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Abstract 
The need to reduce per sample cost of RNA-seq profiling for scalable data generation has 
led to the emergence of highly multiplexed RNA-seq.  These technologies utilize 
barcoding of cDNA sequences in order to combine samples into single sequencing lane to 
be separated during data processing.  In this study, we report the performance of one such 
technique denoted as sparse full length sequencing (SFL), a ribosomal RNA depletion-
based RNA sequencing approach that allows for the simultaneous sequencing of 96 
samples and higher.  We offer comparisons to well established single-sample techniques, 
including: full coverage Poly-A capture RNA-seq and microarray, as well as another low-
cost highly multiplexed technique known as 3’ digital gene expression (3’ DGE). Data 
was generated for a set of exposure experiments on immortalized human lung epithelial 
(AALE) cells in a two-by-two study design, in which samples received both genetic and 
chemical perturbations of known oncogenes/tumor suppressors and lung carcinogens.  
SFL demonstrated improved performance over 3’ DGE in terms of coverage, power to 
detect differential gene expression, and biological recapitulation of patterns of differential 
gene expression from in vivo lung cancer mutation signatures.  
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Introduction 
Since its inception in 2008, RNA sequencing has become the gold-standard for whole-
transcriptome high-throughput data generation(Mortazavi et al., 2008). In addition to 
RNA transcript expression quantification, RNA-seq allows for more advanced analyses 
including de novo transcriptome assembly(Robertson et al., 2010) and characterization of 
alternative splicing variants(Bryant et al., 2012).  Furthermore, RNA-seq is species 
agnostic, such that the same library preparation technique may be utilized for humans, 
mouse, rat, kidney bean, etc. These represent clear advantages over hybridization-based 
microarray platforms in which individual microarray platforms are designed to quantify 
specific transcripts for a specific species(Wang et al., 2009).  However, one persistent 
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drawback of RNA-seq has been its relatively high cost.  The use of classic RNA-seq 
techniques for experimental designs that require profiling of many samples – especially 
when the marginal information value of each sample is relatively low, such as in 
medium- and high-throughput screening applications – can thus present a disqualifying 
cost burden.  
 
Large-scale projects based on transcriptional profiling of chemical exposure experiments 
include the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System 
(Open TG-GATEs)(Igarashi et al., 2015), the DrugMatrix database(Ganter et al., 2006), 
and the Connectivity Map (CMap)(Subramanian et al., 2017), among others.  Both the 
TG-GATEs and the DrugMatrix projects used microarrays for expression profiling, 
which was at the time significantly less costly than full coverage RNA-sequencing, yet 
still requiring multi-million budgets. Alternatively, the CMap project utilizes the 
Luminex-1000 (L1000) profiling platform, a bead-based analog expression assay which 
quantifies 1,058 human transcripts, which are used to impute the expression of 
11,350 additional transcripts(Subramanian et al., 2017).  This technique is among the 
least expensive expression assays available, but it is restricted to human screens and it 
directly profiles only a limited panel of genes.  Given the flexibility of RNA-sequencing 
platforms, highly multiplexed techniques represent a viable alternative for generating 
transcriptional data from exposure screens, as well as from other experiments that require 
a large sample size.  Therefore, evaluation of the technical validity of specific techniques 
serves to inform research strategies for a variety of biological inquiries.  
 
The need to reduce the per sample cost of RNA-seq has led to the adoption of barcoding 
technologies, where cDNA sequences from individual samples are tagged and their 
libraries are combined and multiplex sequenced in a single lane(Wang et al., 2011). More 
recently, these techniques have been optimized to allow multiplex sequencing of 96 
samples per lane or higher(Hou et al., 2015; Shishkin et al., 2015).  Here, we report the 
results of our effort at optimizing and evaluating one such technique denoted as sparse 
full length (SFL) sequencing (Shishkin et al., 2015), a ribosomal RNA depletion-based 
RNA sequencing approach that allows for the simultaneous sequencing of 96 samples 
and higher.  We offer comparisons to well established single-sample techniques, 
including: full coverage Poly-A capture RNA-seq and microarray, as well as another low-
cost highly multiplexed technique known as 3’ digital gene expression (3’ DGE)(Asmann 
et al., 2009). Assessments include comparisons of coverage between the three RNA-
sequencing techniques, as well as signal-to-noise and biological recapitulation of gene-
level differential signals between treatment groups for the same samples profiled across 
SFL, microarray, and 3’DGE.  For this evaluation study, we generated a set of exposure 
experiments on immortalized human lung epithelial (AALE) cells (Lundberg et al., 
2002)in a two-by-two study design, in which samples received both genetic and chemical 
perturbations of known oncogenes/tumor suppressors and lung carcinogens (Figure 1).  
The goal of this report is not only to assess the performance of our optimized highly 
multiplexed technique, but to inform future research in terms of the strengths and pitfalls 
of available cost-effective high throughput transcriptomic profiling techniques. 
 
