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Abstract

Individual malaria infections can carry multiple strains of Plasmodium falciparum with varying levels
of relatedness. Yet, how parameters of local epidemiology affect the rate and relatedness of such mixed
infections remains unclear. Here, we develop an enhanced method for strain deconvolution from genome
sequencing data, which estimates the number of strains, their proportions, identity-by-descent (IBD)
profiles and individual haplotypes. By applying it to the Pf3k data set, we find that the rate of mixed
infection varies from 18% to 63% across countries and that 51% of all mixed infections involve more
than two strains. Furthermore, we estimate that 55% of dual infections contain sibling strains likely
to have been co-transmitted from a single mosquito, and find evidence of mixed infections propagated
over successive infection cycles. Finally, leveraging data from the Malaria Atlas Project, we find that

prevalence correlates with both the rate of mixed infection and the level of IBD.
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1 Introduction

Individuals infected with malaria-causing parasites of the genus Plasmodium often carry multiple, distinct
strains of the same species (Bell et al., 2006). Such mixed infections, also known as complex infections,
are likely indicative of intense local exposure rates, being common in regions of Africa with high rates
of prevalence (Howes et al., 2016). However, they have also been documented for P. vivar and other
malaria-causing parasites (Ivo Mueller, 2007; Collins, 2012), even in regions of much lower prevalence (Howes
et al., 2016; Steenkeste et al., 2010). Mixed infections have been associated with increased disease severity
(de Roode et al., 2005) and also facilitate the generation of genomic diversity within the parasite, en-
abling co-transmission to the mosquito vector where sexual recombination occurs (Mzilahowa et al., 2007).
Mixed infections are transient (Bruce and Day, 2002; Zimmerman et al., 2004), but little is known about
the distribution of their duration. Whether the clearance of one or more strains results purely from host
immunity (Borrmann and Matuschewski, 2011) or can be influenced by interactions between the distinct
strains (Enosse et al., 2006; Bushman et al., 2016), are also open questions.

Although mixed infections can be studied from genetic barcodes (Galinsky et al., 2015) or single nucleotide
polymorphisms (SNPs) (O’Brien et al., 2016), genome sequencing provides a more powerful approach for
detecting mixed infections (Chang et al., 2017). Genetic differences between co-existing strains manifest
as polymorphic loci in the DNA sequence of the isolate. The higher resolution of sequencing data allows
the use of statistical methods for estimating the number of distinct strains, their relative proportions, and
genome sequences (Zhu et al., 2018). Although genomic approaches cannot identify individuals infected
multiple times by identical strains, and are affected by sequencing errors and problems of incomplete or
erroneous reference assemblies, they provide a rich characterisation of within host diversity (Manske et al.,
2012; Auburn et al., 2012; Pearson et al., 2016).

Previous research has highlighted that co-existing strains can be highly related (Nair et al., 2014; Trevino
et al., 2017). For example, in P. vivaz, 58% of mixed infections show long stretches of within host homozy-
gosity (Pearson et al., 2016). In addition, Nkhoma et al. (2012) reported an average of 78.7% P. falciparum
allele sharing in Malawi and 87.6% sharing in Thailand. A host mixed infection with related strains can
arise through different mechanisms. Firstly, relatedness is created when distinct parasite strains undergo
meiosis in a mosquito vector. A mosquito vector can acquire distinct strains by biting a single multiply-
infected individual, or multiple singly-infected individuals in close succession. Co-transmission of multiple
meiotic progeny produces a host mixed infection in a single-bite, containing related strains. Alternatively,
relatedness in a host mixed infection can result from multiple bites in a parasite population with low genetic
diversity, such as is expected during the early stages of an outbreak or following severe population bottle-
necks; for instance, those provoked by an intervention (Mouzin et al., 2010; Wong et al., 2017; Daniels et al.,

2015). Interestingly, serial co-transmission of a mixed infection is akin to inbreeding, producing strains with
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relatedness levels well above those of standard siblings.

The rate and relatedness structure of mixed infections are therefore highly relevant for understanding
regional epidemiology. However, progress towards utilising this source of information is limited by three prob-
lems. Firstly, while strain deconvolution within mixed infections has received substantial attention (Galinsky
et al., 2015; O’Brien et al., 2016; Chang et al., 2017; Zhu et al., 2018), currently, no methods perform joint
deconvolution of strains and estimation of relatedness. Because existing deconvolution methods assume equal
relatedness along the genome, differences in relatedness that occur, for example through infection by sibling
strains, can lead to errors in the estimation of the number, proportions and sequences of individual strains
(Figure 1). Recently, progress has been made in the case of dual-infections with balanced proportions (Hen-
den et al., 2018), but a general solution is lacking. The second problem is that little is known about how
the rate and relatedness structure of mixed infections relates to underlying epidemiological parameters. In-
formally, mixed infections will occur when prevalence is high; an observation exploited by Cerqueira et al.
(2017) when estimating changes in transmission over time. However, the quantitative nature of this rela-
tionship, the key parameters that influence mixed infection rates and how patterns of relatedness relate to
infection dynamics are largely unexplored.

Here, we develop, test and apply an enhanced method for strain deconvolution, which builds on our
previously-published DEploid software. The method separates estimation of strain number, proportions,
and relatedness (specifically the identity-by-descent, or IBD, profile along the genome) from the problem of
inferring genome sequences. This strategy provides substantial improvements in accuracy under complex
settings or when dealing with low coverage data. We apply the approach to 2,344 field isolates of P. falciparum
collected from 13 countries over a range of years (2001-2014) and available through the Pf3k Project (see
Supplementary Note), and characterise the rate and relatedness patterns of mixed infections. In addition,
we develop a statistical framework for characterising the processes underlying mixed infections, estimating
that more than half of mixed infections arise from the transmission of siblings, as well as demonstrating
the propagation of mixed infections through cycles of host-vector transmission. Finally, we investigate the
relationships between statistics of mixed infection and epidemiological estimates of pathogen prevalence
(MAP, 2017), showing that country-level rates of mixed infection are highly correlated with estimates of

malaria parasite prevalence.

