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Abstract

Polygenic prediction has shown promise in identifying individuals at high risk for complex diseases, and may

become clinically useful as the predictive performance of polygenic risk scores (PRS) improves. To date, most

applications calculate PRS using a subset of largely independent genetic markers, but this approach discards

information and limits the predictive value of PRS. More sophisticated Bayesian genomic prediction methods

that jointly model genetic markers across the genome are computationally challenging and do not accurately

account for linkage disequilibrium (LD) structure. Here, we present PRS-CS, a novel polygenic prediction

method that infers posterior SNP effect sizes using GWAS summary statistics and an external LD reference

panel. PRS-CS utilizes a high-dimensional Bayesian regression framework, and is distinct from previous work

by placing a continuous shrinkage (CS) prior on SNP effect sizes, which is robust to varying genetic architec-

tures, provides substantial computational advantages, and enables multivariate modeling of local LD patterns.

Simulation studies using data from the UK Biobank show that PRS-CS outperforms existing methods across

a wide range of effect size distributions, especially when the training sample size is large. We apply PRS-

CS to predict six common, complex diseases and six quantitative traits in the Partners HealthCare Biobank,

for which external large-scale GWAS summary statistics are publicly available, and further demonstrate the

improvement of PRS-CS in prediction accuracy over alternative methods.
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Introduction

Polygenic risk scores (PRS), which summarize the effects of genome-wide genetic markers to measure the

genetic liability to a trait or a disorder, have shown promise in predicting quantitative traits and identifying

individuals at high risk for complex diseases, and may facilitate early detection, stratification, and prevention

of heritable, common diseases in healthcare settings [Chatterjee et al., 2016; Khera et al., 2018].

To maximize the translational potential of PRS, statistical and computational methods are needed that can

(1) jointly model all genetic markers across the genome to make full use of the available information while

accounting for local linkage disequilibrium (LD) structures; (2) accommodate varying effect size distributions

across complex traits and diseases, from highly polygenic genetic architectures (e.g., height and schizophre-

nia), to a mixture of small effect sizes and clusters of genetic loci that have moderate to larger magnitudes

of effects (e.g., autoimmune diseases and Alzheimer’s disease); (3) produce prediction from GWAS summary

statistics without access to individual-level data; and (4) retain computational scalability.

To date, most applications calculate PRS from a subset of the genetic markers after pruning out SNPs in

LD and applying a P -value threshold to GWAS summary statistics [International Schizophrenia Consortium,

2009]. Although this approach has advantages in terms of computational and conceptual simplicity, and has

been used to predict genetic liability across a broad phenotypic spectrum, recent studies have shown that this

conventional method for PRS construction discards information and limits predictive accuracy [Vilhjálmsson

et al., 2015]. More sophisticated Bayesian polygenic prediction methods that rely on GWAS summary statis-

tics, including LDpred [Vilhjálmsson et al., 2015] and the normal-mixture model recently developed by Zhang

et al. [2018], can incorporate genome-wide markers and accommodate varying genetic architectures, and thus

have enhanced performance and flexibility. However, the type of prior used in these methods on SNP ef-

fect sizes, known as discrete mixture priors, imposes daunting computational challenges and may result in

insufficient adjustment for local LD patterns.

In this work, we present a novel polygenic prediction method, PRS-CS, which utilizes a Bayesian regres-

sion framework and places a conceptually different class of priors — the continuous shrinkage (CS) priors

— on SNP effect sizes. Continuous shrinkage priors allow for marker-specific adaptive shrinkage (that is,

the amount of shrinkage applied to each genetic marker is adaptive to the strength of its association signal in

GWAS), and thus can accommodate diverse underlying genetic architectures. In addition, continuous shrink-

age priors enable conjugate block update of the SNP effect sizes in posterior inference (that is, effect sizes for

SNPs in each LD block are updated jointly, in a multivariate fashion, in contrast to updating the effect size for
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each marker separately and sequentially), and thus can accurately model local LD patterns and provide sub-

stantial computational improvements. Several special cases of continuous shrinkage priors have been applied

to quantitative trait prediction or gene mapping [De Los Campos et al., 2009; Hoggart et al., 2008; Makowsky

et al., 2011; Xu, 2003; Yi and Xu, 2008]. However, all previous work required individual-level data and was

limited to small-scale analyses (both in term of the sample size and number of genetic markers). PRS-CS only

requires genome-wide association summary statistics and an external LD reference panel, and therefore can

be applied in a broader range of settings.

We conduct simulation studies using the UK Biobank genetic data [Bycroft et al., 2017; Sudlow et al.,

2015], and demonstrate that PRS-CS dramatically improves the predictive performance of PRS over existing

methods across a wide range of genetic architectures, especially when the training sample size is large. We

apply PRS-CS to predict six curated complex diseases (breast cancer, coronary artery disease, depression,

inflammatory bowel disease, rheumatoid arthritis, and type 2 diabetes mellitus) and six quantitative traits

(height, body mass index, high-density lipoproteins, low-density lipoproteins, cholesterol, and triglycerides)

in the Partners HealthCare Biobank [Gainer et al., 2016; Karlson et al., 2016; Smoller et al., 2016], and further

demonstrate the potential of PRS-CS for the clinical translation of polygenic prediction.

Material and Methods

Conceptual frameworks. We consider a Bayesian high-dimensional regression framework for polygenic

modeling and prediction: yN×1 = XN×MβM×1 + εN×1, where N and M denote the sample size and number

of genetic markers, respectively, y is a vector of traits, X is the genotype matrix, β is a vector of effect

sizes for the genetic markers, and ε is a vector of residuals. By assigning appropriate priors on the regression

coefficients β to impose regularization, additive PRS can be calculated using the posterior mean effect sizes.

