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Summary: 

T cell activation is a critical driver of immune response and if uncontrolled, it can result in 
failure to respond to infection or in excessive inflammation and autoimmunity. CD28 
costimulatory pathway is an essential regulator of CD4 T cell responses. To deconvolute how 
T cell receptor (TCR) and CD28 orchestrate activation of human CD4 T cells we stimulated 25 
cells using varying intensities of TCR and CD28 signals followed by gene expression 
profiling. We demonstrate that T-helper differentiation and cytokine expression are 
controlled by CD28. Strikingly, cell cycle and cell division are sensitive to CD28 in memory 
cells, but under TCR control in naive cells, in contrast to the paradigm that memory cells are 
CD28-independent. Using a combination of chromatin accessibility and enhancer profiling, 30 
we observe that IRFs and Blimp-1 (PRDM1) motifs are enriched in naive and memory T cells 
in response to TCR. In contrast, memory cells initiate AP1 transcriptional regulation only 
when both TCR and CD28 are engaged, implicating CD28 as an amplifier of transcriptional 
programmes in memory cells. Lastly, we show that CD28-sensitive genes are enriched in 
autoimmune disease loci, pointing towards the role of memory cells and the regulation of T 35 
cell activation through CD28 in autoimmune disease development. This study provides 
important insights into the differential role of CD28 in naive and memory T cell responses 

and offers a new platform for design and interpretation of costimulatory based therapies. 

 

One-sentence summary: 40 

Genomic profiling of CD4 T cell activation reveals a sensitivity switch from TCR in naive to 

CD28 in memory cells. 
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Introduction 45 

The ability of T cells to respond to pathogens whilst remaining tolerant to host antigens is 
critical for human health. T cell stimulation generally occurs in secondary lymphoid tissues 
where T cells interact with professional antigen presenting cells (APCs). Here, two 
coordinated signals are delivered: the first via T cell receptor (TCR) recognising antigen 
bound to MHC molecules and the second provided by APCs via upregulation of costimulatory 50 
ligands. In this regard, CD28 is the main costimulatory receptor expressed by T cells which 
interacts with CD80 and CD86 ligands on APCs. The coordination of TCR and CD28 signals is 
essential for T cell activation, proliferation, differentiation and survival, making the CD28 

pathway a key checkpoint for controlling T cell responses (Rowshanravan et al., 2018). 

Nevertheless, it remains controversial whether CD28 engagement differentially impacts 55 
activation of naive and memory T cells. Previous studies have suggested that memory T 
cells have lower costimulation thresholds or conversely, that naive cells have a greater 
requirement for costimulatory signals (Croft et al., 1994; Dubey et al., 1995; London et al., 
2000; Luqman and Bottomly, 1992). This has given rise to a widely perceived notion that, in 
contrast to naive T cells, previously activated or memory T cells do not require CD28 60 
costimulation. However, there is evidence that this may not be the case (van der Heide and 
Homann, 2016; Ville et al., 2015) and that CD28 costimulation is important to numerous 
aspects of functional competence for memory T cells (Borowski et al., 2007; Fröhlich et al., 
2016; Linterman et al., 2014; Ndlovu et al., 2014). These contrasting conclusions are likely 
influenced by the experimental systems used, including the nature and intensity of the TCR 65 
signal. A further important issue is how CD28 responsiveness is measured. For example, the 
requirement for CD28 to induce T cell proliferation appears lower than that for T follicular 
helper (Tfh) differentiation (Wang et al., 2015), a process essential for the regulation of 
antibody production by B cells. As such, different T cell processes may vary in their degree 

