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Abstract	

Working	memory	is	considered	as	a	core	aspect	of	cognitive	function	and	its	impairment	in	a	

wide	range	of	mental	disorders	has	resulted	in	it	being	considered	as	an	important	

transdiagnostic	feature.	To	date	pharmacological	and	behavioural	strategies	for	augmenting	

working	memory	have	achieved	only	moderate	success.	Here	we	have	taken	a	different	

approach	by	combining	expectancy	effects	with	intranasal	oxytocin	as	an	adjunct	given	previous	

evidence	that	it	may	enhance	placebo	effects.	In	a	randomised	controlled	clinical	trial	we	

demonstrate	that	while	working	memory	performance	is	not	influenced	by	expectancy	per	se	

when	it	is	given	in	conjunction	with	oxytocin	performance	in	terms	of	accuracy	can	be	

significantly	enhanced	following	positive	expectancy	induction	(placebo	effect)	and	impaired	

following	negative	expectancy	induction	(nocebo	effect).	Thus	combining	expectancy	effects	

with	intranasal	oxytocin	may	represent	a	radical	new	approach	for	improving	working	memory	

function	in	mental	disorders.			
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Introduction	

Working	memory	represents	a	cognitive	function	that	allows	information	to	be	held	temporarily	

in	mind	and	used	operationally	(Baddeley	&	Hitch,	1994).	This	core	cognitive	domain	

represents	a	critical	building	block	for	all	higher	order	cognitive	functions,	including	language,	

social	interaction	and	decision	making	that	critically	guide	our	daily	life.	Working	memory	

capacity	is	limited	and	in	accordance	with	the	critical	contribution	of	this	function	to	processes	

that	guide	our	everyday	life,	working	memory	capacity	is	highly	predictive	of	academic	success	

and	socio-economic	status	but	also	more	general	aspects	of	quality	of	life	(Diamond,	2013).	

Impairments	in	the	domain	of	working	memory	have	been	observed	across	mental)	

disorders	and	strongly	predict	treatment	success	(Goodkind	et	al.,	2015;	Millan	et	al.,	2012).	

Deficits	in	this	cardinal	cognitive	domain	are	not	targeted	by	traditional	treatments	and	not	only	

impede	functional	recovery	but	also	critically	preclude	the	efficacy	of	psychotherapeutic	

interventions	by	interfering	with	the	adaptive	learning	process	(Millan	et	al.,	2012;	Normann	et	

al.,	2012).	The	pharmacological	enhancement	of	working	memory	to	augment	the	efficacy	of	

learning-based	interventions	has	therefore	received	considerable	attention	during	recent	years	

(e.g.	Normann	et	al.,	2012).		

Major	efforts	have	been	made	from	both,	academic	science	as	well	as	industry	to	

develop	novel	approaches	to	enhance	working	memory	capacity	in	order	to	boost	general	

cognitive	performance	in	the	healthy	individuals	and	treatment	success	in	patients.	However,	

despite	concerted	efforts	and	massive	investments	from	pharmacological	and	cognitive	training	

companies	attempts	at	improving	working	memory	capacity	have	proven	to	be	a	real	challenge	

and	results	so	far	have	been	rather	sobering.	Traditional	pharmacological	and	training-based	

approaches	have	been	shown	to	produce	only	moderate	improvements,	often	limited	to	

individuals	with	low	baseline	performance	or	sleep	deprivation,	or	no	benefits	at	all	when	

tested	in	controlled	experiments	(Repantis	et	al.,	2010;	Dresler	et	al.,	2013;	Kable	et	al.,	2017).		

Placebo	effects	in	the	form	of	creating	psychological	expectancies	strongly	modulate	

therapeutic	outcome	and	can	have	positive	effects	in	some	domains,	but	studies	to	date	have	

failed	to	demonstrate	expectancy-induced	cognitive	enhancement	per	se	(Schwarz	et	al.,	2015).		

Recent	findings	that	the	neuropeptide	oxytocin	can	enhance	placebo-induced	non-cognitive	

effects,	and	acceptance	of	expert	advice	(Kessner	et	al.,	2013;	Colloca	et	al.,	2016;	Luo	et	al.,	

2017),	suggest	its	potential	use	as	an	adjunct	to	expectancy-induction	in	the	cognitive	domain.	

