) compared with 
progressive/persistent Proliferative PMLs.  The association between low Module 9 score and 
progression/persistence is replicated in the VC biopsies (n=7 progressive/persistent and n=13 
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regressive biopsies; p=0.03, Fig. 4B).  The ability of the Module 9 GSVA scores to discriminate 
between regressive versus progressing/persistent biopsies as measured by the area under the 
receiver operating characteristic (ROC) was 0.809 and 0.802 in the DC and VC biopsies, 
respectively.   
 
The genes in Module 9 include a number of genes that encode for proteins involved in interferon 
signaling as well as antigen processing and presentation (SP100, CIITA, CXCL10, SOCS1, GBP1, 
GBP4, B2M, TAP1, TAPBP, TRIM 14, TRIM21, TRIM22, STAT1, PML, OAS2, OAS3, MX1, ADAR, 
ISG15, IFI35, IFIT3, IFI27, PSMB8, PSMB9, BST2, IRF1, IRF9, CD74, PSME1, PSME2, HLA-
DQA1/DPA1/ DPB1/DRA/ DQB2/DRB1/ DQB1/DMA/DMB/DOA, HLA-A/B/C/E/F) and include the 
inhibitory receptor LAG3.  As a result, we wanted to evaluate whether or not the presence or absence 
of innate or adaptive immune cells were associated with Module 9 expression within the Proliferative 
subtype.  In an effort to deconvolute the potential presence of immune cell types, we generated 
GSVA scores using previously described immune cell signatures(15) and scores for 64 different cell 
types using the xCell algorithm(16), separately for both the DC and VC biopsies.  We identified 
significant (FDR<0.05) associations between the cell type scores and Module 9 that were in common 
between the DC and VC biopsies (Fig. S6) and identified 8 cell types (via xCell) including dendritic 
cells, activated dendritic cells, plasmacytoid dendritic cells, macrophages, M1 macrophages as well 
as CD8+ effector memory T cells, CD8+ central memory T cells, and T regulatory cells (Fig. 4C).  
Taken together, the progressive/persistent biopsies in the Proliferative subtype have down-regulated 
expression of Module 9 compared with regressive biopsies that correlates with reduced signals from 
both innate and adaptive immune cell populations. 
 
Immunofluorescence reveals progression-associated modulation of macrophages and T cells in 
Proliferative PMLs 
 
In order to confirm the relationship between the immune cell types associated with Module 9 and 
histologic progression/persistence of PMLs in the Proliferative subtype, immunofluorescent staining of 
macrophages/monocytes (n=52 regions enumerated from n=16 subjects), CD4 (n=50 regions 
enumerated from n=17 subjects), and CD8 T cells (n=47 regions enumerated from n=16 subjects) 
was performed (Table S5). The results were analyzed across all subjects assayed within the 
Proliferative subtype and across the subset of subjects where the lesion outcome 
(progression/persistence versus regression) was concordant with the Module 9 GSVA score (denoted 
as concordant set).  Staining of CD68, a pan macrophage (and tumor associated macrophage) 
marker, suggestive of M1 type macrophages, was increased in progressive/persistent lesions 
(p<<0.001 in the concordant set).  In contrast, staining of CD163 in combination with CD68, thought 
to be suggestive of M2 type macrophages, were decreased among the progressive/persistent lesions 
in the Proliferative subtype (p<<0.001 using all subjects and p=0.0007 in the concordant set, 
respectively) (Fig. 4D-E).  Additionally, CD4 T cells were increased (p<<0.001 in the concordant set) 
and CD8 T cells were decreased (p<<0.001 in the concordant set) in PMLs that progress/persist.  
Interestingly, among progressive/persistent lesions, the CD8 T cells had a distinct localization pattern 
(p=0.07 in the concordant set), where CD8 T cells both lined and were embedded within the 
epithelium in areas where dysplasia is present (Fig. 4D).  The immunofluorescence results did not 
reach significance, with the exception of CD163, when just the lesion outcome was used without 
regard to the Module 9 score. 
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Discussion  
 
Lung squamous cell carcinoma (LUSC) is the second most common form of lung cancer and arises in 
the epithelial layer of the bronchial airways.  It is often preceded by the development of lung 
squamous premalignant lesions (PMLs).  The presence of dysplastic persistent and or progressive 
PMLs is a marker of increased risk for LUSC(6).  Currently, however, we lack effective tools to 
identify PMLs at highest risk of progression to invasive carcinoma(7).  The development of markers 
predictive of disease progression will be important in identifying patients at highest risk for LUSC 
development and in identifying biological pathways exploitable for LUSC chemoprevention.  Towards 
this goal, we profile via RNA-Seq bronchial brushes and endobronchial biopsies obtained from 
subjects undergoing longitudinal lung cancer screening by chest computed tomography (CT) and 
autofluorescence bronchoscopy.  We identify four transcriptionally distinct groups of biopsies, one of 
these we label Proliferative and find it to be associated with high-grade dysplasia.  Patients with 
Proliferative PMLs can also be identified via gene expression measured from cells in the non-involved 
large airway epithelium.  We further find that persistent/progressive Proliferative PMLs are 
characterized by decreased expression of genes involved in interferon signaling and antigen 
processing/presentation pathways.  Consistent with these gene expression findings we find that 
progressive/persistent Proliferative PMLs are depleted for CD68+/CD163+ macrophages and CD8 T 
cells by immunofluorescence.  Collectively, these data suggest both the potential to identify a subset 
of patients with progressive/persistent LUSC PMLs, who are at risk for developing invasive lung 
cancer, on the basis of airway gene expression; as well as the potential to decrease the risk for 
progression in these patients by augmenting the immune response associated with regression.  
 