Essentially all widely used prior densities for β can be represented as scale mixtures of normals:

p(βj) =

∫
N(0,Ψj)dG(Ψj), (1)

or equivalently, as the following hierarchical form:

βj | Ψj ∼ N(0,Ψj), Ψj ∼ G, (2)

where N(µ, σ2) is a normal distribution with mean µ and variance σ2, and G is a mixing distribution. For

example, if G places all its mass at a single point, i.e., G(Ψj) = δσ2
β
, where δ• is the Dirac delta measure,
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then marginally βj ∼ N(0, σ2
β), and we have recovered the infinitesimal model [Yang et al., 2010]. To create

a more flexible model of the genetic architecture, a discrete mixture of two or more point masses or densities

can be used, which allows for a wider effect size distribution than a normal prior can produce. For example,

G(Ψj) = (1 − π)δ0 + πδτ2 , where π is the mixing probability, produces the point-normal prior on effect

sizes, βj ∼ (1− π)δ0 + πN(0, τ 2), which was used in LDpred [Vilhjálmsson et al., 2015]. Although discrete

mixture priors offer a natural and intuitive approach to model non-infinitesimal genetic architectures, posterior

inference requires a stochastic search over an exponentially large discrete model space, and does not allow

for multivariate block update of the effect sizes, which limits sampling efficiency and may result in inaccurate

modeling of local LD patterns.

In this work, we investigate a conceptually different class of priors — the continuous shrinkage priors. In

particular, we consider the following prior on SNP effect sizes, which can be represented as global-local scale

mixtures of normals:

βj | ψj ∼ N(0, φψj), ψj ∼ g, (3)

where φ is a global scaling parameter that controls the degree of sparseness of the model, and g is an abso-

lutely continuous density function, in contrast to a discrete mixture of atoms or densities. By appropriately

choosing the continuous mixing density g, this modeling framework can produce a variety of shapes of the

prior distribution on βj , and encompasses many well-known priors as special cases. For example, if ψj follows

an exponential distribution, then marginally βj has independent Laplace (i.e., double-exponential) priors. This

model is known as Bayesian LASSO [Hans, 2009; Park and Casella, 2008], because the Bayesian posterior

mode estimate corresponds to the frequentist LASSO estimate. Often g is designed such that the prior distri-

bution on the SNP effect sizes has a sizable amount of mass near zero to impose strong shrinkage on noise,

while at the same time has heavy tails to avoid over-shrinkage of truly non-zero effects. The marker-specific

local shrinkage parameter ψj can then adaptively squelch small noisy estimates towards zero, while leaving

data-supported large signals unshrunk. PRS-CS further extends this framework to enable posterior inference

of SNP effect sizes under continuous shrinkage priors using genome-wide association summary statistics and

an external LD reference panel.

Overview of polygenic prediction methods. We compare PRS-CS with four polygenic prediction methods

that rely on GWAS summary statistics: polygenic scoring based on all genetic markers (unadjusted PRS),

informed LD-pruning and P -value thresholding (P+T), LDpred and LDpred-inf [Vilhjálmsson et al., 2015].

Throughout the paper, we use the 1000 Genomes Project [1000 Genomes Project Consortium, 2015] European
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samples (N = 503) as the external LD reference panel. Below, we first briefly describe each of the existing

methods, and then present PRS-CS in detail.

Unadjusted PRS. The unadjusted PRS is the sum of all genetic markers across the genome, weighted by

their marginal effect size estimates. More specifically, the unadjusted polygenic score for the i-th individual

is PRSi =
∑M

j=1Xij b̂j , where M is the total number of genetic markers, Xij is the genotype for the i-th

individual and the j-th SNP, and b̂j is the estimated marginal per-allele effect size of the j-th SNP.

P+T. The P+T method refers to the calculation of PRS using informed LD-pruning (also known as LD-

clumping) and P -value thresholding. In this study, we use the implementation of the P+T method in the

software package PRSice-2 [Euesden et al., 2014] and its default parameter settings. Specifically, for any pair

of SNPs that have a physical distance smaller than 250 kb and an R2 greater than 0.1, the less significant SNP

is removed. The polygenic score is then calculated as the sum of the remaining, largely independent SNPs

with a GWAS association P -value below a threshold PT , weighted by their marginal effect size estimates. We

consider PT ∈ {1E-8, 1E-7, 1E-6, 1E-5, 3E-5, 1E-4, 3E-4, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1}, and report

the best predictive performance across these thresholds in this paper.

LDpred and LDpred-inf. LDpred is a method that infers the posterior mean effect size of each genetic marker

from GWAS summary statistics while accounting for LD, using a point-normal prior on the SNP effect sizes

and the LD information from an external reference panel [Vilhjálmsson et al., 2015]. Consider the linear model

y = Zβ + ε, where y is a vector of standardized phenotypes from N individuals, Z is an N ×M matrix

of standardized genotypes (each column is mean centered and has unit variance), β = [β1, β2, · · · , βM ]>

is a vector of true effect sizes, and ε is a vector of independent environmental effects. LDpred places an

independent point-normal prior on each βj:

βj ∼

 N

(
0,

h2g
πM

)
, with probability π

0, with probability 1− π,
(4)

where h2g is the heritability explained by genome-wide genetic markers (known as SNP-heritability), and π

is the fraction of causal variants. Given π and an estimate of h2g, which can be obtained, for example, by

applying LD score regression to the GWAS summary statistics [Bulik-Sullivan et al., 2015], LDpred employs

a Markov Chain Monte Carlo (MCMC) sampler to approximate the posterior mean of βj , conditioning on

marginal least squares effect size estimates and LD information from a reference panel. In this paper, we
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consider π ∈ {1E-5, 3E-5, 1E-4, 3E-4, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1}, and report the highest prediction

accuracy across these fraction values.