2 Strain deconvolution in the presence of relatedness

Existing methods for deconvolution of mixed infections typically assume that the different genetic strains
present in mixed infections are unrelated. This assumption allows for efficient computation of priors for
allele frequencies within samples, either through assuming independence of loci (O'Brien et al., 2016) or as

sequences generated as imperfect mosaics of some (predefined) reference panel (Zhu et al., 2018). However,
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when strains are related to each other, and particularly when patterns of IBD vary along the genome (for
example through being siblings, or sibs for short), the constraints imposed on within-sample allele frequencies
through IBD can cause problems for deconvolution methods, which can try to fit complex strain combinations
(with relatedness) as simpler configurations (without relatedness). Below we outline the approach we take

to integrating IBD into DEploid Further details are provided in the Supplementary Materials.

2.1 Decoding genomic relatedness among strains

A common approach to detecting IBD between two genomes is to employ a hidden Markov Model that
transitions into and out of IBD states (Chang et al., 2015; Gusev et al., 2009, 2011). We have generalised
this approach to the case of k haploid Plasmodium genomes (strains). In this setting, there are 2* possible
genotype configurations, as each of the k strains can be either reference, i.e. same as the reference genome
used during assembly, or alternative (i.e. carry a different allele) at a given locus (we assume all variation is bi-
allelic). If each of the k strains constitutes a unique proportion of the infection, each genotype configuration
will produce a distinct alternative within sample allele frequency (WSAF; Figure 1A), which defines the
expected fraction of total sequencing reads that are alternative at a given locus in the sequenced infection.

The effect of IBD among these k strains is to limit the number of distinct genotype configurations possible,
in a way that depends on the pattern of IBD sharing. Consider that, for any given locus, the k strains in
the infection are assigned to j < k possible reference haplotypes. IBD exists when two or more strains are
assigned to the same haplotype. In this scenario, the total number of possible patterns of IBD for a given
k is equal to Z?:l S(k,j), where S(k,j) is the number of ways k objects can be split into j subsets; a
Stirling number of the second kind (Graham et al., 1988). Thus, for two strains, there are two possible IBD
states (IBD or non-IBD), for three strains there are five states (all IBD, none IBD and the three pairwise
IBD configurations), for four strains there are fifteen states (see Supplementary Materials), and so on. We
limit analysis to a maximum of four strains for computational efficiency and because higher levels of mixed
infection are rarely observed. Finally, for a given IBD state, only 27 rather than 2% genotype configurations
are possible, thereby restricting the set of possible WSAF values.

Moving along the genome, recombination can result in changes in IBD state, hence changing WSAF
values at those loci (Figure 1B). To infer IBD states we use a hidden Markov model, which assumes linkage
equilibrium between variants for computational efficiency, with a Gamma-Poisson emission model for read
counts to account for over-dispersion (see Supplementary Materials). Population-level allele frequencies are
estimated from isolates obtained from a similar geographic region. Given the structure of the hidden Markov
model, we can compute the likelihood of the strain proportions by integrating over all possible IBD sharing
patterns, yielding a Bayesian estimate for the number and proportions of strains (see Methods). We then use

posterior decoding to infer the relatedness structure across the genome (Figure 1B). To quantify relatedness,
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we compute the mean IBD between pairs of strains, and statistics of IBD tract length (mean, median and
N50, the length-weighted median IBD tract length, Figure 1C).

In contrast to our previous work, DEploidIBD infers strain structure in two steps. In the first we estimate
the number and proportions of strains using Markov Chain Monte-Carlo (MCMC), allowing for IBD as
described above. In the second, we infer the individual genomes of the strains, using the MCMC methodology
of Zhu et al. (2018), which can account for linkage disequilibrium (LD) between variants, but without
updating strain proportions. The choice of reference samples for deconvolution is described in Zhu et al.
(2018) and in the Supplementary Materials. During this step we do not use the inferred IBD constraints per
se, though the inferred haplotypes will typically copy from the same (or identical) members of the reference

panel within the IBD tract.
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Figure 1: Deconvolution of a complex field sample PD0577-C from Thailand. (A) Scatter-plot showing the
number of reads supporting the reference (REF: x-axis) and alternative (ALT: y-axis) alleles. The multiple
clusters indicate the presence of multiple strains, but cannot distinguish the exact number or proportions.
(B) The profile of within-sample allele frequency along chromosomes 11 and 12 (red points) suggests a
changing profile of IBD with three distinct strains, estimated to be with proportions of 22%, 52% and
26% respectively (other chromosomes omitted for clarity, see Figure 1-Supplement 1); blue points indicate
expected allele frequencies within the isolate. However, the strains are inferred to be siblings of each other:
green segments indicate where all three strains are IBD; yellow, orange and dark orange segments indicate
the regions where one pair of strains are IBD but the others are not. In no region are all three strains
inferred to be distinct. (C) Statistics of IBD tract length, in particular illustrating the N50 segment length.
A graphical description of the modules and workflows for DEploidIBD is given in Figure 1-Supplement 2.

3 Results

3.1 Method validation

We validated DEploidIBD through both experimental mixtures using lab strains and in silico mixtures using

clonal field samples. First, to test consistency with DEploid (Zhu et al., 2018), we re-analysed the 27
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experimental mixtures from (Wendler, 2015). This data set includes 27 samples of various mixtures of four
laboratory parasite lines (3D7, Dd2, HB3 and 7G8; Figure 2-Supplement 3). Allowing for mixtures of up
to four strains and using optimal reference panels, we found comparable performance with the single-step
DEploid method, with the exception of three strains of equal proportions where LD information is necessary
to achieve accurate deconvolution (Figure 2-Supplement 3).