Against	this	background	the	present	study	aimed	at	evaluating	whether	intranasal	oxytocin	in	

combination	with	expectancy-induction	has	the	potential	to	improve	working	memory.		

	

Methods		

Participants		
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To	this	end	we	conducted	a	randomized,	between-subject	placebo-controlled	intranasal	

oxytocin	(24IU)	proof-of-concept	study	with	four	experimental	arms	(total	n	=	224,	healthy	

males).	All	subjects	were	free	from	a	current	or	history	of	neurological	or	psychiatric	disorders	

as	well	as	regular	or	current	use	of	nicotine,	alcohol,	or	other	psychoactive	substances.	Written	

informed	consent	was	obtained	from	all	participants.	Prior	to	the	experiment	all	subjects	

completed	validated	questionnaires	to	control	for	confounding	effects	of	depression	(Beck	

Depression	Inventory	II,	BDI	II,	Beck	et	al.,	1996);	anxiety	(State-Trait	Anxiety	Inventory,	STAI,	

Spielberger	et	al.,	1983)	and	interpersonal	trust	(Interpersonal	Trust	Scale,	ITS,	Rotter,	1967).		

The	study	and	experimental	protocols	had	full	approval	by	the	local	ethics	committee	of	

the	University	of	Electronic	Science	and	Technology	of	China	and	adhered	to	the	latest	revision	

of	the	Declaration	of	Helsinki.	Protocols	and	primary	outcomes	were	pre-registered	at	

clinicaltrials.gov	(ID,	NCT02745522).		

	

Expectancy	induction		

In	line	with	previous	research	on	the	pharmacological	enhancement	of	expectancy	effects,	

standardized	verbal	instructions	were	employed	for	expectancy-induction	(Colloca	et	al.,	2016).	

Subjects	were	given	different	instructions	as	follows	across	four	independent	experimental	

arms:	they	received	either	no	expectancy-induction	(neutral	information,	Experiment	1),	

placebo	(‘oxytocin	enhances	performance’,	Experiment	2)	or	nocebo	effect	induction	(‘oxytocin	

impairs	performance’,	Experiment	3)	which	served	as	an	active	comparator	arm.	Verbal	

instructions	were	given	according	to	a	standardized	protocol	employed	by	the	same	female	

experimenter	dressed	in	a	white	coat	and	blinded	for	the	treatment	(oxytocin	versus	placebo)	

the	subjects	received.	Given	that	oxytocin’s	facilitation	of	acceptance	of	advice	can	be	influenced	

by	the	gender	of	the	expert	(Luo	et	al.,	2017),	Experiment	2	was	repeated	with	a	male	

experimenter	(Experiment	4)	(see	also	Table	1).		

	

Treatment		

Subjects	were	randomly	allocated	to	receive	either	a	single	intranasal	dose	of	24	IU	OXT	(3	puffs	

of	4IU	per	nostril	with	30s	between	each	puff	–	Sichuan	Meike,	Pharmaceutical	Co.,	China)	or	

placebo	(PLC)	with	identical	ingredients	(also	3	puffs	per	nostril)	other	than	the	peptide.	

Treatment	was	administered	in	line	with	a	standardized	protocol	(Guastella	et	al.,	2013).	

Working	memory	assessment	started	45	minutes	after	treatment	administration.		

	

Primary	outcome		

Working	memory	accuracy,	defined	as	percent	correct	responses,	served	as	primary	outcome.	

Working	memory	performance	was	assessed	using	a	visual	n-back	task	(Owen	et	al.,	2005),	a	
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classical	working	memory	paradigm	during	which	subjects	are	presented	a	sequence	of	stimuli	

and	have	to	indicate	whether	the	current	stimulus	corresponds	to	the	one	that	was	shown	‘n’	

trials	before.	To	promote	a	comprehensive	characterization	of	the	treatment	effects,	

performance	was	assessed	in	the	domains	of	spatial,	verbal	and	social	working	memory	and	at	

two	levels	of	working	memory	load	(1-back,	2-back)	(details	see	Owen	et	al.,	2005;	Becker	et	al.,	

2010;	Neta	&	Whalen,	2011).	Domain-	and	load-specific	performance	was	acquired	in	separate	

blocks	presented	in	a	counterbalanced	order.	Each	block	was	preceded	by	a	cue	indicating	the	

working	memory	domain	and	working	memory	load	of	the	block.		