MATERIAL AND METHODS 
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Samples 
Exposure experiments were performed on immortalized human bronchial epithelial cells 
(AALE).  Cells were exposed to both chemical and genotypic perturbations with three 
replicates per perturbation combination.  Cells were thawed from liquid nitrogen and 
grown up in SAGM small airway epithelial cell growth media (Lonza, Portsmouth NH). 
Cells were subcultured using Clonetics ReagentPack subculture reagents (Lonza, 
Portsmouth NH). In preparation for exposure, cells were plated into 24-well plates and 
allowed to reach confluency for 24 hours.  Cell culture media was then replaced, and 
compounds added at a concentration of 24 �g/ml CSC, 173�M BaP, 490�M NNK or 
DMSO. NNK and BaP compounds were obtained from Sigma-Aldrich (St. Louis MO) 
and CSC obtained from Murty Pharmaceuticals (Lexington, KY). Genotypic 
perturbations included CRISPR knockouts of FAT1, and CDKN2A, as well as 
overexpression of NRF2 (NFE2L2), FGFR1, NRG1 and PIK3CA. Cells transfected with a 
pSpCas9-EGFP (GFP) plasmid (PX458) in the absence of sgRNAs were used as controls 
for the CRISPR perturbations while overexpression of an empty vector containing the 
reporter HcRed served as control for the overexpression experiments.  The same samples 
were profiled across SFL, microarray, and 3’ DGE for a subset of combinations of 
exposures, though all samples were profiled by SFL. In addition, full coverage poly-a 
capture Full coverage poly-A RNA-seq was performed on a separate set of samples for a 
subset of genotypic exposures, including CRISPR knockouts of FAT1, as well as 
overexpression of NRF2, NRG1 and PIK3CA.  These samples did not receive any 
chemical exposures (Figure 1).  Note that in a few cases there was not enough material to 
perform 3’ DGE, as indicated by the sample numbers of certain perturbation 
combinations. 
 
Library Preparation 
Library preparation for SFL sequencing was carried out based on the published protocol 
(Shishkin et al., 2015). An edited version of this protocol is available in the 
Supplementary Methods. RNA was isolated using a standard Qiazol and Qiacube 
protocol from Qiagen (Valencia, CA). RNA purity was assessed using a NanoDrop 
spectrophotometer and no samples were excluded from downstream analysis. The dual-
barcoded SFL libraries were pooled from 96 individual samples and then sequenced on 
the Illumina® NextSeq 550 to generate more than 400 million Single-Read 75-bp reads. 
Poly-A RNA Sequencing libraries were prepared from total RNA samples using 
Illumina® TruSeq® RNA Sample Preparation Kit v2 and then sequenced on the 
Illumina® HiSeq 2500 to generate more than 5 million single-end 50-bp reads per 
sample. Microarray procedures were performed as described in GeneChip™ WT PLUS 
Reagent Kit manual and GeneChip™ WT Terminal Labeling and Controls Kit protocol 
(Thermo Fisher Scientific). The labeled fragmented DNA was generated from 100 ng of 
total RNA and was hybridized to the GeneChip™ Human Gene 2.0 ST Array. 
Microarrays were scanned using Affymetrix GeneArray Scanner 3000 7G Plus. 3’DGE 
library preparation was performed by Broad Institute, Cambrige, MA, USA, similar to 
(Soumillon et al., 2014). Final libraries were purified using AMPure XP beads (Beckman 
Coulter) according to the manufacturer’s recommended protocol and sequenced on an 
Illumina NextSeq 500 using paired-end reads of 17bp (read1) + 46bp (read2).  Read1 
contains the 6-base well barcode along with the 10-base UMI. Across all platforms, the 
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number of samples that were successfully profiled per perturbation combination is shown 
in Figure 1. 
 
Data Pre-processing 
Affymetrix GeneChip Human Gene 2.0 ST Microarray CEL files were annotated to 
unique Entrez gene IDs, using a custom CDF file from BrainArray 
(hugene20st_Hs_ENTREZG_21.0.0) and RMA-normalized.  For SFL, adapter sequences 
were trimmed from raw sequence files using Cutadapt v1.12. Quality assessment of 
trimmed SFL sequence files as well as raw full coverage RNA-seq sequencing files was 
performed with FastQC v0.11.5. Both SFL and RNA-seq reads were aligned to human 
genome (UCSC RefSeq hg19) with STAR v2.5.2b(Dobin et al., 2013) and expression 
quantification in RefSeq genes was carried out with featureCounts (subread) v1.5.0(Liao 
et al., 2014).  For 3’ DGE, pre-quantified gene expression count matrices were obtained 
from the Broad Institute, Cambrige, MA, USA.  These reads had been aligned to the 
transcriptome (UCSC RefSeq hg19), using BWA aln v0.7.10(Li and Durbin, 2009), such 
that reads with the same UMI and sample barcode were only counted once per gene. All 
further data processing and analysis were carried out in R. 
 
Coverage Assessment 
Read coverage across the 82 samples, shared between SFL and 3’ DGE, as well as all 18 
full coverage RNA-seq samples was assessed for library size as well as percentage of the 
library size that was aligned, uniquely aligned (i.e. reads that only align once in the 
genome), and counted in the 18,488 genes with shared annotations across all three 
platforms. Unlike SFL and full coverage RNA-seq, 3’DGE reads are aligned directly to 
mRNA sequences, such that the reported numbers of counted reads and uniquely aligned 
reads are the same. To assess the relative distribution of reads across the total set of 
18,488 shared genes, we plotted the cumulative proportion of the sum of reads aligning to 
individual genes across all samples ranked by relative expression across all three 
platforms. 
 