Previous studies indicate a range of genomic alterations associated with bronchial dysplasia.  
Increased expression of EGFR and Ki67 staining of epithelial cells is associated with increasing 
histologic severity and subsequent histologic progression(6, 17).  Altered protein levels of TP53, 
CCND1, CCNE1, BAX, and BCL2 have been associated with CIS or lung cancer occurrence 
independent of histological grade(18).  Telomere shortening and maintenance(19) and loss of 
heterozygosity in regions frequently detected in lung cancer (3p, 5q, 9p, 13q, 17p) have been 
observed in early hyperplasia/metaplasia lesions(20-22) and found to increase in frequency and size 
in higher-grade dysplasia.  Genomic gains in loci containing SOX2, TP63, EGFR, MYC, CEP3, and 
CEP5 are also associated with progression of high-grade dysplasia(23).  Despite the numerous 
genomic alterations associated with PML histological grade and progression, we lack a 
comprehensive PML molecular classification system to complement the pathologic classification of 
PML.  We pursued an unsupervised class discovery approach that led to the identification of four 
distinct molecular PML subtypes (Proliferative, Inflammatory, Secretory, and Normal).   The 
transcriptional patterns differentiating the PML subtypes are robust and a 22-gene panel identified in 
the Discovery Cohort can be used to distinguish between the different molecular subtypes in an 
independent Validation Cohort.  The Proliferative subtype is enriched with dysplastic PMLs from 
current smokers and is characterized by up-regulation of metabolic (OXPHOS/ETC/TCA) and cell 
cycle pathways and down-regulation of cilia-associated pathways.  Previous work indicates increases 
in metabolic pathways in the airways of subjects with dysplastic lesions(13), in PMLs adjacent to 
LUSC tumor(24), and in smokers at high-risk for lung cancer(25) as well as increases in proliferation 
(via Ki67 levels, as mentioned above) that have been utilized as an endpoint in lung cancer 
chemoprevention(26, 27).  Identification of patients with Proliferative lesions may be useful to enrich 
lung cancer chemoprevention trials with high-risk subjects or to identify patients who would benefit 
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from more frequent lung cancer screening.  The Inflammatory subtype is predominated by PMLs from 
former smokers, but interestingly is not significantly enriched for dysplasia, despite similarly 
decreased expression of cilia-associated pathways, suggesting an abnormal epithelium.  The 
Inflammatory subtype also shows increased expression of a gene module enriched for genes 
involved in inflammation and regulation of lymphocytes and leukocytes (Module 8).  This gene 
module is also elevated in Secretory lesions predominated by lesions from current smokers and 
exhibiting increased expression of goblet cell markers.  Interestingly, IL1B is part of this inflammation-
related gene module, which is of great interest as the inhibition of IL1B has recently been shown to 
reduce lung cancer incidence(28).      
 
Our prior work has extensively studied gene expression alterations in normal-appearing airway 
epithelium by profiling cells obtained via brushing the mainstem bronchus during bronchoscopy(8, 29-
35).  As part of this work, we have described gene expression alterations that reflect the presence of 
bronchial dysplasia(31).  In the current study, for the first time we have both bronchial brushes and 
endobronchial biopsies collected during the same procedure allowing us to identify gene expression 
differences in bronchial brushings from normal appearing airway which indicate the presence of 
Proliferative subtype PMLs.  In both the Discovery and Validation cohorts, applying the predictor used 
to identify Proliferative subtype PMLs (based on PML biopsy gene expression) to the gene 
expression data from the normal-appearing airway brushings resulted in predictions of the 
Proliferative subtype that were very specific (91%) but not sensitive (31-38%).  Brushes classified as 
Proliferative have increased expression of cell cycle pathways and decreased expression of cilia-
associated genes, suggesting that they are more similar to squamous metaplasia than normal 
epithelium. Potentially, a subset of patients may harbor widespread airway damage that serves as a 
marker for the presence of this type of high-grade PML leading to modest sensitivity, but high 
specificity.  In other cases, the area of damage that gives rise to these Proliferative PMLs may be 
more localized, and therefore potentially more difficult to detect by brushing contributing to decreased 
sensitivity.  These findings suggest that therapeutics to target changes throughout the entire airway 
epithelium may be necessary in some subjects, whereas, more site-specific ablation (e.g. 
photodynamic therapy) may be more effective in certain cases.  Another possibility and area of future 
research, is that a Proliferative subtype brush is a predictor of incident LUSC. 
 
The molecular profiling of PMLs and the identification of gene co-expression modules also provides 
an opportunity to identify the molecular determinants of subsequent PML progression. One of the 
nine gene co-expression modules used to define the molecular subtypes was significantly different 
between biopsies that progress or persist compared to biopsies that regress within the Proliferative 
subtype in both the DC and VC cohorts.   The module contains genes whose expression is decreased 
in the persistent/progressive biopsies that are involved in interferon signaling and antigen processing 
and presentation.  These gene expression changes were correlated with a decreased abundance of 
innate and adaptive immune cells via computational prediction.  By immunofluorescent staining of 
FFPE biopsy sections we confirmed that the progressive/persistent Proliferative lesions with low 
Module 9 GSVA scores had fewer CD163+ macrophages and CD8+T cells and the CD8+T cells had 
a distinct localization pattern.  These lesions also contained greater numbers of CD4+T cells, and it 
will be important in future work to assess if these cells are T regulatory cells promoting an immune 
suppressive environment. 
 