LDpred-inf is a special case of LDpred when all variants are assumed to be causal (i.e., π = 1). Under this

infinitesimal model, the posterior mean effect sizes in the `-th LD window have a closed-form approximation:

E[β` | β̂`,D`] ≈
(
D` +

M

Nh2g
I

)−1
β̂`, (5)

where β̂` is a vector of marginal least squares effect size estimates,D` is the LD matrix that can be estimated

from an external reference panel, I is an identity matrix, and it has been assumed that h2` , the heritability

explained by SNPs in the `-th LD window, is small such that 1 − h2` ≈ 1. In this work, we use an LD radius

of M/3000 to approximate the local LD pattern, as suggested in Vilhjálmsson et al. [2015].

PRS-CS. Consider the phenotype model:

y = Zβ + ε, ε ∼ N(0, σ2I), p(σ2) ∝ σ−2, (6)

where both the phenotype y and the genotype matrix Z have been standardized, and we have assigned a non-

informative scale-invariant Jefferey’s prior on the residual variance σ2. In contrast to discrete mixture priors

such as the point-normal prior used in LDpred, we consider a conceptually different class of priors:

βj ∼ N

(
0,
σ2

N
φψj

)
, ψj ∼ g, (7)

where the variance of βj scales with the residual variance and the sample size, φ is a global scaling parameter

that is shared across all effect sizes, ψj is a local, marker-specific parameter, and g is an absolutely continuous

mixing density function. This type of prior is known as global-local scale mixtures of normals.

We first note that, given variance parameters σ2, φ and ψj , j = 1, 2, · · · ,M , and the marginal least squares

effect size estimates of the regression coefficients β̂ = Z>y/N , the posterior mean of β is

E[β | β̂] = (D + T−1)−1β̂, (8)

where T = diag{φψ1, φψ2, · · · , φψM} is a diagonal matrix, and D = Z>Z/N is the LD matrix. It can be

seen that the posterior mean is a matrix shrinkage version of the least squares estimate. In the degenerative

special case where ψj ≡ 1, the model becomes Ridge regression and all effect sizes are shrunk towards zero at

the same constant rate controlled by the overall shrinkage parameter φ. The introduction of the local shrinkage

parameter ψj thus allows heterogeneity in the scales of effect sizes.
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To provide further intuitions, assuming that all genetic markers are unlinked (i.e., no LD), we haveD = I

and thus

E[βj | β̂j] =
1

1 + φ−1ψ−1j
β̂j =

(
1− 1

1 + φψj

)
β̂j := (1− τj)β̂j, (9)

where τj = 1/(1 + φψj) is the shrinkage factor for the j-th marker, which relies on both φ and ψj , and

describes the amount of shrinkage from the marginal least squares solution towards zero; τj = 0 indicates no

shrinkage while τj = 1 yields total shrinkage. Therefore, φ controls the overall sparsity level of the model

and plays a similar role as the penalty parameter in penalized regression, while ψj adaptively modifies the

amount of shrinkage for each marker. By assigning a prior on ψj , which can produce a marginal prior density

on βj that has both a sharp peak at zero and heavy tails, the model can pull small effects towards zero, while

asserting little influence on larger effects.

In this work, we investigate a specific continuous shrinkage prior. We assign an independent gamma-

gamma prior on the local shrinkage parameter ψj:

ψj ∼ G(a, δj), δj ∼ G(b, 1), (10)

where G(α, β) denotes the gamma distribution with shape parameter α and scale parameter β. By using

change of variables, it can be verified that placing a gamma-gamma prior on ψj is equivalent to placing a

three-parameter beta (TPB) prior on the shrinkage factor τj [Armagan et al., 2011]:

τj ∼ TPB(a, b, φ), (11)

where the TPB distribution has the following density function:

f(x; a, b, φ) =
Γ(a+ b)

Γ(a)Γ(b)
φbxb−1(1− x)a−1{1 + (φ− 1)x}−(a+b), (12)

with 0 < x < 1, a > 0, b > 0 and φ > 0. When φ = 1, the TPB distribution becomes a standard Beta

distribution. For a fixed value of φ, a controls the behavior of the TPB prior near one, and thus the behavior

of the prior on βj around zero; b controls the behavior of the TPB prior near zero, and thus affects the tails

of the prior on βj . Figure 1 shows the prior densities on τj (upper panel) and βj (middle and lower panels)

with φ = 1, b = 1/2, and three different values of a: a = 1/2, a = 1 and a = 3/2. It can be seen that when

a = 1/2 and b = 1/2, the TPB prior has substantial mass near zero and one (Figure 1, upper), and thus the

corresponding prior density on βj has a very sharp peak around the origin, with zero being a pole (singular

point; Figure 1, middle), along with heavy, Cauchy-like tails (Figure 1, lower). This prior is known as the

horseshoe prior [Carvalho et al., 2010], due to the horseshoe-shaped prior density on the shrinkage factor τj .

8

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/416859doi: bioRxiv preprint 

https://doi.org/10.1101/416859
http://creativecommons.org/licenses/by-nc-nd/4.0/


As a increases, the prior on βj becomes less peaked at zero but the tails remain heavy. Finally, for fixed a and

b, decreasing the global shrinkage parameter φ shifts the TPB prior from left to right, which imposes stronger

shrinkage on the regression coefficients βj .

For all continuous shrinkage priors that take the general form in Eq. (7), Gibbs samplers with block up-

dating of the regression coefficients (i.e., SNP effect sizes) β can be easily derived. By using LD information

from an external reference panel, the method can be applied to genome-wide association summary statistics

and does not require individual-level data. We describe the Gibbs sampler in Appendix A. In this study, we

focus on a specific set of parameter values of the gamma-gamma prior on ψj (or equivalently, the TPB prior

on τj): a = 1 and b = 1/2. This particular specification is known as the Strawderman-Berger prior [Berger,

1980; Strawderman, 1971] or the quasi-Cauchy prior [Johnstone and Silverman, 2004], and appears to work

well across a range of simulated and real genetic architectures.