To test the accuracy of DEploidIBD in a more realistic setting, we created in silico mixtures of two strains
from 212 clonal samples of Asian origin (proportions ranging from 10/90% to 45/55%) using Chromosome
14 data (8,070 sites). A further 20 randomly chosen samples were used as the reference panel. In order
to compare the accuracy of the two methods at different levels of relatedness, we set 25%, 50% and 75%
of the second haplotype to be the same as the first haplotype to mimic scenarios of low, medium and
high relatedness. This operation sets a lower limit to the relatedness between two strains, as background
relatedness may also exist. To simulate data, we used empirical read depths and drew read counts for
the two alleles from binomial proportions. We inferred strain proportions (summarised by the effective
number of strains: K, = 1/ w?, where w; is the proportion of the ith strain), and haplotypes. Both
DEploid and DEploidIBD correctly estimate strain proportions with low relatedness (Figure 2A). However,
for moderate and high relatedness mixtures, DEploid fails to recover the correct proportion, when the minor
strain proportion is below 30%.

DEploidIBD is a substantial improvement on DEploid. In addition to estimating proportions and num-
ber of strains, DEploidIBD also estimates identity-by-descent (IBD) profiles. However, due to background
relatedness DEploidIBD typically over-estimates IBD fraction by a few percentage points (Figure 2B). Rates
of genotype error are similar for the two approaches in settings of low relatedness (error rate of 0.4% per site
for 25/75 mixtures and 1.0% for 45/55 mixtures). However, for the 25/75% mixtures with high relatedness,
genotype error for the non-IBD approach increases to 0.6%, while error in the IBD approach remains at 0.4%
(Figure 2C). Switch errors in haplotype estimation are comparable between the two methods and decrease
with increased relatedness due to the higher homozygosity (Figure 2D). In summary, joint inference of IBD
profiles and strain haplotypes is expected to improve estimates of strain proportions (and hence haplotypes),
particularly in regions with high rates of IBD. Moreover, direct estimates of IBD within mixed infections
can be used as an additional feature to characterise isolates.

We repeated the in silico experiment with mixtures of two strains from 197 clonal African samples, with
mixing proportions of 10/90%, 25/75% and 45/55%, using 92,780 sites from Chromosome 14. DEploidIBD
estimates the correct proportions at all relatedness levels (Figure 2-Supplement 1), although with a greater
relative difference in effective K compare to Asia (~ 2% vs. ~ 1%). DEploidIBD also recovers the correct
level of relatedness and IBD tract length (note that in Africa background relatedness is typically low). The

per site genotype error rate remains below 1%. The number of haplotype switch errors is higher than in
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Figure 2: Comparison of DEploidIBD and DEploid on 76 in silico mixtures of two strains from Asia for 8,070
sites on Chromosome 14. (A) Relative differences of inferred effective number of strains using DEploid and
DEploidIBD. The relative difference is calculated as the difference between inferred and expected effective
number of strains divided by the expected value. (B) Inferred pairwise relatedness and N50 IBD tract length
using DEploidIBD. Dotted lines indicate parameters used in the simulation. (C) Cumulative distribution
of the average per site genotype error across simulated mixtures with three levels of IBD (25%, 50% and
75%) for a mixture proportion of 25/75%. We performed 100 simulations, but excluded eight cases where
simulated haplotypes were over 99% identical and another 16 cases where average coverage was below 20.
(D) Cumulative distribution of haplotype switch errors with three levels of IBD (25%, 50% and 75%) for a
mixture proportion of 25/75%.
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Asia, but by a factor much less than the 11-fold increase in the number of SNPs.

Finally, we extended benchmarking to in silico mixtures of three Asian strains (Figure 2-supplement 2).
We set one strain to have the highest proportion (the dominant strain) and constructed the two minor strains
to be IBD with the dominant strain over distinct halves of the chromosome, such that at any point there
are only two distinct haplotypes present. We find that DEploidIBD outperforms (lower relative difference)
DEploid in all cases and typically provides accurate estimates of proportions (Figure 2-Supplement 2)
with the exception of two cases. For the case of (0.10, 0.40, 0.50), the minor strain creates very weak
allele frequency imbalance, leading DEploidIBD to infer the number of strains as two (with proportions
~ 45/55%) in 90/100 cases. For the case of (0.30, 0.30, 0.40), the problem is fundamentally unidentifiable
and DEploidIBD fits the data as a mixture of two strains. In these cases, DEploidIBD also underestimates

the pairwise relatedness and N50 tract lengths.

3.2 Geographical variation in mixed infection rates and relatedness

To investigate how the rate and relatedness structure of mixed infections varies among geographical regions
with different epidemiological characteristics, we applied DEploidIBD to 2,344 field samples of P. falciparum
released by the Pf3k project (Pf3k Consortium, 2016). These samples were collected under a wide range of
studies with heterogeneous designs, with the majority of samples being taken from symptomatic individuals
seeking clinical treatment. A summary of the data sources is presented in Table 1 and full details regard-
ing study designs can be found at https://www.malariagen.net/projects/pf3k#sampling-locations.
Details of data processing are given in the Methods. For deconvolution, samples were grouped into ge-
ographical regions by genetic similarity; four in Africa, and three in Asia. (Table 1). Reference panels
were constructed from the clonal samples found at each region. Since previous research has uncovered
strong population structure in Cambodia (Miotto et al., 2013), we stratified samples into West and North
Cambodia when performing analysis at the country level. Diagnostic plots for the deconvolution of all sam-
ples can be found at https://github.com/mcveanlab/mixedIBD-Supplement and inferred haplotypes can
be accessed at ftp://ngs.sanger.ac.uk/production/pf3k/technical_working/release_5/mixedIBD_
paper_haplotypes/. We identified 787 samples where low sequencing coverage or the presence of low-
frequency strains resulted in unusual haplotypes (see Supplementary Material). Estimates of strain number,
proportions and IBD states from these samples are used in subsequent analyses, but not the haplotypes. We
also confirmed that reported results are not affected by the exclusion of samples with haplotypes with low
confidence.