The presence of tumor-associated macrophages with the polarized phenotypes (M1 as pro-
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inflammatory or M2 as anti-inflammatory) has been associated with lung cancer prognosis. The 
presence of predominantly M2 macrophages, marked by the expression of CD163, has been 
associated with worse survival.  However, in the context of lung PMLs this relationship is not well 
studied. Our finding that regressive Proliferative PMLs have more CD163+ cells and increased 
expression of genes involved in IFNg signaling is consistent with what has been seen in the PMLs 
that precede oral squamous cell carcinoma where the presence of CD163+ macrophages with active 
IFNg signaling is associated with better outcomes(36) . Additionally, we observed fewer CD8+ T cells 
and lower expression of HLA class I genes and B2M in progressive/persistent lesions within the 
Proliferative subtype.  Disruptions in proper T cell mediated immunosurveillence have been described 
in several studies showing that impaired HLA class I antigen processing and presentation including 
down-regulation or loss of B2M(37, 38) and interferon signaling(39) in lung tumors affects response 
and acquired resistance to checkpoint inhibitors.  Lung tumors lacking an HLA-I complex had lower 
cytotoxic CD8+ lymphocyte infiltration, and this was also associated with lower levels of PD-L1. 
Additionally, studies have also suggested negative impacts on efficacy of check point inhibitors as 
well as survival in patients with LC that have tumors with increased CD4+ T cells expressing T 
regulatory markers (FOXP3, CD25) resulting in immunosuppressive state suggested to hinder the 
recruitment and effector functions of CD8+ T cells(40, 41).  Future DNA sequencing data on the 
PMLs profiled here may indicate heterozygous or homozygous loss of B2M or mutations in other 
genes in the interferon and antigen processing and presentation pathways; however, even in the case 
of acquired resistance, mutations and copy number changes could not explain the down-regulation of 
these pathways across all subjects, suggesting that other epigenetic alterations or signaling pathways 
may play a role.  In fact, epigenetic therapy, specifically DNA methyltransferase inhibitors(42), has 
been shown to enhance response to immune checkpoint therapy and up-regulate many of the genes 
down-regulated in progressive/persistent lesions within the Proliferative subtype including HLA class I 
genes (HLA-B and HLA-C), B2M, CD58, TAP1, immune-proteasome subunits PSMB9 and PSMB8, 
and the transcription factor IRF9.  Unraveling the mechanisms of innate and adaptive immune down-
regulation in this subset of PMLs will be important to identifying potential immunoprevention 
therapies. 
 
Our data suggests that there are subtype-specific transcriptomic alterations predictive of subsequent 
LUSC premalignant lesion progression that are the result of a lack of infiltrating immune cells in the 
lesion microenvironment.  These data suggest that biomarkers for determining PML subtype and 
assessing immune infiltration may have utility for the detection of aggressive PMLs that require more 
intensive clinical management and genes altered in these PMLs may serve as lung chemoprevention 
candidates.  These biomarkers could either be measured directly in PML tissue, or our data also 
suggests the potential that they could be measured in a surrogate tissue such as bronchial airway 
epithelium.   A benefit of biomarkers predicting aggressive PML behavior measured in surrogate 
tissue is the potential that these biomarkers might also predict the behavior of PMLs not directly 
observed during bronchoscopy. Future studies are needed to address the specific mechanism of 
impaired immunosurveillence in progressive/persistent lesions in the Proliferative subtype including 
high coverage DNA sequencing, characterization of neoepitope burden, assessment of epigenetic 
alterations, and comprehensive characterization of the immune populations identified.   
Materials and Methods 
 
Subject Population and Sample Collection 
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Endobronchial biopsies and brushings were obtained from high-risk subjects undergoing lung cancer 
screening at approximately 1-year intervals by white light and auto-fluorescence bronchoscopy and 
computed tomography at Roswell. The bronchoscopy included visualization of the vocal cords, 
trachea, main carina, and orifices of the sub-segmental bronchi visible without causing trauma to the 
bronchial wall.  All abnormal and suspicious areas are biopsied twice and the lung anatomic location 
is recorded (Fig. S7, Table S7).  One biopsy was used for routine pathological evaluation and the 
other for molecular profiling.  Additionally, a brushing was obtained from a normal appearing area of 
the left or right mainstem bronchus for research. Morphological criteria used to evaluate the biopsies 
are in accordance with World Health Organization (WHO) guidance(43). Eligibility for screening 
includes either a previous history of aerodigestive cancer and no disease at the time of enrollment or 
age greater than 50, a current or previous history of smoking for a minimum exposure of 20 pack-
years and at least one additional risk factor including moderate chronic obstructive pulmonary 
disease (COPD) (defined as forced expiratory volume (FEV1) < 70%), confirmed asbestos related 
lung disease or a strong family history of lung cancer (at least 1-2 first degree relatives).   All research 
specimens were stored in RNA Allprotect (Qiagen) and stored at -80 degrees C.   
 
Subjects were selected that had biopsies collected in repeat locations via serial bronchoscopies; 
however, after RNA isolation, samples from 3 subjects had a single biopsy and 1 subject had a single 
brushing. mRNA sequencing was performed on a discovery cohort (DC) of samples comprising of 
endobronchial biopsies and brushes collected between 2010 and 2012 (n=30 subjects, n=197 
biopsies, and n=91 brushings).  mRNA sequencing was subsequently performed on a validation 
cohort (VC) of samples comprising of endobronchial biopsies and brushes collected between 2012 
and 2015 (n=20 subjects, n=111 biopsies, and n=49 brushings).  Brush histology was defined by the 
worst biopsy histology observed at the same time point.  Biopsy progression/regression was defined 
for each biopsy based on the histology of the biopsy and the worst histology recorded for the same 
lung anatomic location in the future.  Histology changes between normal, hyperplasia, and metaplasia 
were classified as “normal stable”, decreases in histological dysplasia grade or changes from 
dysplastic histology to normal/hyperplasia/metaplasia were classified as “regressive”, lack of future 
histological data was classified as “unknown”, and everything else was classified as 
“progressive/persistent.”  The Institutional Review Boards at Boston University Medical Center and 
Roswell approved the study and all subjects provided written informed consent.  
 