In practice, we partition the genome into 1,703 largely independent genomic regions estimated using data

from the 1000 Genomes Project European samples [Berisa and Pickrell, 2016], and conduct multivariate

updating of the effect sizes within each LD block (see Appendix A). To avoid numerical issues caused by

collinearity between SNPs, we set a lower bound on the amount of regularization applied to the genetic

markers (i.e., restricting φ−1ψ−1j > ρ, where ρ is a small constant). We use ρ = 1 throughout this paper. We

treat the global shrinkage parameter φ as fixed in this work, and find that setting φ1/2 roughly to the proportion

of causal variants [Piironen and Vehtari, 2016] works well. The predictive performance of the model is not

sensitive to φ, and thus if a prior guess of the sparsity of the genetic architecture is not available, testing a

small number of φ would be enough. In this work, when predicting disease and quantitative phenotypes in

the Partners HealthCare Biobank (see below), we report the best prediction accuracy across four different φ

values: φ1/2 ∈ {0.001, 0.01, 0.1, 1}. The Gibbs sampler usually attains reasonable convergence after 1,000

MCMC iterations and produces prediction accuracy close to what can be achieved by much longer MCMC

runs. We use 1,000 MCMC iterations with the first 500 steps as burn-in in simulation studies, and report the

predictive performance of PRS-CS in Partners Biobank based on longer MCMC runs with 10,000 iterations

in total and 5,000 burn-in steps.

UK Biobank genetic data. UK Biobank is a prospective cohort study of ∼500,000 individuals recruited

across Great Britain during 2006-2010 [Sudlow et al., 2015]. The protocol and consent were approved by the

UK Biobank’s Research Ethics Committee. Details about the UK Biobank project are provided at http:

//www.ukbiobank.ac.uk. Data for the current analyses were obtained under an approved data request.
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 a = 1/2 (Horseshoe)
 a = 1 (Strawderman-Berger)
 a = 3/2
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Figure 1: Densities of the priors. Upper panel: Density of the three-parameter beta prior on the shrinkage

factor τj with φ = 1, b = 1/2, and three different a values. Middle panel: Central region of the marginal prior

density on the effect size βj with φ = 1, b = 1/2, and three different a values, in comparison with the standard

normal density. Lower panel: Tails of the marginal prior density on the effect size βj with φ = 1, b = 1/2,

and three different a values, in comparison with the standard normal density.
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The genetic data for the UK Biobank comprises 488,377 samples and was phased and imputed to ∼96

million variants with the Haplotype Reference Consortium (HRC) haplotype resource and the UK10K+1000

Genomes reference panel. We leveraged the QC metrics provided by the UK Biobank [Bycroft et al., 2017]

and removed samples that had mismatch between genetically inferred sex and self-reported sex, high geno-

type missingness or extreme heterozygosity, sex chromosome aneuploidy, and samples that were excluded

from kinship inference and autosomal phasing. We further restricted the analysis to unrelated white British

participants. We conducted simulation studies using 819,941 HapMap3 SNPs after removing ambiguous (A/T

and C/G) SNPs and markers with minor allele frequency (MAF)< 1%, missing rate> 1%, imputation quality

INFO score < 0.8, and significant deviation from Hardy-Weinberg equilibrium (HWE) with P < 1 × 10−10.

All genetic analyses in the UK Biobank were conducted using PLINK 1.9 [Chang et al., 2015].

Simulations. We performed simulation studies using real genetic data from the UK Biobank. We used the

point-normal model specified in Eq. (4) to sample SNP effect sizes. The simulated trait was generated by

the sum of all genetic markers, weighted by their simulated effect sizes, for each individual, and adding a

normally distributed noise term which fixed the heritability at 0.5. We then conducted GWAS to produce

marginal least squares effect size estimate for each SNP. The five polygenic prediction methods were applied

to the GWAS summary statistics, and their predictive performance was evaluated in 3,000 individuals (the

validation sample) that are unrelated to the training sample. R2 between the observed and predicted traits was

used to quantify the prediction accuracy. We considered 100, 1,000, 10,000 and 100,000 causal variants in

the simulations, which represent extremely sparse to highly polygenic genetic architectures, and four different

training sample sizes: 10,000, 20,000, 50,000 and 100,000. For each combination of the number of causal

variants and the training sample size, the simulation was repeated 100 times.

We conducted secondary simulation studies using a point-t model (a mixture of a point mass at zero and a

Student’s t-distribution with 4 degrees of freedom), and a normal mixture model. The normal mixture model

comprised 10 group-one SNPs, 1,000 group-two SNPs and 10,000 group-three SNPs, and the three effect size

groups explained 10%, 20% and 70% of the total heritability, respectively. The effect sizes for the rest of the

SNPs were set to zero. In all secondary simulations, the heritability was fixed at 0.5, and we considered four

different training sample sizes: 10,000, 20,000, 50,000 and 100,000. For each combination of the genetic

architecture (the point-t model with different number of causal variants and the normal mixture model) and

the training sample size, the simulation was repeated 20 times.

Partners HealthCare Biobank genetic data. The Partners HealthCare Biobank is a collection of plasma,
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serum, DNA and buffy coats samples collected from consented subjects, which are linked to their electronic

health records (EHR) and survey data on lifestyle, environment, and family history [Karlson et al., 2016]. To

date, Partners Biobank has enrolled more than 88,800 participants, and released genome-wide genetic data for

25,482 subjects.

We performed QC on each genotyping batch separately with the following steps: (1) SNPs with genotype

missing rate > 0.05 were removed; (2) samples with genotype missing rate > 0.02 or absolute value of

heterozygosity > 0.2, or samples that failed sex checks were excluded; (3) SNPs with missing rate > 0.02, or

HWE test P < 1 × 10−6 were discarded. We then removed SNPs that showed significant batch associations

with P < 1× 10−6, and merged genotyping batches for subsequent processing and analyses.