		

Results	

Examination	of	potential	confounders	revealed	that	the	intervention	groups	did	not	differ	with	

respect	to	important	confounders	including	age,	education,	depression,	anxiety	and	trust	(all	

ps	>	0.12).		Initial	analysis	of	the	primary	outcome	did	not	reveal	load-dependent	effects	of	

expectancy-induction	and	treatment	on	accuracy	(all	ps	>	0.22),	consequently	the	factor	load	

was	discarded	from	subsequent	analyses.	Evaluating	the	effects	of	oxytocin	on	expectancy-

induced	modulation	of	working	memory	using	domain-specific	ANOVAs,	with	expectancy-

induction	(neutral,	enhancement,	impairment)	and	treatment	(oxytocin,	placebo)	as	between-

subject	factors	(Experiments	1-3),	revealed	that	neither	treatment	nor	expectancy-induction	

per	se	influenced	performance	(all	ps	>	0.11).	Importantly,	significant	expectancy-induction	x	

treatment	interactions	were	consistently	observed	across	all	working	memory	domains	(verbal,	

F(2,	166)	=	10.70,	p	<	0.001,	η2p		=	0.11;	spatial,	F(2,	166)	=	5.52,	p	=	0.005,	η2p	=	0.06;	social,	F(2,	166)	=	

5.79,	p	=	0.004,	η2p	=	0.07).	Post-hoc,	Bonferroni-corrected	tests	indicated	that	oxytocin	

produced	both	expectancy-induced	enhancement	(verbal,	+5%,	95%-CI,	3	to	8%;	spatial,	+4%,	

95%-CI,	1	to	7%;	social,	+5%,	95%-CI,	1	to	9%)	and	impairment	(verbal	-4%,	95%-CI,	-7	to	-1%;	

spatial,	-4%,	95%-CI,	-7	to	-1%;	social,	-5%,	95%-CI,	-9	to	-1%)	of	working	memory	with	

medium	or	large	effect	sizes	(effect	size	>	0.60	in	all	cases,	details	see	Table	1,	Figure	1).	Next,	

the	potential	role	of	experimenter	gender	was	investigated	using	domain-specific	ANOVAs	

including	treatment	and	gender	as	between-subject	factors	(Experiment	2,	4).	This	revealed	

that	oxytocin	produced	an	expectancy-induced	working	memory	enhancement	independent	of	

experimenter	gender	(treatment	main	effect,	verbal,	F(1,	101)	=	16.29,	p	<	0.001,	η2p		=	0.14;	

spatial,	F(1,	101)	=	12.08,	p	=	0.001,	η2p		=	0.11;		social,	F(1,	101)	=	10.81,	p	=	0.001,	η2p	=	0.10;	all	

treatment	x	gender	interactions	ps	>	0.21).		

	

Discussion	

In	summary,	the	present	findings	demonstrate	for	the	first	time	that	adjunct	oxytocin	treatment	

induces	expectancy-driven	enhancement	of	working	memory.	In	line	with	previous	findings	
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neither	expectancy-induction	nor	oxytocin	per	se	affected	working	memory	performance	

(Schwarz	et	al.,	2015).		Together	with	the	observation	that	effects	were	concordant	with	the	

direction	of	expectancy	induction	(i.e.	improvement	vs.	impairment)	this	points	to	oxytocinergic	

enhancement	of	expectancy-induction	as	an	underlying	mechanism	that	drives	the	modulation	

of	working	memory.	With	respect	to	previous	pharmacological	and	training-based	strategies	for	

cognitive	enhancement	it	is	noteworthy	that	the	effects	were	observed	in	a	sample	with	high	

baseline	performance	and	without	sleep	deprivation	(Repantis	et	al.,	2010;	Dresler	et	al.,	2010).		