RNA-Seq library preparation, sequencing, and data processing 
 
Total RNA was extracted from endobronchial biopsies and bronchial brushings using miRNeasy Mini 
Kit or AllPrep DNA/RNA/miRNA Universal Kit (Qiagen).  Sequencing libraries were prepared from 
total RNA samples using Illumina TruSeq RNA Kit v2 and multiplexed in groups of four using Illumina 
TruSeq Paired-End Cluster Kit. Each sample was sequenced on the Illumina HiSeq 2500 to generate 
paired-end 100-nucleotide reads. Demultiplexing and creation of FASTQ files were performed using 
Illumina CASAVA 1.8.2 or BaseSpace.  Samples were aligned using hg19 and 2-pass STAR(44) 
alignment.  Gene and transcript level counts were calculated using RSEM(45) using Ensembl v74 
annotation.  Quality metrics were calculated by STAR and RSeQC(46).  Samples were excluded were 
sex annotation did not correlate with gene expression across CYorf15A (ENSG00000131002), 
DDX3Y (ENSG00000067048), KDM5D (ENSG00000012817), RPS4Y1 (ENSG00000129824), 
USP9Y (ENSG00000114374), and UTY (ENSG00000183878) (n=4 samples).  Sample relatedness 
within a patient was confirmed using Peddy software(47).  Samples with a high-rate of heterozygosity 
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(more than 3 standard deviations above the median) or samples with low relatedness to samples 
from the same patient (more than 3 standard deviations below the median) were removed from 
further analyses (n=11 samples, 2 brushes and 9 biopsies).  Samples were subsequently divided into 
the discovery and validation cohorts (as outlined above) and by tissue type (biopsy or brush). 
Subsequent sample and gene filtering was conducted separately on each set as follows:  First, 
EdgeR(48) was used to compute normalized data (library sizes normalized using TMM, trimmed 
mean of M-values, and log2 counts per million computed) and genes were excluded that either had 
an interquartile range equal to zero or a sum across samples equal or less than 1.  Samples were 
excluded based on values greater than 2 standard deviations from the mean for more than one of the 
following criteria: 1) mean Pearson correlation with all other samples calculated across all filtered 
genes 2) the 1st or 2nd principal components calculated using the filtered gene expression matrix 3) 
transcript integrity number (TIN, computed by RSeQC).  After sample filtering, gene filtering was 
recomputed as described above on the final set of high-quality samples.  The data are available from 
NCBI's Gene Expression Omnibus using the accession GSE109743. 
 
Derivation of molecular subtypes 
 
The DC biopsies (n=190 samples, n=16653 genes) and brushes (n=89 samples, n=16058 genes) 
were used to derive the molecular subtypes.  Two additional RNA-Seq datasets were used during the 
derivation of the molecular subtypes:  the TCGA squamous cell carcinoma (LUSC) tumors(10) (n=471 
samples, n=17887 genes) and a dataset of tracheobronchial samples from mice treated with n-
nitrosotris-(2-choroethyl)urea (NTCU) (n=25 samples, n=14897 genes).  The mice develop lesions 
that are histologically and molecularly comparable to human lesions and that progress to LUSC and 
the samples represent a range of histology (normal, mild dysplasia, moderate dysplasia, severe 
dysplasia, carcinoma in situ (CIS), and LUSC tumor) (Supplementary Materials and Methods).  The 
mouse data are available from NCBI's Gene Expression Omnibus using the accession ID 
GSE111091.  Sample and gene filtering from the TCGA LUSC tumors and the mouse tissue were 
processed as described in the Supplementary Materials and Methods. 
 
Weighted correlation network analysis(9) (WGCNA) was used with default parameters to derive 
Modules of gene co-expression across the 4 datasets described above.  Residual gene expression 
values adjusting for RNA quality (median TIN) and batch (Illumina flow cell) were used as input for 
WGCNA for the biopsy and brush datasets.  For the mouse dataset, residual gene expression values 
adjusting for RNA quality (median TIN), mouse strain, and sample type (laser capture microdissected 
versus whole tissue) were used as input for WGCNA.  Log2 counts per million (cpm) values were 
used as input for WGCNA for the LUSC tumor samples.  Gene sets were created for each co-
expression Module for each dataset and then combined to create a compendium of gene sets 
generated from each of the 4 datasets. For each gene set in the compendium, the first principal 
component (PC1) was calculated across each z-score normalized dataset.  For each dataset, a 
Pearson correlation matrix of PC1 values across all gene sets in the compendium was computed and 
thresholds were set as follows:  r>0.85 was set to 1 and r<=0.85 set to 0.  The four matrices were 
subsequently summed, and gene sets derived from biopsy co-expression Modules that were 
correlated to another non-biopsy derived gene set across all datasets were retained (n=9 Modules 
retained).  The genes defining the retained biopsy Modules were required to be present in the biopsy 
Module and at least in one of the correlated gene sets.     
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The filtering process above yielded a reduced set of genes (n=3,936) that was used to define the 
molecular subtypes in the biopsy data.  The residual gene expression values across the reduced set 
of genes for the discovery biopsies was used as input for consensus clustering(49).  Consensus 
clustering was performed setting k (number of groups) to 10, the number of iterations to 1000, the 
subsampling to 80%, the clustering algorithm to partitioning around mediods, and the distance metric 
to Pearson correlation.  The optimal value for k was 4 based on the relative change in area under the 
cumulative distribution function calculated based on the consensus matrix for each k.  
 