Signal-to-Noise Assessment 
Signal-to-noise was compared among SFL, 3’DGE and microarrays based on four-group 
ANOVA analysis and two-group differential analysis. In the ANOVA analysis, the 
signal-to-noise was assessed across like samples undergoing exposure to CSC or DMSO 
vehicle, as well as genotypic perturbations of NRF2 overexpression or HcRed control. 
Thus, the analysis included four independent groups of samples, receiving each 
combination of chemical (CSC or DMSO) and genotypic (NRF2 or HcRed) 
perturbations, with three replicates in each group. Only genes with mean expression ≥ 1 
across all 12 samples in both SFL and 3’ DGE were included in the analysis (9,813 total 
genes).  Expression levels across SFL and 3’DGE were normalized via trimmed mean of 
M values (TMM)(Robinson and Oshlack, 2010) scaling and log2 counts-per-million 
transformation. Signal-to-noise was assessed for each gene in each platform by 
performing a classic ANOVA analysis across the four groups.  Additionally, two-group 
differential analysis was performed for each stratified chemical and genotypic 
perturbation. That is, differential expression of CSC- vs. DMSO-treated samples, within 
either HcRed or NRF2 treatment, as well as differential expression of NRF2- vs. HcRed-
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treated samples, within either DMSO or CSC exposure, was performed.  For all three 
platforms, differential analysis was carried out based on normalized expression values 
with LIMMA v3.30.7(Ritchie et al., 2015). All p-values reported from two-group 
differential analysis are two-sided. In both ANOVA and LIMMA analyses, nominal p-
values for each gene were corrected for multiple comparisons using the Benjamini-
Hochberg procedure(Benjamini and Hochberg, 1995). 
 
Biological Signal Recapitulation 
Two-group differential analysis signatures were compared by pre-ranked gene set 
enrichment analysis (GSEA) to gene sets derived from published signatures of smoking 
exposure in the airway from healthy volunteers (Beane et al., 2007; Spira et al., 2004), as 
well as to gene sets analytically derived from The Cancer Genome Atlas (TCGA) for 
patients with lung squamous cell carcinoma (LUSC) or lung adenocarcinoma (LUAD). 
The two smoking gene sets consist of genes reported as either up- or down-regulated in 
response to smoking in at least one of the two publications, while TCGA gene sets were 
derived by probing differential expression of individual genes between patients with or 
without point mutations or copy number alterations (CNA) in genes of interest. These 
include mutations for the same panel of genes profiled for genotypic perturbations. In 
addition we include KEAP1 mutations, a repressor of NRF2(Kansanen et al., 2013, 1). 
Specifically, point mutation signatures were derived from LUSC and LUAD, 
independently, by performing differential analysis of subjects with and without point 
mutations in genes of interest, matched for age, sex, and cancer stage.  Likewise, CNA 
gene signatures were assessed for amplification and deletions of genes of interest by 
differential analysis, using subjects with zero, one, or two additional copies or deletions 
of a gene of interest, respectively.  All models for mutations and CNA were adjusted for 
tumor purity, as reported(Campbell et al., 2016).  Differential signatures were derived 
using LIMMA v3.30.7.  Genes associated with specific mutations or CNA were defined as 
those with significance and magnitude of the linear model’s genetic alteration coefficient 
at FDR Q-value < 0.05 and |log2 fold-change| > log2(1.5), respectively.  
 
Each of our genotypic perturbation signatures was compared by GSEA to the 
corresponding TCGA-derived gene sets. For example, the PIK3CA overexpression 
signatures were compared to the gene sets derived from PIK3CA mutation and copy 
number alterations in the TCGA data.  
 
Materials 
Coverage Assessment 
Comparison of coverage of the three sequencing platforms, full coverage poly-A RNA-
seq, SFL, and 3’ DGE, is summarized in Table 1 and Figure 2.  Comparison between SFL 
and 3’DGE included 82 samples each, while full coverage poly-A RNA-seq included all 
18 available samples. Unsurprisingly, full coverage poly-A RNA-seq generated the 
largest library size, i.e., number of reads per sample, while the SFL and 3’DGE libraries 
were of comparable size (Figure 2A). Furthermore, full coverage poly-a RNA-seq 
yielded the highest percentage of reads aligned to the genome, followed by SFL and 3’ 
DGE (Figure 2Bi). For SFL there was a clear drop-off when going from percentage of 
aligned reads to percentage of uniquely aligned reads due to ribosomal RNA (rRNA) 
contamination of the SFL samples (Figure 2Bii). The majority of reads aligning to 
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ribosomal regions specifically align to RNA28S (Figure S1).  For 3’ DGE, unique UMIs 
are aligned directly to transcript sequences and not to the whole genome, such that the 
number of uniquely aligned reads and reads counted in transcripts are the same (Figure 
2Bii-iii)(Morrissy et al., 2009).  The percentage of reads that are counted in transcripts is 
greatest for full coverage poly-A RNA-seq (mean percentage of total library size: 65.2%), 
followed by 3’ DGE (33.3%), and SFL (24.5%).  However, while the functional library 
size (i.e., the number of counted reads) is greater for 3’ DGE than for SFL, more genes 
were quantified by SFL than by 3’ DGE (Figure 2Biv) (counts > 0 across all samples for 
22,233 genes shared across all three platforms,). A median of 60.9% and 50.5% genes 
were quantified by SFL and 3’DGE, respectively.  This is further illustrated in Figure 2C, 
where it is shown that the reads are more evenly distributed across the 22,233 genes by 
SFL than by 3’DGE, with the cumulative distribution of reads counted in individual 
genes nearly identical in SFL and full coverage poly-A RNA-seq.    
 
In summary, despite lower overall counted library size due to ribosomal RNA 
contamination, SFL demonstrates greater coverage in low-to-medium expressed genes 
than 3’ DGE, comparable to full coverage poly-A RNA-seq. 
 