We find substantial variation in the rate and relatedness structure of mixed infections across continents

and countries. Within Africa, rates of mixed infection vary from 18% in Senegal to 63% in Malawi (Fig-
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Table 1: Summary of Pf3k samples.

Country  Year Location PfPR | ss D (s.e.) p K. Reference
Gambia 2008 Brikam 0.06 65 129 (9.4) 053 1.3 Amambua-Ngwa
et al. (2012)
Ghana 2009 Navrongo 0.79 121 86 (5.7) 025 1.6 Duffy et al. (2015);
2010 Navrongo 0.79 171 127 (10.3) 026 1.5 Kamau et al. (2015);
2011 Navrongo 0.72 97 76 (5.3) 024 1.5 MalariaGEN Plasmod-
Kintampo 0.58 6 89(135) 016 1.5 ium falciparum Com-
2012 Navrongo 052 | 47 111(3.8) 0.31 1.6 munity Project (2016)
Kintampo 0.41 40 157 (81) 025 1.6
2013 Navrongo 0.31 88 119 (4) 029 1.6
Kintampo 0.29 4 172 (384) 0.53 1.1
Malawi 2011  Chikwawa 0.19 230 101 (3) 0.28 1.7 Ocholla et al
(2014)
Zomba 034 | 35 89(9.1) 028 16
Mali 2007 Bandiagara 0.43 9 95(25.2) 039 1.8 Mobegi et al. (2014);
Faladje 0.37 36 75(10.1) 0.34 1.3 MalariaGEN Plasmod-
Kolle 0.21 51 82 (105) 036 1.6 dium falciparum Com-
Guinea 2011  Nzerekore 0.49 97 77 (46) 021 1.4 munity Project (2016)
Congo 2013  Kinshasa 0.24 113 49 (3.2) 0.36 1.5
DR
Senegal 2004  Thies 0.09 2 130 (68.2) 0.03 1.4 Wong et al. (2017)
2009  Thies 0.04 43 175(14.9) 047 1.1
2010 Thies 0.04 24 159 (9.7) 036 1.3
2011  Thies 0.03 32 97 (6) 04 1.1
West 2009 Pursat 0.0071 [ 19 75(8.8) 039 1.3 Amato et al (2017);
Cambodia 2010 Pursat 0.0071 | 105 95 (6.8) 0.65 1.2 MalariaGEN Plasmod-
2011 Pailin 0.0025 | 49 54 (4.1) 043 1.1 dum falciparum Com-
Pursat 0.0096 | 103 49 (3.1) 0.63 1.2 munity Project (2016)
2012 Pailin 0.00096 | 31 46 (5.6 ) 043 1.0
Pursat 0.0079 7 37(19.1) 058 1.4
North 2010 Ratanakiri 0.0039 50 71 (6.1) 044 1.3
Cambodia 2011 Preah  Vi- 0.02 73 51 (5.3) 0.36 1.2
hear
Ratanakiri 0.0032 | 81 45 (4.3) 048 1.4
2012 Preah  Vi-  0.0075 30 43 (6.7) 0.38 1.0
hear
Ratanakiri 0.0016 15 44 (8.9) 0.32 1.3
Thailand 2011 Mae Sot 0.00011 | 35 66 (7.5) 035 1.2 Miotto et al. (2013);
Sisakhet le-04 5 112 (254) 0.17 1.3 MalariaGEN Plasmod-
2012 Mae Sot 5.7¢-05 | 69 83(49) 059 1.3 dum falciparum Com-
Ranong 0.00018 | 11 82 (124) 034 1.2 munity Project (2016)
Sisakhet 0 13 89 (13) 037 1.1
2013 Sisakhet 0 3 62(88) 009 1.2
Bangladesh 2012 Ramu 0.0021 50 53 (4.2) 0.49 1.5
Viet 2011 Bu Gia Map  0.0073 43 67 (5) 0.44 1.3

Nam
Phuoc Long  0.0053 | 27 68 (72) 038 1.2

2012 Bu Gia Map  0.0072 | 19 115 (8) 0.67 1.1

Phuoc Long  0.0048 5 107 (6.3) 0.82 1.2

Myanmar 2011 Bago Divi- 0.0076 | 12 50 (7.1) 026 1.2
sion

2012 Bago Divi- 0.0084 47 62 (5.2) 046 1.2

sion

Laos 2011  Attapeu 0.0094 | 59 71(42) 037 14
2012 Attapeu 002 | 25 77(72) 069 13

Table 2: Summary of Pf3k samples in data release 5.%, where D denotes mean read depth and ss is sample
size. Genotyping, including both indel and SNP variants, was performed using a pipeline based on GATK best
practices, see Methods. Data available from ftp://ngs.sanger.ac.uk/production/pf3k/release_5/5.1.
PfPR is the inferred parasite prevalence rate in a 5 x 5 km resolution grid from the MAP project, centred
at the Pf3k sample collection sites; Relatedness p and effective number of strains K, are summary metrics
from DEploidIBD output.
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ure 3A). In Southeast Asian samples, mixed infection rates are in general lower, though also vary considerably;
from 21% in Thailand to 54% in Bangladesh. Where data for a location is available over multiple years, we
find no evidence for significant fluctuation over time (though we note that these studies are typically not well
powered to see temporal variation and collection dates are very heterogeneous). We observe that between