Molecular subtype predictor 
 
The DC biopsies across the filtered genes were used to derive a molecular subtype predictor.  First, 
Pearson correlation metrics were determined between each gene and the Module eigengenes (PC1 
for each of the 9 Modules).  Genes were retained as part of a Module if the correlation value was the 
highest for the Module in which it was assigned.  The average Pearson correlation of the retained 
genes to the Module eigengene was computed, and the number of genes chosen from each Module 
for the predictor was inversely proportional to this metric.  Second, the genes most highly correlated 
to the Module eigengene were chosen to represent the Module in the predictor.  The 22 genes 
resulting from this analysis across the DC biopsy data were used to train a nearest centroid predictor 
using the pamr package with a threshold of zero and predict the molecular subtype across the VC 
biopsies.  Prior to predicting the molecular subtype of these test sets, the training and test sets were 
combat(50) adjusted and z-score normalized across combined training and test data.  Using the 
methods described above we derived molecular subtypes using consensus clustering across the VC 
biopsies and compared these to the predicted subtypes. 
 
Identification of biological processes associated with gene modules and molecular subtypes 
 
Biological processes and pathways enriched in each of the nine Modules used to discover the 
molecular subtypes in the DC were identified using EnrichR(51). Each Module was separated into 
genes positively or negatively correlated with the Module eigengene, the Ensembl IDs were 
converted to Gene Symbols using biomaRt, and the following databases were queried:  GO Biological 
Process 2015, KEGG 2016, WikiPathways 2016, TargetScan microRNA, Transcription Factor PPIs, 
TRANSFAC and JASPAR PWMs, OMIM Disease, Reactome 2016, and Biocarta 2016.  
Processes/pathways with an FDR<0.05 were considered to be significantly enriched.  The 
contribution of each gene Module to the DC biopsy molecular subtypes was evaluated by testing if 
GSVA(14) scores for each Module were significantly (FDR<0.05) associated with the molecular 
subtypes using a linear mixed effect model with patient as a random effect via limma. 
 
Identification of clinical and biological phenotype associations with molecular subtype 
 
The molecular subtypes in the DC biopsies were annotated according to the behavior of each gene 
Module by calculating whether or not GSVA(14) scores for each Module were significantly up- or 
down-regulated (FDR<0.05) in a particular molecular subtype versus all other samples using a linear 
mixed effects model with patient as a random effect via limma.  Additionally, the biological pathways 
and transcription factors associated with each subtype were identified using GSEA(52) and 
mSigDB(53) gene sets using genes ranked by the t-statistic for their association with each subtype.  
The ranked lists were created using the limma(54) and edgeR(48) packages to identify differentially 
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expressed genes associated with subtype membership.  Each linear model used voom-
transformed(55) data and included membership in the subtype of interest, batch, and RNA quality 
(TIN) as covariates and patient as a random effect.  Pathways enriched in the ranked lists 
(FDR<0.05) were used to annotate the molecular subtypes. FDR values for individual genes were 
derived from this analysis or analogous models using only samples of normal/hyperplasia histology or 
dysplasia histology. 
 
For the DC and VC biopsies, residual gene expression values were used to predict smoking status, 
LUSC tumor subtype, and the relative abundance of epithelial and immune cells for each sample.  
Smoking status (current versus former/never) was predicted for each sample as described 
previously(13).  Smoking status was determined at each time point for each subject by calculating the 
mean of the prediction scores (>0 for current prediction and <0 for former/never prediction) across all 
biopsies and brushes sampled.  The LUSC tumor subtype was determined as described 
previously(11) across the genes predictive of the LUSC molecular subtype(12).  The ESTIMATE 
algorithm(56) was used to infer relative epithelial, stromal, and immune cell content.  Immune cell 
type specific signatures from Bindea et al.(15) and epithelial cell type specific signatures from Dvorak 
et al.(50) were used to generate GSVA(14) scores across samples for each signature.  Additionally, 
residual gene expression values calculated using log RPKM values were inputted into the xCell(16) to 
infer relative abundances of 64 different cell types.  The above categorical phenotypes along with 
additional clinical variables such as biopsy histology, subject, previous lung cancer history, sex, and 
biopsy progression/regression status were associated with molecular subtype using Fisher’s Exact 
Test.  Continuous variables were associated with molecular subtype using a linear model via limma.  
 
Relationship between the biopsies and brushes  
 
We wanted to quantify the predictive performance of the brush with regards to the presence of a 
biopsy of the Proliferative subtype.  A subset of the 22-gene molecular subtype predictor was used to 
predict the presence or absence of the Proliferative subtype across the DC and VC brushes and 
biopsies.  Specifically, we used 8 genes (out of the 22) that corresponded to Modules 4 through 7 
(significantly up- or down-regulated in the Proliferative subtype) to classify samples as Proliferative or 
not using the same methodology described above for the molecular subtype predictor.  Sensitivity 
and specificity performance metrics were calculated based on the ability of a Proliferative subtype 
prediction in the DC or VC brushes to indicate the presence of at least one biopsy of the Proliferative 
subtype.  In order to further understand the Proliferative subtype predictions in the brushes, we 
analyzed the behavior of the modules that define the Proliferative subtype in the DC biopsies (based 
on methods above) across the DC and VC brushes.   
    