Signal-to-Noise Evaluation 
Differential gene expression across experimental groups of matched samples was 
performed in SFL, microarray, and 3’ DGE over the 9,713 shared genes, after removal of 
low-coverage genes (mean read counts < 1), across SFL and 3’DGE, and the 
corresponding signal-to-noise scores were compared pairwise (Figure 3).  Samples shared 
across the three platforms include 3 replicates for each of four experimental groups, 
corresponding to NRF2 overexpression or HcRed vehicle, as well as CSC chemical 
exposure or DMSO vehicle (Figure 1).  Signal-to-noise was assessed by a four-group 
comparison with classic ANOVA (Figure 3A-D), as well as by stratified two-group 
differential analyses using LIMMA (Figure 3 E-F).  
 
We compared the log10 F-statistics between ANOVA models across all three platforms 
(Figure 3A).  Overall, the distribution of F-statistics is most similar between SFL and 
microarrays, with a Pearson correlation of 0.291. The corresponding mean difference 
between log10 F-statistics is 0.026, and is significantly skewed towards the SFL results 
(p-value < 0.01). The mean differences of the log10 F-statistics between SFL and 3’DGE, 
and between 3’DGE and microarray are 0.328 and 0.302, respectively, and the 
corresponding Pearson correlations are 0.160 and 0.216, respectively.  These results are 
consistent with the discovery rates estimated for different FDR Q-value thresholds 
(Figure 3B). For example, at the FDR Q-value threshold of 0.05, the discovery rates of 
SFL, microarray, and 3’DGE are 0.214 (2083 genes), 0.209 (2038 genes), and 0.032 (310 
genes), respectively.  
 
Loess regression of the log10 F-statistics as a function of mean gene expression shows 
that the statistical signal increases with mean normalized expression. This trend is 
consistently positive for both SFL and 3’DGE, while leveling off at the most highly 
expressed genes in microarrays (Figure 3C). Furthermore, SFL signal is greater than 3’ 
DGE signal at all levels of mean expression (Figure 3C). In agreement with the results 
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from coverage comparison, the distribution of mean normalized expressions in 3’DGE is 
smaller than that of SFL, while SFL is comparable to that of microarray (Figure 3D).  
Adherence to assumption of normality, assessed through a Shapiro-Wilk test, is also 
associated with higher mean normalized expression (Figure S3).  
 
The results of the comparisons of the two-group differential analyses across all three 
platforms were generally congruous with those of the four-group ANOVA analyses 
(Figure 3E-F, Figure S4).  In all four two-group comparisons, the correlation of test 
statistics is closest between microarray and SFL results, followed by 3’ DGE versus 
microarray results, and 3’DGE versus SFL. For example, in the DMSO-stratified, NRF2 
versus HcRed analysis, estimates of the Pearson correlations of test statistics are 0.64, 
0.43, and 0.38, respectively (Figure 3E).  The discovery rate of 3’ DGE is the lowest 
across all four differential analyses (Figure 3F). 
 
In summary SFL demonstrated greater statistical power than 3’DGE to detect 
differentially expressed genes, and its results more closely matched those in microarrays. 
 
Biological Signal Recapitulation Evaluation 
To evaluate the ability of each platform to recapitulate biologically relevant results, we 
utilized previously published signatures of smoking exposure in lung(Beane et al., 2007; 
Spira et al., 2004), as well as differential signatures derived from the TCGA LUSC and 
LUAD datasets associated with mutations of the genes over-expressed in our 
experiments. From each of these signatures two gene sets were extracted, one of genes 
positively associated and one of genes negatively associated to the variable of interest. 
These gene sets were then tested via pre-ranked gene set enrichment analysis against each 
of our differential analysis results (CSC vs. DMSO, stratified by NRF2 or HcRed 
perturbation; NRF2 vs. HcRed, stratified by CSC or DMSO perturbation). The 
enrichment results with respect to both the smoking exposure signatures and the TCGA 
mutations are summarized in Figure 4A, and further detailed in Figure 5S, and confirm 
the highest sensitivity of microarrays, followed by SFL and 3’DGE. 
 
The set of genes up-regulated in “smokers vs. non-smokers” was found to be significantly 
(q<0.05) enriched in all “CSC vs. DMSO” signatures, within both genotypic 
stratifications for all three platforms. Conversely, the set of down-regulated genes in 
“smokers vs. non-smokers” was only enriched in the microarray signature of “NRF2 
over-expressed; CSC vs. DMSO” (Figure S5). 
 
The enrichment results of TCGA-derived gene sets with respect to differential signatures 
of genotypic perturbations were in agreement with the gene-level results, in that they 
consistently demonstrated smaller discovery rates by 3’DGE than by SFL or by 
microarrays (Figure 4A). For example, the significantly enriched gene sets in “DMSO-
treated; NRF2 vs. HcRed” differential signatures across all three platforms are 
highlighted in boxes in Figure S5. The number of gene sets enriched in microarray, SFL, 
and 3’ DGE platforms are six, four, and zero, respectively.   
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In addition to comparing which gene sets were significantly enriched in individual 
differential signatures, we compared the relative statistical signal of these enrichments.  
To this end, we transformed the permutation-based p-values to z-scores, using the 
direction of individual enrichment scores. For each two-platform comparison, we fit a 
regression model through the origin. Since consistent results across platforms would 
result in a model fit close to the identity line, y=x, we tested whether the slope coefficient 
equaled 1 (i.e. B1 = 1). Figure 4B shows these results for each of the three comparisons of 
the NRF2 and KEAP1 mutation-based gene sets enrichment against the “DMSO-treated; 
NRF2 vs. HcRed” signatures. In all three comparisons, microarrays have the strongest 
statistical enrichment signal, followed by SFL and 3’DGE. In none of the three 
comparisons does the 95% confidence interval of these regression coefficients included 
slope = 1.  However, the comparison of SFL to microarray results was closest, B1 = 0.65; 
p-value = 0.01, followed by the comparison between 3’DGE and microarray, and 
between 3’DGE and SFL, with B1 = 0.38 and 0.29, respectively. Comparison of the 
enrichment results for other differential signatures show similar trends (Figure S6, top). 
 