5.1% (Senegal) and 40% (Malawi) of individuals have infections carrying more than two strains.
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Figure 3: Characterisation of mixed infections across 2,344 field samples of Plasmodium falciparum. (A)
The fraction of samples, by population, inferred to carry one (clonal), two, three, or more than three strains.
Populations are ordered by rate of mixed infections within each continent. We use shaded regions to indicate
the distribution of 787 samples that have low-confidence deconvolved haplotypes. (B) The distribution of IBD
within mixed infections (including dual, triple and quad infections), broken down into unrelated (where the
fraction of the genome inferred to be IBD, p, is < 0.1), low IBD (0.1 > p < 0.3), sib-level (0.3 > p < 0.7) and
high (p > 0.7). Stars indicate the average IBD scaled between 0 and 1 from bottom to the top. Populations
follow the same order as in Panel A. (C) The relationship between the rate of mixed infection and level
of IBD. Populations are coloured by continent, with size reflecting sample size and error bars showing +1
s.e.m.. The dotted line shows the slope of the regression from a linear model. Abbreviations: SN-Senegal,
GM-The Gambia, NG-Nigeria, GN-Guinea, CD-The Democratic Republic of Congo, ML-Mali, GH-Ghana,
MW-Malawi, MM-Myanmar, TH-Thailand, VN-Vietnam, KH-Cambodia, LLA-Laos, BD-Bangladesh.

Relatedness between samples and populations also varies substantially. In dual infections, the average
fraction of the genome inferred to be IBD ranges from 21% in Guinea to 59% in West Cambodia (Figure 3B).
Asian populations show, on average, a higher level of relatedness within dual infections (48%) compared to
African populations (29%). Levels of IBD in samples with three or more strains are comparable to those
seen in dual infections (average IBD being 50% in Asia and 29% in Africa) and significantly correlated at
the country level, with weighted correlation of 0.76 (P = 0.0017, weighted by the number of mixed samples).
Overall, 53% of all mixed infections involve strains with over 30% of the genome being IBD.

We next considered the relationship between mixed infection rate and the level of IBD. We find that
populations with higher rates of mixed infection tend to have lower levels of IBD within mixed infections

(linear model P = 0.06 after accounting for a continental level difference and weighted by sample size).
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However, the continental level effect is driven by Senegal, which has an unusual combination of low mixed
infections and also low IBD. Excluding Senegal, we find a consistent pattern across populations (Figure 3C),
with a strong negative correlation between mixed infection rate and the level of IBD (Pearson r = —0.84, P
= 3x107*%). Previous work has demonstrated how a recent and dramatic decline in P. falciparum prevalence
within Senegal has left an impact on patterns of genetic variation (Daniels et al., 2015), which may explain

its unusual profile.
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Figure 4: Example IBD profiles in mixed infections. Plots showing the ALT versus REF plots (left hand side)
and inferred IBD profiles along the genome for five strains of differing composition. From top to bottom: A
dual infection of highly related strains (p = 0.84); a dual infection of two sibling strains (p = 0.6); a triple
infection of three sibling strains (note the absence of stretches without IBD); a triple infection of two related
strains and one unrelated strain; and a triple infection of three unrelated strains. The numbers below the
sample IDs indicate the average pairwise IBD, r, and the mean length of IBD segments, [, respectively.

3.3 Inferring the origin of IBD in mixed infections

The high levels of IBD observed in many mixed infections suggest the presence of sibling strains (Figure 4).

To quantify the expected IBD patterns between siblings, we developed a meiosis simulator for P. falciparum
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(pf-meiosis), incorporating relevant features of malaria biology that can impact the way IBD is produced
in a mosquito and detected in a human host. Most importantly, a single infected mosquito can undergo
multiple meioses in parallel, one occurring for each oocyst that forms on the mosquito midgut (Ghosh et al.,
2000). In a mosquito infected with two distinct strains, each oocyst can either self (the maternal and paternal
strain are the same) or outbreed (the maternal and paternal strains are different). We model a K = n mixed
infection as a sample of n strains (without replacement, as drawing identical strains yields K = n — 1)
from the pool of strains created by all oocysts. Studies of wild-caught Anopheles Gambiae suggest that
the distribution of oocysts is roughly geometric, with the majority of infected mosquitoes carrying only one
oocyst (Beier et al., 1991; Collins et al., 1984). In such a case, we find that a K = 2 infection will have
an expected IBD of 1/3, consistent with the observations of Wong et al. (2018). Conditioning on at least
one progeny originating from an outbred oocyst (such that a detectable recombination event has occurred),
the expected IBD asymptotically approaches 1/2 as the total number of oocysts grows (see Supplementary
Materials).

Using this simulation framework, we sought to classify observed mixed infections based on their patterns
of IBD. We used two summary statistics to perform the classification: mean IBD segment length and IBD
fraction. We built empirical distributions for these two statistics for each country in Pf3k, by simulating
meiosis between pairs of clonal samples from that country. In this way, we control for variation in genetic
diversity (as background IBD between clonal samples) in each country. Starting from a pair of clonal samples
(M = 0, where M indicates the number of meioses that have occurred), we simulated three successive rounds
of meiosis (M = 1,2, 3), representing the creation and serial transmission of a mixed infection (Figure 5A).
Each round of meiosis increases the amount of observed IBD. For example, in Ghana, the mean IBD fraction
for M = 0 was 0.002, for M =1 was 0.41, for M = 2 was 0.66, and for M = 3 was 0.80 (Figure 5B). West
Cambodia, which has lower genetic diversity, had a mean IBD fraction of 0.08 for M = 0 and consequently,
the mean IBD fractions for higher values of M were slightly increased, to 0.46, 0.68, 0.81 for M = 1,2 and
3, respectively (Figure 5B).

