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Abstract

Advances in medical technology have allowed for customized prognosis, diagnosis, and
personalized treatment regimens that utilize multiple heterogeneous data sources. Multi-
ple kernel learning (MKL) is well suited for integration of multiple high throughput data
sources, however, there are currently no implementations of MKL in R. In this paper,
we give some background material for support vector machine (SVM) and introduce
an R package, RMKL, which provides R and C++ code to implement several MKL
algorithms for classification and regression problems. The provided implementations of
MKL are compared using benchmark data and TCGA ovarian cancer. We demonstrate
that combining multiple data sources can lead to a better classification scheme than
simply using a single data source.

1 Introduction 1

Integrating multiple heterogeneous high throughput data sources is an emerging topic 2

of interest in cancer research. Making decisions based upon metabolomic, genomic, 3

etc. data sources can lead to better prognosis or diagnosis than simply using clinical 4

data alone. Support vector machines (SVM) are not suitable for analyzing multiple 5

data sources in a single analysis. SVM employs the kernel trick, thus it is able to 6

construct nonlinear classification boundaries. However, obtaining an optimal kernel type, 7

hyperparameter, and regularization parameter are challenging tasks. Cross validation 8

can be employed to make these selections. Ultimately, there may not be one single 9

optimal kernel, but rather a convex combination of several kernel representations of 10

the data. Methods that produce a classification rule based on a convex combination of 11

candidate kernels are referred to as multiple kernel learning (MKL) methods. 12

We present an R package, RMKL, which can implement cross validation for training 13

SVM and support vector regression models, as well as MKL for both classification 14

and regression problems. Three implementations of MKL classification are included, 15

SimpleMKL proposed by Rakotomamonjy et al. (2008), Simple and Efficient MKL 16

(SEMKL) proposed by Xu et al. (2010), and SpicyMKL (DALMKL) presented by Suzuki 17

et al. (2011). Each of these implementations were presented in MATLAB, but to our 18

knowledge RMKL is the first package that implements MKL in R. 19

We provide a brief summary of the mathematical theory of SVM and MKL in section 20

2. In section 3, we describe the features included in our package RMKL. In section 4, we 21

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/415950doi: bioRxiv preprint 

https://doi.org/10.1101/415950
http://creativecommons.org/licenses/by-nc-nd/4.0/


illustrate RMKL using benchmark datasets and predict survival outcomes using TCGA 22

Ovarian dataset with clinical and miRNA data. Finally, in section 5, we make a few 23

closing remarks. 24

2 Background 25

2.1 Support Vector Machine 26

We will be considering samples (xi, yi), where the outcome y = {−1, 1} and the vector
of covariates x ∈ X . The goal of SVM is to find the hyperplane, {w : w · x+ b}, that
correctly separates the data into two classes and has the largest possible largest distance
between the boundary of the two groups, which is referred to as margin. The SVM
classification rule is defined to be y(x) = w · x+ b. The SVM problem can be expressed
as the following convex optimization problem:

minimize ||w||2 subject to yi(w · xi + b) ≥ 1 for all 1 ≤ i ≤ n. (1)

Note that yi(w · xi + b) greater than 1 if yi and w · xi + b have the same sign, i.e. the 27

sample is correctly classified. This problem is known as the hard margin formulation 28

and is only feasible when two groups can be perfectly separated by linear function. 29

It is rare that data can perfectly linearly separable. We can relax (1) so that samples
are allowed to be misclassified, by incorporating a penalty for samples that misclassified.
The following optimization convex problem is referred to as the soft margin problem:

minimize
1

2
||w||2 + C

n∑
i=1

ξi

subject to yi(w · xi + b) ≥ 1− ξi for all 1 ≤ i ≤ n,
(2)

where ξi = max(0, yi(w · xi+ b)) and is known as the hinge loss function. The parameter 30

C controls the penalty of misclassification, and a value for C is typically found via 31

cross validation. Larger values of C can lead to a smaller margin to minimize the 32

misclassifications, while smaller values of C may produce a larger margin that can lead 33

to more misclassifications. Problem (2) is typically not solved directly, but rather by 34

solving the Lagrangian dual. 35

The Lagrangian is the sum of the original objective function and a term that involves
the constraints and multiplier. The Lagrangian of (2) is given below:

L(w, ξ, α, b) = 1

2
||w||2 + C

n∑
i=1

ξi +
n∑
i=1

αi(1− ξi − yi(w · xi + b)) (3)

where αi ≥ 0. The minimizers of L are found by setting the gradient of L equal to zero
and solving the resulting system of equations:

∂L
∂w

set
= w −

n∑
i=1

αiyixi = 0, (4a)

∂L
∂b

=
n∑
i=1

αiyi
set
= 0, and (4b)

∂L
∂ξi

= C − αi
set
= 0, for all 1 ≤ i ≤ n. (4c)
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Equations (4b) and (4c) provide two new constraints, namely
n∑
i=1

αiyi = 0 and αi ≤ C,

and provides a representation for the optimal hyperplane w =
n∑
i=1

αiyixi. Plugging the

solutions of (4) into the Lagrangian (3) yields the dual problem:

maximize
n∑
i=1

αi −
1

2

n∑
i=1

n∑
i′=1

(αiyi)(xi · xi′)(αi′yi′)

subject to
n∑
i=1

αiyi = 0

0 ≤ αi ≤ C for all i = 1, . . . , n,

(5)

where (xi · xi′) denotes the dot product between xi and xi′ . This problem is a quadratic
programming problem that can solved with many solvers and can be solved much more
efficiently than (2). The Karush-Kuhn-Tucker (KKT) conditions are necessary conditions
for solving a non-linear programming problem and for SVM these conditions are:

αi = 0⇒ yi(w · x) ≥ 1 and ξi = 0, (6a)

0 < αi < C ⇒ yi(w · xi) = 1 and ξi = 0, (6b)

αi = C ⇒ yi(w · x) ≤ 1 and ξi > 0. (6c)

The resulting classification function produced by SVM algorithms is computed with 36

only consider samples where 0 < αi < C, which correspond to points that are on the 37

margin, second condition. These points are called support vectors and the number of 38

support vectors is can be much smaller than the number of samples which helps make 39

SVM algorithms faster. 40

If data are not linear separable, kernels can be employed to map data into a higher
dimensional feature space where the data are linearly separated. A kernel function
K : X × X → R that for all xi, xi′ that satisfies K(xi, xi′) := (φ(xi) · φ(xi′)) where
φ : X → H, and H is a Hilbert space. Kernel functions are different similarity measures
between samples and K is a symmetric positive definite matrix which aid in solving
optimization problems that we will introduce. The above derivation can be extended to
non-linear classification by simply replacing w and xi, in (2) and (3), f(x) with φ(xi)
and f(x) = K(·, x) respectively, where which yields

minimize
1

2
||f ||2 + C

n∑
i=1

ξi

subject to yi(f(xi) + b) ≥ 1− ξi for all 1 ≤ i ≤ n.
(7)

The Lagrangian dual can be constructed in a similar fashion as above, of (7) which
yields:

maximize
n∑
i=1

αi −
1

2

n∑
i=1

n∑
i′=1

(αiyi)K(xi, xi′)(αi′yi′)

subject to
n∑
i=1

αiyi = 0

0 ≤ αi ≤ C for all i = 1, . . . , n.

(8)

Since K is a symmetric positive definite matrix, (8) is a quadratic programming problem. 41

Unlike SVM, we there is typically not a closed form expression for f(x), thus it is difficult 42

to interpret the results. 43
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Kernel selection is crucial and typically impossible, to confirm visually if input space 44

has more than two dimension. Selecting an inappropriate kernel may lead to overfitting, 45

or lead to a classification rule that misses important characteristics in the input space. 46

Common kernels that are used for continuous predictors include: 47

1. Linear Kernel: K(xi, xi′) = (xi · xi′) 48

2. Polynomial Kernel: K(xi, xi′) = (γ ∗ (xi · xi′) + ν)d where γ, ν ∈ R, d ∈ Z+
49

3. Gaussian Kernel: K(xi, xi′) = exp{−σ||xi − xi′ ||2}, where σ > 0 50

4. Sigmoid Kernel: K(xi, xi′) = tanh(γ(xi · xi′) + ν),where γ, ν ∈ R 51

Gaussian, polynomial and sigmoid kernels have parameters embedded within them, σ 52

controls the radius of the Gaussian kernel. A scale, γ, and constant term, ν, can be 53

specified for polynomial and sigmoid kernels. The selection of internal parameters is 54

also vital to the success of the classification rule. For instance, the Gaussian kernel with 55

a large radius can be similar linear or polynomial classification rule. A disadvantage of a 56