Immunofluorescent staining and quantitation 
 
Standard formalin fixation and embedding techniques were employed at Roswell where 5-micron 
sections were cut from the FFPE samples used for the routine pathological evaluation at Roswell 
(Table S5). Prior to staining, samples were de-waxed with xylene and rehydrate through a graded 
series of ethanol solutions. AR or citrate buffer was used for antigen retrieval, tissue was incubated 
with primary antibodies overnight at 4°C and probed with secondary antibodies with fluorescent 
conjugates (Invitrogen Alexa Fluor 488, 594, 647) for 1 hour at room temperature. Immunostaining 
was performed using the primary antibodies listed in Table S8. Imaging was performed using an 
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Aperio Slide Scanner for scoring and a Carl Zeiss Axio (20x and 40 x objectives) and a Carl Zeiss 
LSM 710 NLO confocal microscope for capturing additional images. Digital slides were analyzed with 
the Definiens Tissue Studio (Definiens Inc.) for the enumeration of immunofluorescence staining. The 
enumeration of the immunofluorescence scored each stain including DAPI positive cells. The 
enumeration was conducted on different regions (independent areas of tissue) present on a slide (1-5 
regions/biopsy) for each biopsy. For each region, the percentage of positively staining cells for a 
given protein was calculated by dividing the number of positively stained cells by the total number of 
DAPI positive cells.  A binomial mixed effects model via the lme4 R package was used to assess 
differences in the percentages of cells staining positive for a given protein in each region between 
progressive/persistent versus regressive biopsies using the total cells stained in each region as 
weights and adjusting for the slide number as a random effect.  The models were used across 
samples from the Proliferative subtype and across samples from the Proliferative subtype where the 
biopsy outcome (progressive/persistent versus regressive) agreed with the Module 9 GSVA score 
(scores less than 0 are associated with progression/persistence and scores greater than 0 are 
associated with regression).  Each region was also qualitatively scored as either positive or negative 
for having a distinct CD8 T cell localization pattern where cells lined and were embedded within the 
epithelium.  
 
Supplementary Materials 
Supplementary Materials and Methods. 
Fig. S1.  Distribution of Molecular Subtypes by Subject. 
Fig. S2. Immunofluorescent Staining Quantitation of Proliferation, Basal Cell, and Ciliated Cell 
Markers across the Molecular Subtypes.  
Fig. S3.  Boxplots of Select Genes and Cell Type Deconvolution Results across the Discovery and 
Validation Cohorts by Molecular Subtype. 
Fig. S4.  Heatmap of the 22-gene Molecular Subtype Classifier in the Discovery and Validation 
Cohort Biopsies.   
Fig. S5.  Gene module behavior across the Molecular Subtypes in the Discovery and Validation 
Cohort Biopsies.  
Fig. S6. Concordance between Module 9 and two Cell Type Deconvolution Analyses.   
Fig. S7.  Tracheobronchial Map.  
Table S1.  Batch Information and Alignment Statistics on Samples in both the Discovery and 
Validation cohorts.   
Table S2.  Summary of Gene Modules.  
Table S3.  Pathways enriched in the Gene Modules.  
Table S4.  Molecular Subtype associations with Clinical and Biological Characteristics within the 
Discovery Cohort (DC) and the Validation Cohort (VC).  
Table S5.  List of Samples used for Immunofluorescence Studies. 
Table S6.  Statistical associations between Progression/Persistence versus Regression within each 
Molecular Subtype and Cohort (DC and VC) for each Gene Module. 
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Table S7.  Lung sites where Endobronchial Biopsies were obtained. The site code, name, 
Table S8.  Antibodies used in the Immunofluorescence Studies.  
Data file S1. Complete list of pathways enriched in gene modules. 
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Figures:  

 