The Partners HealthCare Biobank included individuals from diverse populations. We used the 1000

Genomes (1KG) Project samples as a population reference panel to infer the ancestry of Partners Biobank

participants. Specifically, we computed principal components (PC) of the genotype data in all the 1KG sam-

ples, and trained a random forest model using the top 4 PCs on the super population labels (African [AFR],

American [AMR], East Asian [EAS], European [EUR] and South Asian [SAS]), in which EUR (N = 503)

included TSI, IBS, GBR, CEU, and FIN subpopulations. The random forest model was then applied to the

Partners Biobank participants, and identified 19,136 unrelated subjects (π̂ > 0.2) with European ancestry.

We used the Eagle2 software [Loh et al., 2016] for pre-phasing and Minimac3 [Das et al., 2016; Howie

et al., 2009] for imputation in the Partners Biobank European samples. Lastly, we removed markers with MAF

< 1%, missing rate > 2%, imputation quality INFO score < 0.8, and significant deviation from HWE with

P < 1× 10−10. All genetic analyses in the Partners Biobank were conducted using PLINK 1.9 [Chang et al.,

2015].

Partners Biobank curated disease populations and quantitative traits. For a number of common, complex

diseases, the Partners Biobank trained and validated a classification algorithm, which leverages both structured

and unstructured EHR data, and combines natural language processing and statistical methods, in a gold

standard training set created by expert chart review. The algorithm was then applied to all the participants in

the Biobank to identify cases and controls, and create curated disease populations. We selected six curated

diseases — breast cancer (BRCA), coronary artery disease (CAD), depression (DEP), inflammatory bowel

disease (IBD) (Crohn’s disease or ulcerative colitis), rheumatoid arthritis (RA), and type 2 diabetes mellitus

(T2DM) — for which there are more than 500 cases in the Biobank that have been genotyped, and external

large-scale GWAS summary statistics are publicly available. For all the diseases, cases have an algorithm-
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based positive predictive value (PPV) of having current or past history of the disease greater than 0.90, and

controls have a negative predictive value (NPV) of having no history of the disease greater than 0.99.

In addition, we selected six quantitative traits — height (HGT), body mass index (BMI), high-density

lipoproteins (HDL), low-density lipoproteins (LDL), cholesterol (CHOL), and triglycerides (TRIG) — that

have been measured in the Partners Biobank healthy control population with a Charlson age-comorbidity

index 0-2 and the predicted 10-year survival probability greater than 90%. We predicted these quantitative

traits in a relatively heathy population to avoid measurements affected by severe diseases or medications. For

participants that have multiple measurements of a trait of interest, we used the median value. Table 1 presents

the sample size for each curated disease and quantitative trait in the Partners Biobank.

Summary statistics and polygenic prediction. GWAS summary statistics for all the diseases and quantitative

traits are publicly available (Table S1). We removed ambiguous (A/T and C/G) SNPs and mapped the genetic

markers to the Genome Reference Consortium human genome build 37. For unadjusted PRS and P+T, we

used all the genetic markers that are present in the summary statistics, LD reference panel (1000 Genomes

Project) and the Partners Biobank genetic data. For LDpred and PRS-CS, we further restricted the genetic

markers to the HapMap3 panel to reduce memory and computational cost. Table 1 shows the total number

of markers included in the analysis for each disease and quantitative phenotype. We use R2 between the

observed and predicted phenotypes to assess the predictive performance for the quantitative traits, and report

the Nagelkerke’sR2 metric for disease (case-control) phenotypes. For all the analyses, we adjusted for current

age, sex and top 10 principal components of the genotype data.

Results

Simulations. We compared the predictive performance of five polygenic prediction methods across different

genetic architectures and training sample sizes in the simulation studies. Results are shown in Figure 2 and

the corresponding numerical values can be found in Table S2.

We first note that methods that do not account for non-infinitesimal genetic architectures (unadjusted PRS

and LDpred-inf) performed poorly when the number of causal variants is small, but became more comparable

to other methods when the genetic architectures are highly polygenic. For all the methods, the prediction

accuracy decreased as the number of causal variants increases, because as more causal SNPs fall in the same

LD block and their effect sizes decline, it becomes increasingly difficult to distinguish real signals from noise.
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Table 1: Information on the six complex diseases and six quantitative traits. The sample size for the external

genome-wide association studies (GWAS), and the number of genetic markers included in the polygenic pre-

diction are shown, along with the sample size of the validation data set in the Partners HealthCare Biobank

(PBK).

Disease/Trait Abbreviation GWAS Reference
GWAS sample size

1KG & PBK SNPs 1KG & HM3 & PBK SNPs
PBK sample size

(case/control) (case/control)

Breast Cancer BRCA Michailidou et al. [2017] 228,951 (122,977/105,974) 5,022,127 857,616 10,220 (884/9,336)

Coronary Artery Disease CAD Nikpay et al. [2015] 184,305 (60,801/123,504) 4,803,592 849,399 16,251 (2,759/13,492)

Depression DEP Wray et al. [2018] 173,005 (59,851/113,154) 4,924,025 850,291 15,276 (2,361/12,915)

Inflammatory Bowel Disease IBD Liu et al. [2015] 34,652 (12,882/21,770) 4,823,570 849,749 18,998 (750/18,248)

Rheumatoid Arthritis RA Okada et al. [2014] 58,284 (14,361/43,923) 3,872,637 849,680 18,170 (753/17,417)

Type 2 Diabetes Mellitus T2DM Scott et al. [2017] 159,208 (26,676/132,532) 4,901,848 856,912 18,823 (1,978/16,845)

Height HGT Yengo et al. [2018] 693,529 1,578,533 750,888 3,957

Body mass index BMI Yengo et al. [2018] 681,275 1,579,905 751,676 3,954

High-density lipoproteins HDL Willer et al. [2013] 188,578 1,604,577 758,036 2,491

Low-density lipoproteins LDL Willer et al. [2013] 188,578 1,600,625 756,724 1,713