Although	the	present	study	did	not	acquire	additional	neurobiological	indices	it	is	

important	to	consider	the	possible	underlying	neural	mechanisms.	Whereas	previous	research	

indicates	that	the	endogenous	opioid	system	strongly	contributes	to	placebo	analgesia,	studies	

that	examined	expectancy-induced	improvement	of	motor	performance	and	positive	drug	

effects	suggest	that	effects	in	these	domains	are	mediated	by	the	dopaminergic	system	and	

modulation	of	striato-frontal	circuits	(Bendetti	&	Amanzio,	2013;	Kaasinen	et	al.,	2004;	Volkow	

et	al.,	2006).	Dopaminergic	neurotransmission	in	these	pathways	has	not	only	been	associated	

with	the	strengths	of	the	placebo	response	(Scott	et	al.,	2007),	but	also	critically	differentiated	

between	the	placebo	and	nocebo	responses	(Scott	et	al.,	2008)	and	contributes	to	working	

memory	performance	and	cognitive	effort	(Diamond,	2007,	Westbrook	&	Braver,	2016).	Recent	

animal	models	suggest	that	oxytocin	promotes	social	interactions	via	direct	effects	on	

dopaminergic	neurotransmission	in	these	pathways	(Hung	et	al.,	2017),	which	together	with	

previous	findings	on	an	oxytocinergic	amplification	of	expectancy-related	processing	in	the	

underlying	pathways	in	humans	(Scheele	et	al.,	2014;	Kreuder	et	al.,	2017)	may	suggest	a	

contribution	of	oxytocin-dopamine	interactions	on	the	present	findings.		

Translated	into	the	clinical	context,	augmentation	strategies	with	adjunct	oxytocin	

treatment	may	help	to	boost	therapeutic	efficacy	and	functional	recovery.	To	this	end,	

combining	oxytocin	and	expectancy-induction	could	provide	a	radical	innovative	strategy	to	

overcome	working	memory	deficits	in	patients	with	mental	disorders.		
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Table	1.	Experimental	design	and	primary	outcome	measures	

	 Experiment	1	(n	=	66)	 Experiment	2	(n	=	53)	 Experiment	3	(n	=53)	

Design	 	 	 	

Expectancy-

induction		

Neutral	(expectancy:	none)		 Placebo	(expectancy:	improve)		 Nocebo	(expectancy:	impair)		

Experimenter		 Female	(white	coat)	 Female	(white	coat)	 Female	(white	coat)	

Treatment	

Groups		

Placebo	

(n	=	34)		

Oxytocin	

(n	=	32)			

	 Placebo	

(n	=	26)	

Oxytocin		

(n	=	27)	

		 Placebo	

(n	=	27)	

Oxytocin	

(n	=	26)	

	

Results	(Primary	outcome	-	%	difference	in	N-back	task	performance	between	oxytocin	and	placebo	groupsa)	 	

	 Mean	(SEM)	 p	 Mean	(SEM)	 p	/	E.S.	 Mean	(SEM)	 p	/	E.S.	

Verbal	WM		 .20	(1.3)	 	 .86	 5.3	(1.4)	 	 .001	/	.93	 -4.1	(1.4)	 	 .005	/	.97	

Spatial	WM		 .80	(1.4)	 	 .60	 3.6	(1.6)	 	 		.02	/	.60	 -3.8	(1.6)	 	 		.02	/	.63	

Social	WM		 -2.5	(1.9)	 	 .18	 4.6	(2.1)	 	 		.03	/	.82	 -5.0	(2.1)	 	 	.02	/	.65	

	

Abbreviations:	WM,	working	memory;	E.S.,	Effect	size	(Cohen’s)	
a		averaged	accuracy	difference	across	working	memory	load	conditions	(1-back	and	2-	back)	

reported	given	that	no	load-dependent	interaction	effects	were	found.		
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Figure	1.	Oxytocin-induced	expectancy-driven	modulation	of	working	memory	a	

	

a	Differences	between	the	oxytocin	and	the	placebo	group	in	the	four	experiments	(neutral,	

placebo	effect,	nocebo	effect	and	placebo	effect	by	a	male	experimenter)	in	terms	of	verbal,	

spatial	and	social	n-back	tasks	are	displayed	(oxytocin	>	placebo).	*	p	<	.05;	**	p	<	.01,	

Bonferroni-corrected	post	hoc	comparison;	♀	female	experimenter;	♂	male	experimenter;	E1-

4,	experimental	arms	1-4	conducted	in	independent	samples.		
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