From these simulated distributions, we used Naive Bayes to classify & = 2 mixed infections in Pf3k (Fig-
ure 5C). Of the 404 K = 2 samples containing only high-quality haplotypes (see Supplementary Materials),
288 (71%) had IBD statistics that fell within the range observed across all simulated M. Of these, more
than half (221, 55%) were classified as siblings (M > 0, with ; 99% posterior probability). Moreover, we
observe geographical differences in the rate at which sibling and unrelated mixed infections occur. Notably,
in Asia a greater fraction of all mixed infections contained siblings (65% vs. 51% in Africa), driven by a
higher frequency of M = 2 and M = 3 mixed infections (Figure 5D). Mixed infections classified as M > 1
are produced by serial co-transmission of parasite strains, i.e. a chain of mixed infections along which IBD

increases.
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Figure 5: Identifying sibling strains within mixed infections. (A) Schematic showing how IBD fraction and
IBD segment length distributions are created for ¥ = 2 mixed infections using pf-meiosis. Two clonal
samples from a given country are combined to create an unrelated (M = 0, where M is number of meioses
that have occurred) mixed infection. The M = 0 infection is then passed through 3 rounds of pf-meioses
to generate M = 1,2, 3 classes, representing serial transmission of the mixed infection (M = 1 are siblings).
(B) Simulated IBD distributions for M = 0,1, 2,3 for Ghana (top) and West Cambodia (bottom). A total
of 10,000 mixed infections are simulated for each class, from 500 random pairs of clonal samples. (C)
Classification results for 404 K = 2 mixed infections from 13 countries. Undetermined indicates mixed
infections with IBD statistics that were never observed in simulation. (D) Breakdown of class percentage by
continent. Total number of samples is given above bars. Colours as in panel C (M = 0, grey; M = 1, purple;
M = 2, pink; M = 3, orange; Undeteremined, black). (E) Same as (D), but by country. Abbreviations as in
Figure 3.
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3.4 Characteristics of mixed infections correlate with local parasite prevalence

To assess how characteristics of mixed infections relate to local infection intensity, we obtained estimates of
P. falciparum prevalence (standardised as PfPRy_19, prevalence in the 2-to-10 year age range) from the
Malaria Atlas Project (MAP, 2017, see Table 1). The country level prevalence estimates range from 0.01%
in Thailand to 55% in Ghana, with African countries having up to two orders of magnitude greater values
than Asian ones (mean of 36% in Africa and 0.6% in Asia). However, seasonal and geographic fluctuations
in prevalence mean that, conditional on sampling an individual with malaria, local prevalence may be much
higher than the longer-term (and more geographically widespread) average. We summarise mixed infection
rates by the average effective number of strains, which reflects both the number and proportion of strains
present. This metric both avoids the problem of having to estimate a threshold for determining the presence
of a very low proportion strain and is sensitive to the presence of triply (and more) infected samples.

We find that the effective number of strains is a significant predictor of P fPRs_19 in African populations
(r = 0.48, P = 0.04), but is uncorrelated within Asian populations. Similarly, PfPRy_1¢ is negatively
correlated with background IBD (r = —0.53, P = 0.02) and within-sample IBD (r = —0.67, P = 0.0017 )
across Africa, whereas neither metric is significantly correlated with PfPRs_1¢ across Asia. The rate of
sibling infection (M = 1) is not correlated with the parasite prevalence (r = —0.06, P = 0.70). However,
the super-sibling infection rate (M = 2,3) does exhibit a marginally significant correlation with PfPRs_1¢
(r = —0.29, P = 0.06), albeit only at the continental scale. Interestingly, all statistics relating to IBD are
positively correlated with PfPRy_1¢ in Asian populations (though not significantly so), in contrast to the

negative (and significant) associations seen within African populations.

4 Discussion

It has long been appreciated that mixed infections are an integral part of malaria biology. However, deter-
mining the number, proportions, and haplotypes of the strains that comprise them has proven a formidable
challenge. Previously we developed an algorithm, DEploid, for deconvolving mixed infections (Zhu et al.,
2018). However, we subsequently noticed the presence of mixed infections with highly related strains in
which the algorithm performed poorly, particularly with low-frequency minor strains. Mixed infections con-
taining highly related strains represent an epidemiological scenario of particular interest, because they are
likely to have been produced from a single mosquito bite, itself multiply infected, and in which meiosis has
occurred to generate sibling strains. Thus, we developed an enhanced method, DEploidIBD, capable not only
of deconvolving highly related mixed infections, but also providing a profile of IBD segments between all
pairs of strains present in the infection. We note that technical difficulties remain, including analysing data

with multiple infecting species, coping with low-coverage data, and selecting appropriate reference panels
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Figure 6: The relationship between P. falciparum prevalence and characteristics of mixed infection including
(A) the average effective number of strains, given by K, = (3 w?)~!, where w; is the proportion of the ith
strain; (B) within sample relatedness (average IBD fraction) in mixed samples; (C) background relatedness
between clonal samples; and (D) super sibling rate (M > 1) in dual infections. Each point relates to a row
in Table 1 from different sampling locations and years. Point size is proportional to Pf3k sample size. We
label points with the country of the sampling site contributing the largest number of samples. Black R is
the R for the combined dataset.

15


https://doi.org/10.1101/387266
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/387266; this version posted September 17, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

from the growing reference resources.