Cholesterol CHOL Willer et al. [2013] 188,578 1,604,391 757,970 2,561

Triglycerides TRIG Willer et al. [2013] 188,578 1,601,270 756,913 2,505

Overall, methods that account for the local LD pattern (LDpred and PRS-CS) outperformed P+T, which

discards LD information. However, one unexpected observation is that the prediction accuracy of LDpred

decreased quite dramatically as the training sample size grows when the genetic architecture is sparse. This is

likely because when the number of causal variants is small and the training sample size is large, all markers

in LD with the causal variant become highly statistically significant in association tests, and LDpred does not

adequately adjust for the LD structure, resulting in a decrease in predictive performance. In contrast, PRS-

CS was minimally affected in the combination of sparse genetic architectures and large training sample sizes,

which demonstrates the advantage of multivariate modeling and block update of the effect sizes for the genetic

markers in LD. In a few scenarios where the training sample size is small, PRS-CS produced lower prediction

accuracy than LDpred, but it outperformed LDpred as the sample size grows across all genetic architectures.

Secondary simulations using the point-t model and the normal mixture model produced similar results (Figure

S1 and Table S4).

Polygenic prediction in the Partners Biobank. We applied PRS-CS and alternative methods to predict

six curated complex diseases (breast cancer, coronary artery disease, depression, inflammatory bowel dis-

ease, rheumatoid arthritis, and type 2 diabetes mellitus), and six quantitative traits (height, body mass index,

high-density lipoproteins, low-density lipoproteins, cholesterol, and triglycerides) in the Partners HealthCare

Biobank, for which external large-scale GWAS summary statistics are publicly available. Predictive perfor-
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Figure 2: Prediction accuracy, quantified by R2 between the observed and predicted traits, of five polygenic

prediction methods in simulation studies. The four panels correspond to the four genetic architectures (100,

1,000, 10,000 and 100,000 causal variants) simulated using the point-normal model. Within each panel, results

for four different training sample sizes (10,000, 20,000, 50,000 and 100,000) are shown. On each box, the

central mark is the mean across 100 simulations, the edges of the box are the 25th and 75th percentiles, the

whiskers extend to the most extreme data points that are not considered outliers, and the outliers are plotted

individually.
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mance of the five methods are summarized in Figure 3, and the corresponding numerical values can be found

in Table S3.

Consistent with previous work, unadjusted PRS performed poorly regardless of the genetic architecture,

and LDpred showed an overall improvement over P+T. Among the six curated disease phenotypes, PRS-

CS produced substantially better predictions for breast cancer (43.58% relative increase in Nagelkerke’s R2

compared to LDpred) and rheumatoid arthritis (30.11% relative increase in Nagelkerke’s R2 compared to

LDpred). For coronary artery disease, depression and type 2 diabetes mellitus, LDpred and PRS-CS had

similar predictive performance, and both performed dramatically better than other methods. PRS-CS was only

inferior to LDpred in the prediction of inflammatory bowel disease (8.48% relative decrease in Nagelkerke’s

R2). However, we note that inflammatory bowel disease has the smallest training sample size among all

diseases and traits (Table 1). The lower prediction accuracy of PRS-CS for this disease is thus consistent

with our simulation studies, where we observed that when the training sample size is limited, LDpred can

outperform PRS-CS.

For the six quantitative traits, PRS-CS consistently outperformed all alternative methods. The relative

improvement in prediction accuracy compared to LDpred ranged from 8.70% for LDL and 8.80% for BMI,

to 25.60% for height and 32.75% for cholesterol, with an average improvement of 18.21%. The average

improvement of PRS-CS relative to P+T across the six quantitive traits was 40.47%. We note that LDpred

was the second best method for most quantitative traits, but its predictive accuracy for height was lower than

LDpred-inf and P+T. This is theoretically expected and consistent with a recent study, which also observed

that for highly polygenic traits, LDpred-inf often outperforms LDpred [Marquez-Luna et al., 2018].

Discussion

Polygenic prediction, which exploits genome-wide genetic markers to estimate the genetic liability to a com-

mon disease or complex trait, is likely to become useful in clinical care and contribute to personalized

medicine. As a high-dimensional regression problem that requires regularization, a majority of the exist-

ing methods that jointly model all genetic markers across the genome employ Bayesian approaches and assign

a discrete mixture prior on the SNP effect sizes. Although intuitively appealing, this class of priors generates

daunting computational challenges: the model space grows exponentially with the number of markers, which

is difficult to fully explore, and more importantly, discrete mixture priors do not allow for block updating of
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Figure 3: Prediction accuracy of five polygenic prediction methods in the Partners HealthCare Biobank. Poly-

genic scores were trained with external large-scale genome-wide association summary statistics, and applied

to predict six curated complex diseases — breast cancer (BRCA), coronary artery disease (CAD), depression

(DEP), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), and type 2 diabetes mellitus (T2DM),

and six quantitative traits — height (HGT), body mass index (BMI), high-density lipoproteins (HDL), low-

density lipoproteins (LDL), cholesterol (CHOL), and triglycerides (TRIG). For disease (case-control) pheno-

types, prediction accuracy is measured by the Nagelkerke’s R2. For quantitive traits, prediction accuracy is

quantified by R2.
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effect sizes and thus hinder accurate LD adjustment in polygenic prediction. LDpred [Vilhjálmsson et al.,

2015] partially addressed this issue by making several simplifying assumptions to the posterior distribution

and using marginal posterior without LD to approximate the true posterior. However, our simulation studies

suggest that this approximation may be inaccurate and the adjustment for LD may be inadequate.

We have presented a conceptually different class of priors — the continuous shrinkage priors — which

can be represented as global-local scale mixtures of normals, for polygenic modeling. By using a continuous

mixing density on the scales of the marker effects, continuous shrinkage priors enable a simple and efficient

Gibbs sampler with multivariate block updating of the effect sizes, and thus resolve a major technical hurdle of

discrete mixture priors. A second feature of the continuous shrinkage prior is its ability to shrink adaptively.