Figure 1.  Endobronchial biopsies divide into four distinct molecular subtypes that correlate 
with clinical and molecular phenotypes. (A) Genes (n=3,936) organized into 9 gene co-expression 
modules were used to discover four molecular subtypes (Proliferative, Inflammatory, Secretory, and 
Normal) across the 190 DC biopsies using consensus clustering.  The heatmap shows semi-
supervised hierarchal clustering of z-score normalized gene expression across the 3,936 genes and 
190 DC biopsies.  The top color bar represents the four molecular subtypes: Proliferative (n=52 
samples), Inflammatory (n=37 samples), Secretory (n=61 samples), and Normal (n=40 samples).  On 
the left side of the heatmap, the mean of the first principal component calculated across module 
genes is plotted for each subtype. On the right side of the heatmap, a summary of enriched biological 
pathways is listed for each module.  (B)  Bubbleplots showing significant associations (p < 0.01 by 
Fisher’s Exact Test) between the molecular subtypes and smoking status, biopsy histological grade, 
and the predicted LUSC tumor molecular subtypes.  The columns represent the 4 molecular subtypes 
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(Proliferative, Inflammatory, Secretory, and Normal) and the diameter of the circle is proportional to 
the number of samples within each subtype that have the row phenotype. (C) Boxplot of expression 
values of MKI67 in biopsies with normal or hyperplasia histology (n=8, 16, 26, 18 in Proliferative, 
Inflammatory, Secretory, and Normal subtypes, respectively).  The MKI67 expression levels of the 
Proliferative subtype are significantly greater than non-Proliferative subtype samples (FDR=3.4e-10) 
(D) Boxplot of expression values of MKI67 in biopsies with dysplastic histology (n=33, 11, 19, 9 in 
Proliferative, Inflammatory, Secretory, and Normal subtypes, respectively).  The MKI67 expression 
levels of the Proliferative subtype are significantly greater than non-Proliferative subtype samples 
(FDR=3.1e-8). (E) Immunofluorescent staining demonstrating the increased MKI67 and KRT5 
staining and reduced TUB1A1 staining in the Proliferative subtype in concordance with the 
expression of the corresponding marker genes.  The representative samples shown for the 
Proliferative and Inflammatory subtypes have dysplasia histology while the samples shown for the 
Secretory and Normal subtypes have normal histology (Magnification 200X). 
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Figure 2.  Phenotypic associations with the molecular subtypes are confirmed in an 
independent sample set. (A) The 190 DC biopsies and the 3,936 genes were used to build a 22-
gene nearest centroid molecular subtype classifier.  Semi-supervised hierarchal clustering of z-score 
normalized gene expression across the 22 classifier genes and 190 DC biopsies training samples. 
(B)  The 22-gene nearest centroid molecular subtype classifier was used to predict the molecular 
subtypes of the 105 VC biopsies.  Semi-supervised hierarchal clustering of z-score normalized gene 
expression across 22 genes and 105 VC is plotted.  The rows of the heatmap give the gene name 
and module membership, and the column color bar shows molecular subtype membership. (C)  
Bubbleplots showing significant associations (p<0.01 by Fisher’s Exact Test) between the VC 
molecular subtypes and smoking status, biopsy histological grade, and the predicted LUSC tumor 
molecular subtypes.  The columns represent the 4 molecular subtypes (Proliferative, Inflammatory, 
Secretory, and Normal) and the radius of the circle is proportional to the number of samples within 
each subtype that have the row phenotype. 
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Figure 3.  Performance of the molecular subtype classifier in the large airway brushes from 
normal appearing epithelium sampled at the same time as the endobronchial biopsies. (A) The 
DC (left) and VC (right) cohorts, showing the number of brushes (y-axis) predicted to be positive for 
the Proliferative subtype (orange) that have at least one biopsy (y-axis) with a classification of the 
Proliferative subtype at the time the brush was sampled.  Brushes/biopsies negative for the 
Proliferative subtype are turquoise. (B) Boxplots of PC1 for Modules 4, 5, 6, and 7 (y-axis) across the 
four molecular subtypes for each cohort (x-axis).  The red asterisk indicates significant differences 
between the Proliferative subtype versus all other samples (FDR<0.05).  
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Figure 4.  The module enriched for interferon signaling and antigen processing is associated 
with biopsy progression/persistence and a depletion of innate and adaptive immune cells in 
the Proliferative subtype. (A) Metagene expression of Module 9 genes among DC biopsies within 
the Proliferative subtype (p=0.002 between the progressive/persistent versus regressive biopsies).  
Biopsy progression/regression was defined for each biopsy based on the histology of the biopsy and 
the worst histology recorded for the same lung anatomic location in the future.  Histology changes 
between normal, hyperplasia, and metaplasia were classified as “normal stable”, decreases in 
histological dysplasia grade or changes from dysplastic histology to normal/hyperplasia/metaplasia 
were classified as “regressive”, lack of future histological data was classified as “unknown”, and 
everything else was classified as “progressive/persistent.” (B)  Metagene expression of Module 9 
genes among VC biopsies within the Proliferative subtype (p=0.03 between the progressive/persistent 
versus regressive biopsies). (C) Top: Z-score normalized gene expression across the 112 genes in 
Module 9 and the DC biopsies (left) and the VC biopsies (right).  Each heatmap is supervised 
according to the Module 9 GSVA scores.  Top color bars indicate the histological grade of the 
biopsies and their progression status.  Bottom: xCell results indicating the relative abundance of 
immune cell types across the DC biopsies (left) and the VC biopsies (right).  Immune cell types 
displayed are significantly associated with lesion progressive/persistence (FDR<0.05 in both the DC 
and VC after adjusting for differences in epithelial cell content). (D) Representative histology where 
the dashed yellow line denoted the separate of epithelium and stromal compartment Top panels: A 
progressive severe dysplasia has reduced presence of immune cells demonstrated by the marked 
reduction in expression of M2 macrophages (CD68/163 staining, double positive cells indicated by 
the yellow arrows) and CD8 T cells. (sample corresponds to *P in panel C.) Bottom panels: A 
regressive moderate dysplasia has increased presence of immune cells including M2 macrophages 
(CD68/163 staining double positive cells indicated by the yellow arrows) and CD8 T cells. (samples 
correspond to *R in panel C.) (E) Boxplots of the percentages of CD68 and CD163, CD68, CD163, 
CD4, and CD8 positively stained cells between progressive/persistent and regressive biopsies 
(p<0.001 for all comparisons).  The x-axis labels indicate the number of regions (R) enumerated 
across (P) subjects for each stain and outcome group depicted in the boxplot.  Biopsies were 
included in the analysis if their clinical outcome was concordant with the Module 9 score.    

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/413898doi: bioRxiv preprint 

https://doi.org/10.1101/413898


Tables: 
 

 

Table 1.  Demographic and Clinical Annotation on Subjects in both the Discovery and 
Validation cohorts.  Statistical tests between the Discovery and Validation cohorts were performed 
using Fisher's Exact Test for categorical variables and Student's T-Test for continuous variable.  
Percentages are reported for categorical variables and mean and standard deviations are reported for 
continuous variables. 

 

Table 2.  Clinical Annotation on Samples in both the Discovery and Validation cohorts.  
Statistical tests between the Discovery and Validation cohorts within either the biopsies or brushes 

Discovery	Cohort	 Validation	Cohort
Variable (n=30	Subjects) (n=20	Subjects) p-value

Average	#	Biopsies/Subject 6.6	(5.7) 5.25	(2.9) 0.3
Average	#	Bronchosocpies/Subject 2.8	(1.5) 2.4	(0.8) 0.27
Average	Time	Between	Bronchoscopies	(Days) 368.2	(201.4) 360.1	(212.5) 0.87
Male 15/30	(50) 12/20	(60) 0.57
White 27/30	(90) 17/20	(85) 0.67
Age	(at	Baseline	Clinical	Visit) 58.8	(7.6) 58.7	(8.3) 0.97
Ever	smoker	(at	Baseline	Clinical	Visit) 29/30	(96.7) 19/20	(95) 1
Prior	History	of	Lung	Cancer 21/30	(70) 12/20	(60) 0.55
COPD	(FEV1/FVC	<=	0.7,	at	Baseline	Clinical	Visit) 17/27	(63.0) 8/18	(44.4) 0.24