Next, we compared enrichment results with respect to all genotypic perturbation 
signatures between SFL and 3’DGE (Figure 5; Figure S7A).  Each comparison (i.e., each 
point in the plot) denotes gene set enrichment results with respect to genotypic 
perturbations within each of the four chemical exposures, DMSO, CSC, BaP, and NNK.  
Gene sets were tested for enrichment against concordant differential signatures, e.g., the 
PIK3CA mutation-derived gene set was tested against the “PIK3CA vs. HcRed” 
signatures.  As in the previous analysis, the permutation-based enrichment p-values were 
z score-transformed. In the “DMSO-treated; genotypic perturbation vs. control” 
signatures, we observe that the gene set enrichment is generally more significant for SFL 
than for 3’DGE (B1 = 0.57; p-value < 0.01; Figure 5).  The results obtained in CSC- and 
NNK-treated signatures, demonstrate concordance to these results (B1 = 0.61; p-value = 
0.23 and B1 = 0.63; p-value = 0.08, respectively). The BaP-treated results are less 
comparable since only one genotypic perturbation signature, “FAT1 vs. GFP”, is 
available for this stratification (Figure S6A).   
 
Finally, we compared our differential signatures to available full coverage poly-A RNA-
seq genotypic perturbations (Figure S7B), although these results proved less comparable 
because of differences in experimental set-up.  In particular, in many of the full coverage 
poly-A RNA-seq experiments the genotypic perturbations were performed on naïve 
rather than DMSO-treated cell lines (Figure 1).  
 
In summary, differential analysis of molecular and genotypic perturbations with SFL 
recapitulates biologically meaningful signal of gene sets derived from high coverage in 
vivo data sets. This performance is comparable to both 3’DGE and microarray. 
 
Discussion 
The goal of this study was to evaluate the performance of SFL sequencing, a low-cost 
method for performing highly multiplexed RNA-seq, and to compare it to other high-
throughput gene expression profiling platforms.  The development of such methods 
would be instrumental to the generation of large-scale perturbation screens based on in-
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vitro models.  The reduction of the cost per profile would make it feasible to significantly 
increase the number of replicates and conditions to be profiled, including multiple time 
points, concentrations, and biological models, and thus would support a more in-depth 
investigation of the heterogeneity of the biological response to different exposures. It 
would also support the development of more accurate predictive models of the adverse or 
therapeutic outcomes of various exposures. Finally, insights gained from our study will 
also inform the design of protocols for single cell RNA-sequencing (Eberwine et al., 
2014), given their reliance on highly-multiplexed libraries. 
 
In addition to SFL, the platforms included in this analysis were 3’DGE, an alternative 
highly multiplexed sequencing platform, Affymetrix GeneChip Human Gene 2.0 ST 
Microarray, an analog expression platform, and full coverage poly-A capture RNA-seq.  
Performance was assessed in terms of coverage, signal-to-noise, and recapitulation of 
expected biological signal derived from independently generated, publicly available data 
collected from human subjects.  Coverage was assessed by comparing the three digital 
expression platforms, while signal-to-noise and biological recapitulation was assessed by 
comparing SFL, 3’DGE, and microarrays.   Chemical and molecular perturbations were 
carried out in the same samples, and concurrently profiled by SFL, 3’DGE, and 
microarrays. We also leveraged previously generated full coverage poly-A RNA-seq 
profiles from similar perturbations of AALE cell lines.   
 
For coverage assessment, performance was evaluated in terms of the distribution of total 
reads, or library size, that were aligned to the human genome, and further quantified in 
annotated genes. The best performance was expected in full coverage poly-A RNA-seq, 
given that this is the most well established technique and has by far the highest 
sequencing depth.  This was confirmed, as full coverage poly-A RNA-seq was measured 
to have the highest per sample library size, percentage of aligned reads, percentage of 
uniquely aligned reads, and percentage of counted reads (Figure 2).  The coverage 
performance of SFL suffered as a result of rRNA contamination, where as many as 53% 
of the total library size per sample was assigned to ribosomal regions of the genome 
(Figure S2).  
 
3’DGE is a poly-A capture technique, therefore ribosomal depletion is not a possible 
pitfall.  3’DGE generates a short nucleotide tags from transposon-based fragmentation, 
which are enriched for 3’ adjacent sequences of a given transcript(Soumillon et al., 
2014). Since many transcripts of the same gene generate identical sequence tags, unique 
molecular identifiers (UMIs) are used to distinguish between unique tags and duplicate 
tags generated from PCR amplification.  Although mRNA fragment duplication occurs 
with any RNA-seq protocol, the impact of this artifact on downstream analyses is 
negligible for techniques, such as SFL, which generate more complex sequence 
libraries(Parekh et al., 2016). 
 
Due to their size, 3’DGE sequences were aligned directly to human mRNAs, rather than 
the whole genome.  Therefore, percentages of reads aligned and reads counted (Figure 2B 
i,iii) reflect the percentages of these non-unique UMIs that align to at least one gene and 
the number of unique UMIs that align to only one gene, respectively. We observe that the 
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percentage of counted reads is greater for 3’ DGE than SFL, which is explained by a loss 
of reads to rRNA contamination in SFL.  However, we observe notably more genes 
quantified by SFL than by 3’DGE (Figure 2A, Figure 2B iv), which indicates that more 
reads are assigned to fewer genes in 3’DGE compared to SFL, as well as to full coverage 
RNA-seq (Figure 2C). Although rRNA contamination is a potential drawback of any 
ribosomal depletion RNA-sequencing technique, the extent of ribosomal contamination is 
variable, and could be potentially improved by further optimization of the library 
preparation protocol.  
 