The application of DEploidIBD to the 2,344 samples in the Pf3k project has revealed the extent and
structure of relatedness among malaria infections and how these characteristics vary between geographic
locations. We found that 1,026 (44%) of all samples in Pf3k were mixed, being comprised of 480 K = 2
infections, 372 K = 3 and 127 K = 4 infections. Across the entire data set, the total number of genomes
extracted from mixed infections is nearly double the number extracted from clonal infections (2,584 genomes
from K > 1vs. 1,365 from K = 1). We also found considerable variation, between countries and continents in
the characteristics of mixed infections, suggesting that they are sensitive to local epidemiology. For example,
in West Africa, Senegal (which has undergone a recent and effective malaria control campaign) has a rate
of mixed infections less than half that of neighbouring Guinea and Mali. Previous work has highlighted the
utility of mixed infection rate in discerning changes in regional prevalence, and we re-enforce that finding
here, observing a significant correlation between the effective number of strains and parasite prevalence
across Pf3k collection sites. Similarly, using DEploidIBD we also observe significant geographical variation
in the relatedness profiles of strains within mixed infections. Interestingly, this variation is structured such
that regions with high rates of mixed infection tend to contain strains that are less related, resulting in a
significant negative correlation between mixed infection rate and mean relatedness within those infections.

The ability to identify the extent and genomic structure of IBD enables inference of the mechanisms by
which mixed infections can arise. A mixed infection of K strains can be produced by either K independent
infectious bites or by j < K infectious bites. In the first case, parasites are delivered by separate vectors
and no meiosis occurs between the distinct strains, thus any IBD observed in the mixed infection must
have pre-existed as background IBD between the individual strains. In the second case, meiosis may occur
between strains, resulting in long tracts of IBD. The exact amount of IBD produced by meiosis is a random
variable, dependent on outcomes of meiotic processes, such as the number of recombination events, the
distance between them, and the segregation of chromosomes. Importantly, the mean IBD produced during
meiosis in P. falciparum also depends on the number and type (selfed vs outbred) of oocysts in the infectious
mosquito. Here, we have shown, from first principles, that the amount of IBD expected in a single-bite mixed
infection produced from two unrelated parasites strains will always be slightly less than 1/2, and potentially
as low as 1/3 (see Supplementary Materials).

To quantify the distribution of IBD statistics expected through different mechanisms of mixed infection,
we developed a Monte Carlo simulation tool, pf-meiosis, which we used to infer the recent transmission
history of individuals with dual (K = 2) infections. We considered mixed infection chains, in which M
successive rounds of meiosis, transmission to host, and uptake by vector can result in sibling strain infections
with very high levels of IBD. Overall, we found that 56% of all mixed infections are from sibling strains

and, particularly within Asian population samples, evidence for long mixed infection chains (M > 1). This
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observation is not a product of lower genetic diversity in Asia, as differences in background IBD between
countries have been controlled for in the simulations. Rather, it reflects true differences in transmission
epidemiology between continents. These findings have three important consequences. First, it suggests
that successful establishment of multiple strains through a single infection event is major source of mixed
infection. Second, it implies that the bottlenecks imposed at transmission (to host and vector) are relatively
weak. Finally, it indicates that the source of mixed infections reflects aspects of local epidemiology.

We note that a non-trivial fraction (29%) of all mixed infections had patterns of IBD inconsistent with
the simulations (typically higher IBD than background but lower than among siblings). We suggest two
explanations. Firstly, our estimate of background IBD, generated by combining pairs of random clonal
samples from a given country into an artificial M = 0 mixed infection, will underestimate true background
IBD if there is very strong local population structure. Second, we only simulated simple mixed infection
transmission chains, at the exclusion of more complex transmission histories, such as involving strains related
at the level of cousins. The extent to which such complex histories can be inferred with certainty remains
to be explored.

Finally, our results show that the rate and relatedness structure of mixed infections correlate with esti-
mated levels of parasite prevalence, at least within Africa, where prevalence is typically high (Smith et al.,
1993). In Asia, which has much lower overall prevalence, as well as greater temporal (and possibly spatial)
fluctuations, we do not observe such correlations. However, it may well be that other genomic features that
we do not consider in this work could provide much higher resolution, in space and time, for capturing
changes in prevalence than traditional methods. Testing this hypothesis will lead to a much greater un-
derstanding of how genomic data can potentially be used to inform global efforts to control and eradicate

malaria.

5 Methods and Materials

The data analysed within this paper were collected and made openly available to researchers by member
of the Pf3k Consortium. Information about studies within the data set can be found at https://www.
malariagen.net/projects/pf3k#sampling-locations. Detailed information about data processing can
be found at https://www.malariagen.net/data/pf3k-5. Briefly, field isolates were sequenced to an average
read depth of 86 (range 12.6 — 192.5). After removing human-derived reads and mapping to the 3DT reference
genome, variants were called using GATK best practice and approximately one million variant sites were
genotyped in each isolate. After filtering samples for low coverage and cross-species contamination, 2,344
samples remained. The Supplementary Material provides details on the filters used and data availability.
For deconvolution, samples were grouped into geographical regions by genetic similarity; four in Africa, and

three in Asia. (Table 1). Reference panels were constructed from the clonal samples found at each region.
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Since previous research has uncovered severe population structure in Cambodia (Miotto et al., 2013), we

stratified samples into West and North Cambodia when performing analysis at the country level.
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7 Data availability