Gaussian kernel is that can it lead to overfitting compared to simpler kernels such as 57

linear or polynomial kernels. 58

Typically, medical studies include clinical variables, such as patient demographic
characteristics as predictors and the aforementioned kernels are not appropriate for
categorical predictors. Daeman, suggested the following kernel:

K(xi, xi′) =
r − |xi − xi′ |

r
(9)

for each ordinal or continuous demographic factors, and

K(xi, xi′) =

{
1 if xi = xi′

0 if xi 6= xi′ ,
(10)

for nominal demographic factor. These kernels should be applied to each individual 59

demographic variable and combined using a global measure of similarity of two samples 60

by averaging each of the kernel values. 61

2.2 Multiple Kernel Learning 62

It has been shown that the convex combinations of kernel functions is a kernel function.
An avenue for improvement is to utilize several different representations of the data
and allow an algorithm use a weighted average of these representations of the data.
This can help automate kernel selection by using a combination a kernel functions for
a set of candidate kernels, this is the main idea of multiple kernel learning (MKL).
Combining kernels is possible by decomposing the input space into blocks as follows
X = X1×· · ·×Xm where each sample can be expressed as φ(xi) = (φi(xi1), . . . , φi(xim)).
MKL can be formulated as the following optimization problem:

minimize
1

2

 m∑
j=1

γ−1j ||fj ||Hj

2

+ C
n∑
i=1

ξi

subject to yi

 m∑
j=1

fj(xi) + b

 ≥ 1− ξi for all 1 ≤ i ≤ n

n∑
j=1

γj = 1, γj ≥ 0.

(11)
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This problem remains convex, however it is not smooth which leads to computational
issues. Using the same procedure as before, the Lagrangian dual given below:

minimize
γ

maximize
α

1

2

m∑
j=1

γj(αy)
TKj(αy)−

n∑
i=1

αi

subject to
n∑
i=1

αiyi = 0

0 ≤ αi ≤ C for all i = 1, . . . , n
m∑
j=1

γj = 1

γj ≥ 0 for all j = 1, . . . ,m.

(12)

MKL allows is the flexibility to assign kernels on an individual variables basis, or as a 63

data integration tool by assigning the different kernels to multiple data sources. 64

Differences in scale can be made even more dramatic with different kernel choices. 65

An MKL algorithm can possibly put more importance on the variable with the largest 66

variability regardless of accuracy of classification. Feature scaling is an important 67

technique in many machine learning algorithms which transforms data so that they are 68

on the same scale and unitless quantities. Common methods of data transformations are 69

feature scaling, mean centering, or z−score transformation. Additionally, many articles 70

have suggested dividing each kernel matrix by their respective trace to help speed up 71

algorithms and eliminate computational issues. In some machine learning algorithms 72

data normalization can reduce computation time, in SVM it can reduce the time to find 73

support vectors and changes the classification rule. 74

There have been many algorithms proposed to conduct MKL. One class of MKL
algorithms are wrapper methods which iteratively solve a single kernel learning problem
for a given combination of kernel weights. Wrapper methods iteratively optimize f, b, α
with γ fixed, sometimes referred to as the fixed weights problem, and then optimize γ
with f, b, α fixed. A theme of wrapper methods is that they reformulate either the
dual or primal of the MKL problem in order to use off-the-shelf efficient solvers. Bach
et. al (2004), reformulated the quadratically quadratic programming problem (10) as a
second-order cone programming (SOCP) problem. Bach uses sequential minimization on
a smoothed version of QCQP, unfortunately SOCP with many samples can be quite slow.
Sonnenburg et. al (2006) recast the MKL problem as a semi-infinite linear program
(SILP) problem, which they propose column generation as a technique to solve the
SILP. They also explore generic loss functions such as soft margin loss, one class margin
loss, and ε−sensitive loss. Sonnenburg pointed out that a shortcoming of wrapper
methods is optimization of f, b, α is inefficient, and unnecessary, if γ is not optimal and
made recommendations to help MKL algorithms be efficient on large scale problems.
Rakotomamonjy et. al (2008) develop a smooth formulation, with L2 regularization,

of MKL that is equivalent to (9) by replacing (
m∑
j=1

|f |Hj )
2 with

m∑
j=1

γ−1j |f |
2
Hj

in the

objective function. This relationship is established by utilizing the Cauchy Schwarz
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inequality to show the following relationship:(
n∑
i=1

||fj ||Hj

)2

=

(
n∑
i=1

||fj ||Hj

γ
1/2
j

γ
1/2
j

)2

≤

 n∑
i=1

(
||fj ||Hj

γ
1/2
j

)2
( n∑

i=1

(
γ
1/2
j

)2)