The difference in distribution of reads across shared genes between SFL and 3’DGE 
likely explains the difference in statistical signal that we observe between the two 
platforms. In particular, our signal-to-noise evaluation shows consistently higher gene-
level statistical signal from SFL and microarray experiments than from 3’DGE 
experiments (Figure 3).   These differences appear to be driven by the differences in the 
relative quantification of genes, given that statistical signal is positively associated with 
mean gene expression for each platform, and 3’DGE experiments showed lower gene-
level quantification than SFL and microarrays (Figure 3C-D). We observe similar cross-
platform relationships in the two-group differential analyses (Figure 3E-F). 
 
The gene set-based enrichment results are consistent with those from signal-to-noise 
analyses. In every comparison of enrichment scores between SFL and 3’DGE, we 
observe generally higher gene set enrichment with respect to the SFL-derived signatures 
(Figure 4, Figure 5, Figure S6, Figure S7).  The gene sets were selected to represent 
known biological responses to the profiled perturbations, and thus their enrichment with 
respect to the perturbation signatures are expected to be true positives.  The enrichment 
results confirm this expectation.  For example, in the signatures of NRF2 overexpression, 
we consistently observe enrichment of the gene sets derived from NRF2 amplifications 
and KEAP1 deletions, each of which should increase NRF2 activity (Figure 
S5)(Kansanen et al., 2013). Similarly, we observe significant concordant enrichment of 
the gene sets derived from NRF2 and KEAP1-dysregulated lung tumors in the signature 
of CSC exposure, suggesting that the NRF2 pathway is activated by CSC exposure in 
vitro (Figure S5), which has been previously reported(Adair-Kirk et al., 2008). 
Interestingly, these results demonstrate that the activation of the NRF2 pathway in normal 
airway epithelial cells in vitro (by ectopic expression of the gene or by CSC treatment) is 
concordant with the activation of NRF2 by somatic genome alterations in lung tumors, a 
finding that, to the best of our knowledge, has not been previously observed. 
 
The comparatively high-performance of full coverage poly-A RNA-seq and the 
microarray platforms is unsurprising considering that these platforms represent well-
established protocols in which a single sample is profiled per assay.  
 
In summary, in this study we observe higher performance of SFL than 3’DGE, as 
measured by coverage, signal-to-noise, and biological recapitulation of known signal, 
with the performance of SFL often matching that of well-established “gold standards” 
(full coverage RNA-seq or microarrays). On the other hand, the fact the 3’DGE is shown 
to allocate a large number of reads to relatively fewer, highly expressed genes, makes this 
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platform more suitable for problems where high accuracy in the differential 
quantification of highly expressed genes is needed. Furthermore, the ready availability of 
3’DGE as a core-provided option, which allows for the out-sourcing of library 
preparation, sequence read pre-processing and gene quantification, is an additional value-
added of the platform. Ultimately, the best-suited platform for a specific project will 
depend on the study goals, design, and availability of different resources. We believe our 
study presents useful results to make a more informed choice. 
 
The utility of highly multiplexed RNA-seq crucially depends on the trade-off between 
cost and data quality, and on the nature of the experiments for which the platform would 
be ideally suitable. These will in general be experiments where the marginal information 
content of a single profile is relatively low, and thus justifies trading-off some data 
quality for reduced cost.   
 
Conflicts of Interest 
None to report. 
 
Funding 
This work was supported by a Superfund Research Program grant P42ES007381 to SM, 
an Evans Foundation pilot grant to SM and LUNGevity Career Development award to 
JC. 
 
Acknowledgment 
Dr. Alexander A. Shishkin for his feedback during the development of the SFL protocol. 
SCRB-Seq libraries were prepared by the Broad Technology Labs and sequenced by the 
Broad Genomics Platform.  
	
Supplementary Material 
Supplementary data and figures are available in the file, SupplementaryMaterial.pdf. 
 
References 
Adair-Kirk, T. L., Atkinson, J. J., Griffin, G. L., Watson, M. A., Kelley, D. G., DeMello, 

D., et al. (2008). Distal Airways in Mice Exposed to Cigarette Smoke: Nrf2-
Regulated Genes Are Increased in Clara Cells. Am. J. Respir. Cell Mol. Biol. 39, 
400–411. doi:10.1165/rcmb.2007-0295OC. 

Asmann, Y. W., Klee, E. W., Thompson, E. A., Perez, E. A., Middha, S., Oberg, A. L., et 
al. (2009). 3’ tag digital gene expression profiling of human brain and universal 
reference RNA using Illumina Genome Analyzer. BMC Genomics 10, 531. 
doi:10.1186/1471-2164-10-531. 

Beane, J., Sebastiani, P., Liu, G., Brody, J. S., Lenburg, M. E., and Spira, A. (2007). 
Reversible and permanent effects of tobacco smoke exposure on airway epithelial 
gene expression. Genome Biol. 8, R201. doi:10.1186/gb-2007-8-9-r201. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 18, 2018. ; https://doi.org/10.1101/419838doi: bioRxiv preprint 

https://doi.org/10.1101/419838


Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate: A 
Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 
Methodol. 57, 289–300. 

Bryant, D. W., Priest, H. D., and Mockler, T. C. (2012). “Detection and Quantification of 
Alternative Splicing Variants Using RNA-seq,” in RNA Abundance Analysis, eds. 
H. Jin and W. Gassmann (Totowa, NJ: Humana Press), 97–110. doi:10.1007/978-
1-61779-839-9_7. 