By constructing a prior density on the SNP effect sizes that is both peaked at zero and heavy-tailed, the

method imposes strong shrinkage on small effects that are likely to be noise, while applying practically no

shrinkage to data-supported truly non-zero signals. Simulated and real data analyses showed that PRS-CS

consistently outperforms existing methods across a wide range of genetic architectures, especially when the

training sample size is large. We note that previous work often extrapolated prediction accuracy for larger

effective sample sizes by restricting the analysis to a subset of the genetic markers [see e.g., Marquez-Luna

et al., 2018; Vilhjálmsson et al., 2015]. However, our simulations suggest that this approach may not fully

capture the behavior of a polygenic prediction algorithm when the training sample size grows, and underscore

the need for actually scaling up the sample size in future studies.

Although continuous shrinkage priors enable multivariate modeling of the LD structure, simultaneous

updating of the effect sizes for genome-wide markers remains computationally infeasible and, in fact, unnec-

essary. In this work, we used a genome partition computed and validated by prior work [Berisa and Pickrell,

2016], which divides the genome into 1,703 largely independent genomic regions, and has been successfully

used in local heritability and genetic correlation analyses [Shi et al., 2016a, 2017]. Expanding the size of LD

blocks may improve prediction accuracy but also increases computational cost, while reducing the size of LD

blocks has the potential risk of missing long-range LD. Therefore, the partition we chose represents a balance

between modeling accuracy and computational burden. Using a pre-computed genome partition to model lo-

cal LD patterns is also more memory and computationally efficient relative to a sliding window approach as

implemented in LDpred [Vilhjálmsson et al., 2015].

We note that the prior we investigated in this work, i.e., the gamma-gamma prior on the local shrinkage

parameter (also known as the generalized beta mixture model) [Armagan et al., 2011], or more specifically,

the Strawderman-Berger prior [Berger, 1980; Strawderman, 1971], is only one of the possible choices within
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the class of continuous shrinkage priors, which includes the normal-gamma prior [Caron and Doucet, 2008;

Griffin and Brown, 2010], the normal-inverse-gaussian prior [Caron and Doucet, 2008], the generalized t

(generalized double Pareto) prior [Armagan et al., 2013; Lee et al., 2012], and the normal-exponential-gamma

prior [Armagan et al., 2011; Griffin and Brown, 2011], among others. In addition, most frequentist regular-

ization procedures, such as LASSO, elastic net and bridge regression, have a Bayesian counterpart that can be

represented as global-local scale mixtures priors in combination with posterior mode inferences. Each of these

priors uses a different continuous mixing density, i.e., a different g in Eq. (7), to produce a different marginal

prior on the SNP effect sizes. These alternatives may perform equally well or better than the Strawderman-

Berger prior for certain genetic architectures. However, we found that as long as the prior on the effect sizes

places a sizable amount of mass around zero and has heavier-than-exponential tails, variation in the shape of

the prior does not seem to have a large impact on prediction accuracy. Therefore, we believe that the primary

gain of PRS-CS over existing methods lies in its more accurate multivariate modeling of the local LD pattern

and its block-updated Gibbs sampling that can improve the mixing and convergence rate of the Markov chain.

We thus recommend using the Strawderman-Berger prior as a default choice. A systematic investigation and

comparison of different continuous shrinkage priors is a direction of future work.

We note several additional directions for further technical developments that may be useful. First, in

contrast to fixing the global shrinkage parameter φ in the model based on prior beliefs about the sparsity of

the genetic architecture, or searching a small number of grid values, the global parameter could be learnt from

data using empirical Bayes or a full Bayesian approach by placing, for example, a half-Cauchy prior on it

[Gelman, 2006; Polson and Scott, 2010]. This would make PRS calculation fully automatic and reduce the

potential risk of overfitting. Second, although this paper is focused on polygenic prediction methods that only

require GWAS summary statistics, PRS-CS can be straightforwardly applied to individual-level data. Given

that a majority of the existing Bayesian genomic prediction models, including Bayes alphabetic methods

[Habier et al., 2011; Hayes et al., 2010; Meuwissen and Goddard, 2004; Meuwissen et al., 2001; Verbyla

et al., 2009, 2010; Yi et al., 2003], BayesR [Erbe et al., 2012; Moser et al., 2015], BVSR [Guan and Stephens,

2011], BSLMM [Zhou et al., 2013], and DPR [Zeng and Zhou, 2017], have used discrete mixture priors on

SNP effect sizes, we expect that PRS-CS can provide substantial improvements in computational efficiency

and prediction accuracy for genomic prediction that leverages individual-level data. Third, jointly modeling

multiple genetically correlated traits and including functional annotations in polygenic modeling are expected

to increase the predictive performance of PRS, as shown by recent studies [Marquez-Luna et al., 2018; Shi

et al., 2016b; Turley et al., 2018]. Lastly, current research on polygenic prediction has largely been restricted
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to European samples. Expanding genomic prediction methods to enable cross-ethnic risk prediction is critical

to maximize the value of PRS in a diverse population.

Although PRS-CS provides a substantial improvement over existing methods for polygenic prediction, all

curated disease phenotypes we predicted had variance explained less than 10%, which is considerably lower

than their heritability. Therefore, much work is needed to further improve the performance of PRS. In theory,

the utility of PRS depends on multiple factors, including the training sample size, and the heritability and

genetic architecture of the disease. For example, among the six complex diseases we analyzed, depression had

the lowest prediction accuracy (Nagelkerke’s R2 less than 1%), likely due to a combination of its relatively

low heritability, extremely polygenic genetic architecture, and the heterogeneous nature of the disorder. A

recent study projected that a GWAS with multi-million subjects is needed to identify genetic variants that

explain 80% of the SNP-heritability for major depressive disorder [Zhang et al., 2018]. In contrast, it may be

easier to produce a clinically useful prediction for some autoimmune diseases or late-onset chronic diseases,

due to the existence of SNPs with moderate to larger effect sizes. With these being said, as the GWAS sample

size continues to grow, we believe that the predictive value of PRS will keep increasing, and PRS-CS will

demonstrate bigger advantages over existing methods with larger training sample sizes.