≤

(
n∑
i=1

γ−1j ||fj ||
2
Hj

)
(13)

with equality when f and γ are linearly dependent, and in particular if

γj =
||fj ||Hj

m∑
k=1

||fk||Hk

. (14)

This is novel because it gives an explicit formula for makes the optimization less complex. 75

Bach et al. (2008) explored the Block 1-norm in order to compute regularization
paths for multiple kernel learning. Bach points out the that Block 1-norm is a similar
formulation to Lasso, but sparsity is enforced so that only a small number of kernels
are used in the final model. Group lasso divides predictor variables into blocks and
determines which blocks are most important for prediction, then assigns them the same
regression coefficient. Group lasso can be formulated as:

minimize
β

1

2
||Y −

m∑
j=1

Xjβj ||2 + λ

m∑
j=1

||βj ||, (15)

where λ ≥ 0, and βj is the regression coefficient corresponding the jth group of predictors. 76

Group lasso reduces the number of parameters that need to be estimated in a model by 77

requiring that each member of a group has the same regression coefficient, but there is 78

no feature selection within groups. There have been further modifications to incorporate 79

variable selection within groups, as well as, penalties that adjust for the size of a group. 80

Kloft et. al, and Xu et. al, both utilized the similarity of MKL and group lasso.
Kloft noted that using the L1 rarely outperforms using uniform weights in MKL, and
proposed an additional constraint in search of the best trade off between sparsity and
uniform weights. Kloft showed the Tikhonov regularization:

minimize
f,b,γ

1

2

m∑
j=1

γ−1j ||fj ||Hj + C

n∑
i=1

V (f(xi) + b, yi) subject to ||γ|| ≤ 1, (16)

which is similar to Lasso regression formulation, and Ivanov regularization:

minimize
f,b,γ

1

2

m∑
j=1

γ−1j ||fj ||Hj + µ||γ||2 + C̃
n∑
i=1

V (f(xi) + b, yi), (17)

are equivalent. Incorporating the hinge loss into the Tikhonov regularization and taking
dual lead to a similar quadratic programming problem to (10) which is solved with
Newton’s method or a cutting plane algorithms. They propose an explicit formula,

γj =
||fj ||

2p
1+p

Hj(
m∑
k=1

||fk||
2p

1+p

Hk

) 1
p

, (18)
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to compute optimal coefficients. Xu et. al exploits the relationship between group lasso 81

and MKL. They provide an algorithm that is faster than Kloft’s algorithm and also does 82

not rely on Taylor’s series expansion required for Newton’s method by applying (14) at 83

each step as opposed to computing the weights with another optimization problem. 84

Suzuki et. al (2011) further explored block 1-norm proposed by Bach. The block 85

1-norm problem is solved using dual augmented-Lagrangian. This problem is solved 86

by alternating between solving the primal problem using proximal descent and then 87

solving the dual problem using Newton’s method. This novel method does not rely on 88

iteratively solving linear or quadratic programming problems and can efficient solve 89

MKL with more than 1000 candidate kernels. The paper provides a detailed overview of 90

the derivation and outlines many scenarios that use elastic net and block q−norm, for 91

q ≥ 1, regularizations, as well as, logistic, squared, hinge, and ε− loss functions. These 92

scenarios make DALMKL a promising method for extension to other employed in other 93

arenas such as causal inference, or survival analysis. 94

SVM can easily be extended to support vector regression (SVR). The goal of SVR
is to construct a prediction that is at most away from the observed response. The loss
function is called ε−sensitive loss, and is defined as ξi = max(0, |f(xi)− yi| − ε). Soft
margin SVR is typically formulated as:

minimize
1

2
||w||2 + C

n∑
i=1

(ξi + ξ∗i )

subject to yi − (w · xi)− b ≤ ε+ ξi for all i = 1, . . . , n

(w · xi) + b− yi ≤ ε+ ξ∗i for all i = 1, . . . , n

ξi, ξ
∗
i , ε ≥ 0 for all i = 1, . . . , n.