GOLD	1	(FEV1%	>	80) 2/27	(7.4) 2/18	(11.1) 1
GOLD	2	(FEV1%	<80	and	>	50) 12/27	(44.4) 5/18	(27.8) 0.35
GOLD	3	(FEV1%	<	50	and	>	30) 3/27	(11.1) 1/18	(5.6) 0.64

Occupational	Asbestos 13/30	(43.3) 9/20	(45) 1
Occupational	High-Risk	Job 14/30	(46.7) 12/20	(60) 0.4

Variable
Sample	Type Biopsies Brushes Biopsies Brushes Biopsies Brushes
Histology 0.05 0.42

Normal 38/190	(20) 6/89	(6.7) 23/105	(21.9) 0/48	(0)
Hyperplasia 30/190	(15.8) 11/89	(12.4) 31/105	(29.5) 9/48	(18.8)
Metaplasia 46/190	(24.2) 15/89	(16.9) 14/105	(13.3) 9/48	(18.8)

Mild	Dysplasia 21/190	(11.1) 9/89	(10.1) 13/105	(12.4) 6/48	(12.5)
Moderate	Dysplasia 38/190	(20) 30/89	(33.7) 20/105	(19.0) 18/48	(37.5)

Severe	Dysplasia 12/190(6.3) 17/89	(19.1) 4/105	(3.8) 6/48	(12.5)
CIS 1/190	(0.5) 0/89	(0) 0/105	(0) 0/48	(0)

Tumor 0/190	(0) 1/89	(1.1) 0/105	(0) 0/48	(0)
Unknown	Histology 4/190	(2.1) 0/89	(0) 0/105	(0) 0/48	(0)

Current	smoker	(Genomic	prediction) 119/190	(62.6) 44/89	(49.4) 38/105	(36.2) 20/48	(41.7) 1.80E-05 0.47
Progression	Status 0.39

Normal/Stable 47/190	(24.7) 35/105	(33.3)
Progressive/Persistent 44/190(23.2) 20/105	(19.0)

Regressive 30/190	(15.8) 18/105	(17.1)
Unknown 69/190	(36.3) 32/105	(30.5)

Validation	CohortDiscovery	Cohort P-value
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were performed using Fisher's Exact Test and percentages are reported. 

 

 

 

 

Table 3.  Summary of Molecular Subtype Characteristics in the Discovery Cohort.  For each 
molecular subtype, significant associations are reported with each of the 9 gene modules, clinical 
characteristics, canonical cell type epithelial and white blood cell gene markers, pathways, and 
transcription factors. 
 

 

 

 

PROLIFERATIVE
Up-regulated	Modules 4,	5,	7

Down-regulated	Modules 6
Clinical	Characteristics Current	smoking	(86%),	Dysplastic	biopsies	(63%)

Biological		Characteristics SCC	subytpes	-	Classical	and	Basal;	TUB1A1,	SCGB1A1	down-regulated;	KRT5,	KI67	up-regulated
Pathways Cell	cycle:		BUB1B/1/3,	CHEK1/2,	CDK1/2/4/6,	E2F1/3/2/4,	MCM4/3/5/6/7,	TP53,	RB1

DNA		repair:		TP53,	PARP1,	RAD51,	BRCA2,	FANCA/D2/G/E/M/C,	XRCC5/6,	ERCC6
Oxidative	Phosphorylation	and	Electron	Transport	Chain:		ATP	synthases,	NADH-ubiquinone	oxidoreductases,	cytochrome	C	oxidases

TFs E2F

INFLAMMATORY
Up-regulated	Modules 1,	2,	7,	8

Down-regulated	Modules 4,	5,	6
Clinical	Characteristics Former	smoking	(59%),	non-dysplastic	biopsies	(68%)

Biological		Characteristics SCC	subytpes	-	Secretory;	TUB1A1,	MUC5AC	down-regulated
Pathways Extracellular	matrix,	focal	adhesion,	and	integrin	pathways:		collagen,	integrin,	and	laminin	genes

Cytokine/chemokine	:		CCL2/14/19/21/28,	CXCL12/14/5,	CCR1/2/3/4/5,	IL1B,	IL11RA,	IL17RB,	IL1R1,	IL3RA,	EGF,	IL15,	CX3CR1,	TGFB1/B2/B3,	KIT
Down-regulation	of	oxidative	phosphorylation,	respiratory	elecron	transport,	cell	cycle

TFs SRF

SECRETORY
Up-regulated	Modules 6,	8

Down-regulated	Modules 1,	2,	5,	7
Clinical	Characteristics Current	smoking	(63%),	non-dysplastic	biopsies	(66%)

Biological		Characteristics SCC	subytpes	-	Secretory;	CD45,	MUC5AC,TUB1A1	up-regulated;	KI67,	KRT5	down-regulated
Pathways Down-regulation	of	extracellular	matrix,	focal	adhesion,	integrin	pathways

TFs Down-regulation	of	E2F

NORMAL
Up-regulated	Modules 1,	6

Down-regulated	Modules 8,	9	
Clinical	Characteristics Former	smoking	(65%),	non-dysplastic	biopsies	(75%)

Biological		Characteristics CD45,	MUC5AC,	KI67	down-regulated;	SCGB1A1,	KRT5,	TUB1A1	up-regulated
Pathways Core	Extracellular	matrix	genes:		collagen	and	laminin	genes,	WISP1/2

Down-regulation	of	innate	and	adaptive	immunity:		HLA	genes,	IRF1/4/7/8,	TLR2/4/6/8/10,	IKBKB
TFs Down-regulation	of	PEA3,	IRF,	NFKB	
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