Campbell, J. D., Alexandrov, A., Kim, J., Wala, J., Berger, A. H., Pedamallu, C. S., et al. 
(2016). Distinct patterns of somatic genome alterations in lung adenocarcinomas 
and squamous cell carcinomas. Nat. Genet. 48, 607–616. doi:10.1038/ng.3564. 

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al. (2013). 
STAR: ultrafast universal RNA-seq aligner. Bioinforma. Oxf. Engl. 29, 15–21. 
doi:10.1093/bioinformatics/bts635. 

Eberwine, J., Sul, J.-Y., Bartfai, T., and Kim, J. (2014). The promise of single-cell 
sequencing. Nat. Methods 11, 25–27. doi:10.1038/nmeth.2769. 

Ganter, B., Snyder, R. D., Halbert, D. N., and Lee, M. D. (2006). Toxicogenomics in 
drug discovery and development: mechanistic analysis of compound/class-
dependent effects using the DrugMatrix ® database. Pharmacogenomics 7, 1025–
1044. doi:10.2217/14622416.7.7.1025. 

Hou, Z., Jiang, P., Swanson, S. A., Elwell, A. L., Nguyen, B. K. S., Bolin, J. M., et al. 
(2015). A cost-effective RNA sequencing protocol for large-scale gene expression 
studies. Sci. Rep. 5. doi:10.1038/srep09570. 

Igarashi, Y., Nakatsu, N., Yamashita, T., Ono, A., Ohno, Y., Urushidani, T., et al. (2015). 
Open TG-GATEs: a large-scale toxicogenomics database. Nucleic Acids Res. 43, 
D921–D927. doi:10.1093/nar/gku955. 

Kansanen, E., Kuosmanen, S. M., Leinonen, H., and Levonen, A.-L. (2013). The Keap1-
Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol. 
1, 45–49. doi:10.1016/j.redox.2012.10.001. 

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25, 1754–1760. 
doi:10.1093/bioinformatics/btp324. 

Liao, Y., Smyth, G. K., and Shi, W. (2014). featureCounts: an efficient general purpose 
program for assigning sequence reads to genomic features. Bioinformatics 30, 
923–930. doi:10.1093/bioinformatics/btt656. 

Lundberg, A. S., Randell, S. H., Stewart, S. A., Elenbaas, B., Hartwell, K. A., Brooks, M. 
W., et al. (2002). Immortalization and transformation of primary human airway 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 18, 2018. ; https://doi.org/10.1101/419838doi: bioRxiv preprint 

https://doi.org/10.1101/419838


epithelial cells by gene transfer. Oncogene 21, 4577–4586. 
doi:10.1038/sj.onc.1205550. 

Morrissy, A. S., Morin, R. D., Delaney, A., Zeng, T., McDonald, H., Jones, S., et al. 
(2009). Next-generation tag sequencing for cancer gene expression profiling. 
Genome Res. 19, 1825–1835. doi:10.1101/gr.094482.109. 

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping 
and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–
628. doi:10.1038/nmeth.1226. 

Parekh, S., Ziegenhain, C., Vieth, B., Enard, W., and Hellmann, I. (2016). The impact of 
amplification on differential expression analyses by RNA-seq. Sci. Rep. 6. 
doi:10.1038/srep25533. 

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). limma 
powers differential expression analyses for RNA-sequencing and microarray 
studies. Nucleic Acids Res. 43, e47. doi:10.1093/nar/gkv007. 

Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S. D., et al. (2010). 
De novo assembly and analysis of RNA-seq data. Nat. Methods 7, 909–912. 
doi:10.1038/nmeth.1517. 

Robinson, M. D., and Oshlack, A. (2010). A scaling normalization method for 
differential expression analysis of RNA-seq data. Genome Biol. 11, R25. 
doi:10.1186/gb-2010-11-3-r25. 

Shishkin, A. A., Giannoukos, G., Kucukural, A., Ciulla, D., Busby, M., Surka, C., et al. 
(2015). Simultaneous generation of many RNA-seq libraries in a single reaction. 
Nat. Methods 12, 323–325. doi:10.1038/nmeth.3313. 

Soumillon, M., Cacchiarelli, D., Semrau, S., van Oudenaarden, A., and Mikkelsen, T. S. 
(2014). Characterization of directed differentiation by high-throughput single-cell 
RNA-Seq. doi:10.1101/003236. 

Spira, A., Beane, J., Shah, V., Liu, G., Schembri, F., Yang, X., et al. (2004). Effects of 
cigarette smoke on the human airway epithelial cell transcriptome. Proc. Natl. 
Acad. Sci. U. S. A. 101, 10143–10148. doi:10.1073/pnas.0401422101. 

Subramanian, A., Narayan, R., Corsello, S. M., Peck, D. D., Natoli, T. E., Lu, X., et al. 
(2017). A Next Generation Connectivity Map: L1000 Platform and the First 
1,000,000 Profiles. Cell 171, 1437-1452.e17. doi:10.1016/j.cell.2017.10.049. 

Wang, L., Si, Y., Dedow, L. K., Shao, Y., Liu, P., and Brutnell, T. P. (2011). A Low-Cost 
Library Construction Protocol and Data Analysis Pipeline for Illumina-Based 
Strand-Specific Multiplex RNA-Seq. PLoS ONE 6, e26426. 
doi:10.1371/journal.pone.0026426. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 18, 2018. ; https://doi.org/10.1101/419838doi: bioRxiv preprint 

https://doi.org/10.1101/419838


Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for 
transcriptomics. Nat. Rev. Genet. 10, 57–63. doi:10.1038/nrg2484. 