(19)

Here ξi and ξ
∗
i correspond to slack variables for the predicted values that are above or

below the observed value respectively. This problem is not solved this problem directly,
but rather we solve the dual form, given below:

maximize − 1

2

n∑
i=1

n∑
j=1

(αi − α∗i )(αj − α∗j )(xi, xj)

− ε
n∑
i=1

(αi + α∗i ) +
n∑
i=1

yi(αi − α∗i )

subject to
n∑
i=1

(αi − α∗i ) = 0, and 0 ≤ αi, α∗i ≤ C

for all i = 1, . . . , n.

(20)

There are only subtle modifications, from derivations SVM and application of the kernel 95

trick, required to solve this with quadratic programming solvers. We can use cross 96

validation to find the optimal C and ε. Similar to before, larger C tend to smaller ε, 97

large errors are heavily penalized. While small values C allow for larger ε since there 98

is not a large penalty for large prediction errors. Fortunately, the tools developed in 99

previous discussion can be utilized, namely we can extend SVR to non-linear regression 100

by using the kernel trick. Taking the Lagrangian dual leads to quadratic programming 101

problem, which can be solved using off the shelf solvers. A more detailed discussion of 102

SVR can be found in Smola et al. (2004). As mentioned above, many authors have 103

discussed that their MKL algorithms can easily be extended regression problem with. 104
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3 RMKL R package 105

RMKL provides several methods to implement MKL, SVM, and multiple kernel regression. 106

There are several dependencies of this packages. RcppArmadillo allow for “Seamless R 107

and C++ Integration”, kernlab is used to create the kernel matrices, and caret is used 108

to train SVM models. 109

Traditionally, kernel matrices are generated before implementation of MKL. A wrapper 110

function is provided that can produce kernel matrices for both the test and training 111

sets. Currently, RMKL can construct linear, polynomial, Gaussian, and clinical kernels 112

proposed by Daemon. 113

Before implementing MKL, we recommend conducting SVM, with cross validation 114

for two reasons. First, if SVM can successfully classify data, then there an opportunity 115

for improving the accuracy using MKL. Secondly, if MKL is used as a data integration 116

method, SVM can provide intuition for which parameters lead the best separation of 117

data. To perform SVM, we have included a wrapper function that performs k-fold cross 118

validation. 119

SimpleMKL has been implemented in previous cancer research studies. For example, 120

Sloane et al. (2014) implemented SimpleMKL treating gene pathways as different data 121

sources. SEMKL and DALMKL are more computationally efficient than SimpleMKL. 122

SEMKL directly computes the kernel weights, while SimpleMKL uses gradient descent 123

at each iteration to compute the kernel weights. DALMKL is written in C++, and uses 124

Newton descent to update the kernel weights. Additionally, DALMKL has performs 125

well when thousands of candidate kernels are used, and is dramatically faster than 126

SimpleMKL. SimpleMKL and DALMKL tend to give sparse solutions allowing for an 127

opportunity to interpret the final results. 128

We are not able to directly compare the performance of SimpleMKL and SEMKL
using the same parameterization, however this is not true for DALMKL. Suzuki points
out the relationship between the cost parameter of DALMKL and other methods, This
conversion of cost parameterizations is available in the MKL package. Suzuki provided
the following relationship

C = C̃

 m∑
j=1

||fj ||

 , (21)

where C corresponds to the cost of misclassification of SEMKL or SimpleMKL, C̃ 129

corresponds to cost of misclassification in DAMKL, and ||fj || = αTKjα 130

Even though sparse MKL solutions do not typically outperform uniformly weighted 131

kernels. there is still value in sparse kernel weights, specifically the model can be 132

easier to interpret with fewer non-zero kernel weights. SimpleMKL tends to provide 133

sparse solutions compared to SEMKL, SEMKL rarely produces kernel weights that are 134

identically zero. This is due to the additional line search step for each update of the 135

kernel weights. Xu provides details on implementing MKL using with different methods 136

for updating the kernel weights. By ensuring that the vector of kernel weights was unit 137

length under the L2 norm (which is more kin to ridge regression), as opposed to the 138

kernel weights having unit length under the L1 norm (similar to lasso or group lasso 139

variable selection schemes). DALMKL enjoys this flexibility too. 140

4 Results 141

4.1 Benchmark Example 142

Besides accuracy, an additional important characteristic of MKL is the selection of kernel 143

weights. In this example, 9 datasets are generated, each dataset has two groups and 144