Metadata on samples is available from ftp://ngs.sanger.ac.uk/production/pf3k/release_5/pf3k_release_
5_metadata_20170804.txt.gz. Sequence data (aligned to Plasmodium falciparum strain 3D7 v3.1 refer-
ence genome sequences, for details see ftp://ftp.sanger.ac.uk/pub/project/pathogens/gf£3/2015-08/
Pfalciparum.genome.fasta.gz) is available from ftp://ngs.sanger.ac.uk/production/pf3k/release_
5/5.1/. Diagnostic plots for the deconvolution of all samples can be found at https://github.com/
mcveanlab/mixedIBD-Supplement and deconvolved haplotypes can be accessed at ftp://ngs.sanger.ac.
uk/production/pf3k/technical_working/release_5/mixedIBD_paper_haplotypes/. Code implement-

ing the algorithms described in this paper, DEploidIBD, is available at https://github.com/mcveanlab/
DEploid.
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Figure 1-Figure supplement 1. Whole genome deconvolution of field sample PD0577-C. The outer
ring shows the expected within-sample allele frequency (WSAF) (blue) and observed WSAF (red)
across the genome. Red and blue points indicate observed and expected allele frequencies within
the isolate. The inner ring indicates the IBD states among the three strains: green segments indicate
where all three strains are IBD; yellow, orange and dark orange segments indicate the regions where
one pair of strains are IBD but the others are not. In no region are all three strains inferred to be

distinct, suggesting that all three strains are siblings.
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Figure 1-Figure supplement 2. A graphical overview of the data types and work flows for

DEploidIBD. The boxes at the bottom represent final outputs of the pipeline. The rectangular
boxes indicate when DEploidIBD is executed, with inputs highlighted by blue arrows. The process
has three key steps: Step 1. A reference panel for the set of samples is constructed from high
confidence clonal haplotypes, either identified from within a study or from an external resource,
such as Pf3k. Step 2: DEploidIBD, using population level allele frequencies, is used to infer the
number of strains, strain proportions and IBD profile within each sample. Step 3: DEploidIBD is
re-run on each sample to infer haplotypes, but with the proportions estimated in Step 2 fixed and

this time using the haplotype (LD-aware) method previously implemented in DEploid.
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Figure 2-Figure supplement 1. Performance of DEploidIBD on 81 in silico mixtures of two strains
from Africa using 92,780 sites from Chromosome 14. (A) Relative differences of inferred effective
number of strains. (B) Inferred pairwise relatedness and N50 IBD tract length. Dotted lines mark
parameters used in the simulation. We performed 100 simulations, but excluded eight cases that
samples with very low coverage (below 13) and another 11 cases that sample coverage is between
13 and 29, and the reference panel contains at least one low confidence haplotype. (C) Cumulative
distribution of average per site genotyping error for three levels of IBD (25%, 50% and 75%). (D)

Cumulative distribution of haplotype switch error for the same three levels of IBD.
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Figure 2-Figure supplement 2. Performance of DEploidIBD and DEploid on in silico mixtures of
three strains from Asia. p, and p, denote the proportions of the minor strains 1 and 2 respectively.
The third strain, with proportion of 1 — p, — p,, always has the largest proportion. We consider two
scenarios: five cases with p, = p, in the range 0.1 < p, < 0.35) and 10 cases with p, < p,: (0.10, 0.15,
0.75), (0.10, 0.20, 0.70), (0.10, 0.25, 0.65), (0.15, 0.20, 0.65), (0.10, 0.30, 0.60), (0.15, 0.25, 0.60), (0.10,
0.40, 0.50), (0.15, 0.30, 0.55), (0.20, 0.25, 0.55) and (0.20, 0.30, 0.50). (A) lllustration of the mixture
proportion profile over the K, surface. Let red and green color represent scenarios that p, = p, and
p; < p,- (B) Relative difference of inferred effective number of strains using DEploid and DEploidIBD.
(C) Inferred pairwise relatedness and N50 IBD tract length. Dashed lengths indicate the tract lengths
of the first and the second 50% of the SNPs.
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PG0410-C ( 0.00, 0.00, 0.75, 0.25) X
PG0409-C ( 0.00, 0.00, 0.70, 0.30 ) X
PG0408-C ( 0.00, 0.00, 0.60, 0.40 ) X
PG0407-C ( 0.00, 0.00, 0.50, 0.50 )
PG0406-C ( 0.00, 0.00, 0.40, 0.60 )
PG0405-C ( 0.00, 0.00, 0.30, 0.70 ) X
PG0404-C ( 0.00, 0.00, 0.25, 0.75) X
PG0403-C ( 0.00, 0.00, 0.20, 0.80) X
PG0402-C ( 0.00, 0.00, 0.15, 0.85 ) X
PG0401-C ( 0.00, 0.00, 0.10, 0.90 ) X
PG0400-C ( 0.00, 0.00,0.05,0.95) | ¥
PG0399-C (0.00, 0.00,0.01,0.99) | )
X

XXX

PG0398-C ( 0.00, 0.00, 0.00, 1.00)
PG0397-C ( 0.00, 0.14, 0.71, 0.14) X

PG0396-C (0.00, 0.25, 0.50, 0.25 ) %
PG0395-C (0.00,0.33,0.34,0.33) |1 X X -
PG0394-C (0.10,0.90,0.00,0.00) | X

PG0393-C (0.20, 0.80, 0.00, 0.00 ) X

PG0392-C (0.33, 0.67, 0.00, 0.00) X

PG0391-C ( 0.67, 0.33, 0.00, 0.00) X
PG0390-C ( 0.80, 0.20, 0.00, 0.00 ) X
PG0389-C (0.90, 0.10, 0.00, 0.00 ) X

*

10 15 20 25 30 35
Effective K
Figure 2-Figure supplement 3. Validation of DEploidIBD using 27 experimental lab mixtures. A
reference panel of the laboratory strains (3D7, Dd2, HB3 and 7G8; Panel V) was used to deconvolve
samples with DEploid. Each experiment is performed with and without IBD inference and with
two values of the maximum number of strains (3 and 4). Black crosses indicate the true effective
number of strains. Coloured crosses indicate median values obtained from 30 replicates using the
algorithm/strain number indicated in the legend. The coloured dots show the inferred effective
number of strains across replicates with intensity proportional to fraction. Note one sample
(indicated by an asterisk and dotted red line) where balanced proportions of three strains results in

the LD-free approach fitting the data as a mixture of two strains with proportions of 1/3 and 2/3.
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