Appendix A

The Bayesian regression model for PRS-CS is:

y = Zβ + ε, ε ∼ N(0, σ2I), p(σ2) ∝ σ−2,

βj ∼ N

(
0,
σ2

N
ψj

)
, ψj ∼ G(a, δj), δj ∼ G(b, φ),

(13)

where y and Z have been standardized. The full conditional distributions for all the parameters in this model

are analytically tractable, and thus an efficient Gibbs sampler can be derived.

Let MVN(µ,Σ) denote the multivariate normal distribution with mean µ and covariance Σ; G(α, β)

and iG(α, β) denote the gamma distribution and inverse-gamma distribution with shape parameter α and

scale parameter β, respectively; and giG(p, ρ, χ) denote the three-parameter generalized inverse Gaussian

distribution with probability density function

f(x;λ, ρ, χ) =
(ρ/χ)λ/2

2Kλ(
√
ρχ)

xλ−1e−(ρx+χ/x)/2, x > 0, ρ > 0, χ > 0, (14)
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whereKλ is the modified Bessel function of the second kind. LetN andM denote the sample size and the total

number of genetic markers, respectively. In addition, let β̂ = Z>y/N denote the marginal least squares effect

size estimates from the genome-wide association study, Ψ = diag{ψ1, ψ2, · · · , ψM}, and D = Z>Z/N

denote the LD matrix. The Gibbs sampler then involves the following steps in each MCMC iteration:

• update β: [ β | σ2,Ψ, β̂,D ] ∼ MVN(µ,Σ), µ =
N

σ2
Σβ̂, Σ =

σ2

N
(D + Ψ−1)−1,

• update σ2: [ σ2 | β,Ψ, β̂,D ] ∼ iG

(
N +M

2
,
N

2

[
1− 2β>β̂ + β>(D + Ψ−1)β

])
,

• update ψj: [ ψj | βj, σ2, δj ] ∼ giG

(
a− 1

2
, 2δj,

Nβ2
j

σ2

)
,

• update δj: [ δj | ψj ] ∼ G(a+ b, ψj + φ).

We generate random variates from the generalized inverse Gaussian distribution using the algorithm described

in Devroye [2014]. We note that y and Z did not appear in any of the updates, and thus individual-level

data is not required for model fitting. In practice, D and Ψ are M × M matrices, and the calculation of

(D+ Ψ−1)−1 becomes computationally infeasible when M is large. We thus partition the genome into 1,703

largely independent genomic regions estimated using data from the 1000 Genomes Project European samples

[Berisa and Pickrell, 2016], and in each MCMC iteration sequentially update the SNP effect sizes within each

LD block `:

[ β` | σ2,Ψ`, β̂`,D` ] ∼ MVN(µ`,Σ`), µ` =
N

σ2
Σ`β̂`, Σ` =

σ2

N
(D` + Ψ−1` )−1. (15)

The LD matrixD` for each LD block can be estimated using an external LD reference panel.
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Web Resources

Eagle2: https://data.broadinstitute.org/alkesgroup/Eagle

Genome partition: http://bitbucket.org/nygcresearch/ldetect-data

LDpred: https://github.com/bvilhjal/ldpred

Minimac3: https://genome.sph.umich.edu/wiki/Minimac3

Partners HealthCare Biobank: https://biobank.partners.org

PLINK 1.9: https://www.cog-genomics.org/plink/1.9

PRSice-2: https://choishingwan.github.io/PRSice

UK Biobank: http://www.ukbiobank.ac.uk
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Supplementary Tables

Table S1: Information on the genome-wide association summary statistics of the six complex diseases (breast

cancer, coronary artery disease, depression, inflammatory bowel disease, rheumatoid arthritis, and type 2

diabetes mellitus), and six quantitative traits (height, body mass index, high-density lipoproteins, low-density

lipoproteins, cholesterol, and triglycerides).

Table S2: Numerical results of the simulation studies shown in Figure 2. For each combination of the number

of causal variants (100, 1,000, 10,000 and 100,000) and the training sample size (10,000, 20,000, 50,000 and

100,000), the mean and standard error of the prediction accuracy for each polygenic prediction method across

100 simulations are reported.

Table S3: Numerical values of the prediction accuracy shown in Figure 3. For each of the curated diseases

(breast cancer, coronary artery disease, depression, inflammatory bowel disease, rheumatoid arthritis, and type

2 diabetes mellitus), and quantitative traits (height, body mass index, high-density lipoproteins, low-density

lipoproteins, cholesterol, and triglycerides), the prediction accuracy for each of the polygenic prediction meth-

ods is reported.

Table S4: Numerical results of the simulation studies shown in Figure S1. For each combination of the genetic

architecture (the point-t model with different numbers of causal variants and the normal mixture model) and

the training sample size (10,000, 20,000, 50,000 and 100,000), the mean and standard error of the prediction

accuracy for each polygenic prediction method across 20 simulations are reported.
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Supplementary Figures
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Figure S1: Prediction accuracy, quantified by R2 between the observed and predicted traits, of five polygenic

prediction methods in secondary simulation studies using the point-t model and the normal mixture model.

The upper four panels correspond to the four genetic architectures simulated using the point-t model and

different numbers of causal variants. The lower panel corresponds to the genetic architecture simulated using

the normal mixture model. Within each panel, results for four different training sample sizes (10,000, 20,000,

50,000 and 100,000) are shown. On each box, the central mark is the mean across 20 simulations, the edges

of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points that are not

considered outliers, and the outliers are plotted individually.
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