	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 18, 2018. ; https://doi.org/10.1101/419838doi: bioRxiv preprint 

https://doi.org/10.1101/419838


Tables and Figures 

 
Table 1: Comparison of Coverage Between Poly-A RNA-seq, SFL, and 3’DGE 
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Figure 1: Design of Cross-Platform Experiments and High-throughput Data Processing 
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Figure 2: Comparison of Coverage Between Poly-A RNA-seq, SFL, and 3’DGE 
A) Boxplots of distribution of library size for each platform.  
B) The top 3 boxplots show the percentage of reads aligned (i), uniquely aligned (ii), and counted(iii) relative to the total library 

size for each platform. The bottom boxplot (iv) shows the proportion of genes with counts > 1, for protein-coding genes 
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annotated across all 3 platforms (18,488). For Figure 2Bii, “Reads Uniquely Aligned” is not shown for 3’ DGE because 
“Reads Uniquely Aligned” and “Reads Counted” are the same values as a result of the data pre-processing protocol, specific 
to 3’ DGE (see Methods).  

C) Cumulative distribution of reads assigned to individual genes.  The x-axis indicates the quantile for each gene in terms of 
ranking by relative expression. The y-axis shows the cumulative proportion of total counted reads assigned to these genes, i.e 
the running sum of reads divided by the total number of reads across all genes. 
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Figure 3: Signal-to-Noise Comparison Between SFL, Microarray, and 3’ DGE 

A) Scatterplots comparing the log10(F-Statistics) from ANOVA models comparing four n=3 groups (HcRed:DMSO, 
HcRed:CSC, NRF2:DMSO, and NRF2:CSC). The grey line shows y=x. The platform with the higher mean log10(F-Statistic) 
is plotted on the y-axis.  Also, included are the p-value and difference in mean between each bi-platform comparison from 
paired t-testing, as well as the squared correlation coefficient. P-values ~ 0 are less than 0.01. Color of indicate genes 
discovered by individual platforms (green, orange, or blue), neither platform (grey), and both platforms (red). 

B) Plot of the Discovery Rate versus FDR Q-Value from threshold for each platform from four group ANOVA models. The 
x-axis is plotted on a -log10 scale. The vertical line is indicative of a Q-value threshold of 0.05. 

C) Loess fit of the log10(F-Statistic) versus median normalized expression from four group ANOVA models. 
D) Distribution of mean normalized expression across all three platforms. 
E) Comparison of gene discovery (FDR Q-Value < 0.05) by differential analysis with limma, comparing normalized gene 

expression between DMSO:NRF2 and DMSO:HcRed, including the raw discovery rates, discovered gene overlap, and linear 
fits, comparing test statistics from each platform.  Genes that are discovered by more than 1 platform are shown in red in the 
scatterplots. Additional comparisons are shown in Figure S5. 

F) Plot of the Discovery Rate versus FDR Q-Value from threshold for each platform from two group differential analyses. The 
x-axis is plotted on a -log10 scale. The vertical line is indicative of a Q-value threshold of 0.05. 
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Figure 4: Comparison of Gene-set enrichment of Smoking and Gene Mutation Signatures across SFL, 3’DGE and 

Microarray 

A) Stacked bar charts of counts of statistically significantly TCGA-derived gene-sets with respect genotypic perturbations (left) 
and chemical perturbations (right) differential signatures across like samples within SFL, Microarray, and 3’ DGE.  Each 
column corresponds to differential signatures comparing genotypic or chemical perturbation groups, stratified by a single 
chemical or genotypic perturbation group, respectively, e.g. the left-most column shows the enrichment results with respect 
to the “DMSO-treated; NRF2 ​vs.​ HcRed” signature within the samples (​stratum ​) in SFL data. Specific results for 
TCGA-derived genes sets are shown in Figure S5. 

B) Comparison of the gene set enrichment results between SFL, microarray and 3’ DGE with respect to the “DMSO-treated; 
NRF2 ​vs.​ HcRed” differential signature. Shown are the z-transformed enrichment p-values of the TCGA-derived gene sets 
corresponding to mutations of NRF2 and CNA of KEAP1. The z-score values corresponding to the FDR=0.05 significance 
thresholds are shown as vertical and horizontal gray lines for the y and x-axes, respectively. Points of gene sets whose 
enrichment meets this threshold in either of the two platforms are filled in. Colors and shape of points denote direction and 
source of the gene set, respectively.  Additional results for chemical and genotypic perturbation signatures are shown if 
Figure S5. 
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Figure 5: Comparison of Gene-set enrichment of Gene Mutation Signatures across SFL and 3’DGE 
Comparison of the gene set enrichment results between SFL and 3’ DGE with respect to the “DMSO-treated; genotypic perturbation 
vs.​ control” differential signatures. Points indicate gene set enrichment against concordant signatures, e.g., PIK3CA mutation and 
CNA gene sets against the “PIK3CA ​vs.​ HcRed” differential signatures.  Shown are the z-transformed p-values from 
permutation-based testing by pre-ranked GSEA. The z-score values corresponding to the FDR=0.05 significance thresholds are shown 
as vertical and horizontal gray lines for the y and x-axes, respectively. The names of the gene sets whose enrichment meets this 
threshold in either of the two platforms are shown and their points are filled in. Colors and shape of points denote direction and source 
of the gene set, respectively. Additional results for CSC, NNK, and BaP stratified genotypic perturbation signatures , as well as 
comparisons between full coverage RNA-seq and either SFL and 3’DGE are shown in Figure S6. 
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