8

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/415950doi: bioRxiv preprint 

https://doi.org/10.1101/415950
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.00

0.25

0.50

0.75

1.00

−4 −2 0 2 4

Difference Between Groups Means

S
E

M
K

L

Method

DALMKL.Logistic

DALMKL.SVM

SEMKL

SimpleMKL

linetype

DALMKL.Losigistic

DALMKL.SVM

SEMKL

SimpleMKL

(a) Illustration of selection of kernel weight
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Figure 1. Results from SEMKL, SimpleMKL, and DAMKL on 9 benchmark datasets.

the amount overlap between the two groups varies. These datasets can be generated 145

RMKL. When there is no overlap, we expect that a radial kernel with a small sigma 146

parameter to have a larger weight than a radial kernel with a larger sigma parameter 147

(see kernel parameterization in the kernlab R package), leading to a smooth boundary. 148

On the other hand, if there is a large amount of overlap between the groups, not only 149

do we expect lower accuracy but also a classification rule that is more variable, thus a 150

larger sigma hyperparameter should be preferred. 151

On each of the 9 datasets, two radial kernels, K1 and K2 with hyperparameters 152

σ1 = 2 and σ2 = 0.04 respectively, were used. In figure 1a, notice that as amount 153

of overlap between the two groups increases the weight for K1 increases providing a 154

classification rule that is less smooth to accommodate for the overlapping groups. When 155

there is little overlap between the groups, we see that K2 is given much more weight 156

then K1, leading to a smooth classification rule for data that are perfectly separable. 157

Note that SimpleMKL and SEMKL had nearly identical performance. Figure 1b displays 158

the accuracy of the methods as the overlap between the groups changes. Notices that 159

all algorithms can classify perfectly when there is no overlap, but when the groups are 160

completely overlapping, the prediction accuracy of each algorithm is approximately 0.5. 161

4.2 TCGA Ovarian 162

Survivorship for ovarian cancer is difficult to predict from clinical information only, 163

which is limited since most cancers are late stage and occur only in females. Thus, 164

information from high throughput data sources must be utilized to increase prediction 165

accuracy. To illustrate MKL as a data integration tool, we use TCGA ovarian cancer 166

data which contains both clinical and molecular profiles, and other data sources, from 167

572 tumor samples in total. Our goal is to use data from multiple platforms to predict if 168

a patient will live longer than three years after diagnosis. 169

Clinical kernels were constructed using kernels for stage (nominal) and age (ordinal), 170

and the average of these two as a kernel. Sloane et al. (2014) suggests using effect size or 171

p-values to prioritize genes to include into kernels. We include the 65 top ranked genes, 172

based on p-value from a t-test. Figure 1c illustrates the accuracy of the four algorithms 173

using clinical data only, miRNA data only, and a combined analysis. Surprisingly, using 174

miRNA data only leads to the worst performance, but using both data sources leads to 175

a substantially higher accuracy than either of the individual data sources. 176
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Figure 2. Comparison of performance of different MKL implementation using clinical
data only, miRNA data only, and both clinical and miRNA data in a single analysis.

5 Conclusion 177

MKL is better suited for integration of multiple high throughout data sources than 178

SVM, which is limited to a single kernel for the entire analysis, regardless of the number 179

of features and number of data sources. Our simulations show that each of the three 180

implantation of MKL perform similarly. However, using TCGA data, DAMKL with 181

logistic loss tends to produce the most accurate prediction, which is consistent with 182

Suzuki’s findings. SEMKL is consistently worse than the other methods. The poor 183

performance of SEMKL may be due to kernel weights not being as sparse as other 184

methods. TCGA data illustrates the opportunity to combine multiple data sources into 185

a single analysis and substantially boost accuracy. RMKL is a useful tool for integrating 186

high throughout data. 187

In the future, we hope to extend the RMKL package to several loss functions, 188

specifically for applications in survival analysis setting. 189
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