of dependence on CD28 costimulation. 70 

The level of CD28 costimulation vary considerably in different immunological settings. For 
example, the presence of regulatory T cells (Tregs) expressing CTLA-4, which degrades 
CD80 and CD86 ligands (Qureshi et al., 2011) will influence CD28 costimulation. Indeed, 
deficiency in expression of CTLA-4 is associated with development of profound autoimmune 
diseases (Kuehn et al., 2014; Lo et al., 2015; Schubert et al., 2014; Tivol et al., 1995) due 75 
to increased CD28 signalling (Tai et al., 2007; Tivol et al., 1997). In addition, severe adverse 
reactions were observed during trials of a CD28 agonistic antibody TGN1412, which 
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triggered a cytokine storm from effector memory T cells (Eastwood et al., 2010; Hünig, 
2012). Furthermore, excessive activation of memory T cells is also a hallmark of many 
common complex immune diseases, such as autoimmune arthritis and systemic lupus 80 
erythematosus (SLE) (Haufe et al., 2011; Kshirsagar et al., 2013). Genome-wide association 
studies (GWAS) have mapped numerous risk variants to loci encoding genes in T cell 
stimulatory pathways, including the CD28, CTLA4 and ICOS genes located at 2q33.2 (Dubois 
et al., 2010; Fortune et al., 2015; Okada et al., 2014; Onengut-Gumuscu et al., 2015). While 
the exact effects of the associated variants are unknown, their mapping to the non-coding 85 
regions of the genome suggests effects on regulation of gene expression (Fairfax et al., 
2014; Westra et al., 2013), which implies modulation of activity of costimulatory pathways in 
biology of immune-mediated diseases. Therefore, understanding how varying levels of TCR 
and CD28 costimulation impact gene expression and the ensuing T cell response, has 
significant implications in understanding susceptibility to diseases, in particular autoimmunity 90 

and cancer. 

To understand the requirement of TCR and CD28 in the activation of both naive and 
memory human CD4 T cells we stimulated cells with varying intensities of TCR and CD28 
signals. We used gene expression and chromatin activity profiling to map transcriptional 
processes underlying T cell activation. We show that the major effector cell functions, such 95 
as T helper (Th) differentiation, expression of chemokine receptors and cytokines, are 
strongly influenced by CD28 in both naive and memory T cells. Strikingly, cell division is 
markedly differently controlled between the two cells, which we find to be controlled by 
CD28 in memory cells whilst predominantly driven by TCR in naive cells. Finally, we show 
that loci associated to common immune diseases are enriched in CD28-sensitive genes, 100 
pointing towards the important role of CD28 costimulatory pathway in disease pathogenesis. 
Taken together, this study provides key insights into the relative impact of TCR and CD28 in 

the activation of human naive and memory T cells. 

 

Results 105 

Experimental approach 

To study the influence of varying TCR and CD28 signals we sorted human blood CD4+ 
CD25- T cells and stimulated them with high or low concentrations of soluble anti-CD3 (an 
antibody against the signalling component of the TCR complex; referred to as high and low 
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TCR) and CHO cells expressing CD86, the CD28 ligand (referred to as high and low CD28) 110 
(Fig. 1A and Materials and Methods). We have previously shown that on their own CHO 
cells do not activate T cells (30). Indeed, in our experimental setup we used resting cells 
where T cells were cultured with fixed CHO cells and we observed no cell activation, as 
shown by the lack of CD25 upregulation (Suppl. Figure S1). The advantage of using CHO-
CD86 over other stimulation systems is that it delivers a natural CD28 ligand, which was 115 
documented to be the main CD28 ligand in vivo (Borriello et al., 1997). We also wanted to 
deconvolute gene expression programmes controlled individually by TCR and CD28. On its 
own, CD86 is insufficient to deliver strong enough signal for CD28 to activate cells. However, 
this can be achieved with anti-CD28 antibody. To maintain consistent cell culture conditions 
we stimulated T cells with individual anti-CD3 and anti-CD28 antibodies in the presence of 120 
CHO cells expressing Fc-gamma Receptor II (CHO-FcR) to provide crosslinking, rather than 
immobilizing antibodies on the plate. Following a 16h stimulation we sorted activated CD25+ 
cells into naive (CD45RA+) and memory (CD45RA-) subsets (Materials and Methods). To 
map the transcriptional programmes underlying TCR and CD28 sensitivity in naive and 
memory T cells, we profiled gene expression with RNA-seq, chromatin accessibility with 125 
ATAC-seq and active enhancers and promoters with H3K27ac ChIPmentation-seq (Schmidl 
et al., 2015). As expected, across different stimulatory conditions we observed a variable 
proportion of activated T cells (11-78% of all cells) (Suppl. Figure S1). However, by 
sorting only activated T cells we ensured that the measured gene expression reflected cell 
activation state induced by different signal intensities, while not being confounded by the 130 

variable percentage of cells that had undergone activation. 
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Figure 1: A. Overview of the study design. CD4 T cells were isolated from eight healthy individuals and cultured in six 

different stimulatory conditions, which included variable concentrations of anti-CD3 and anti-CD28 stimuli. In parallel, resting 

cells were cultured as a control. To ensure we measured cellular response to successful stimulation, we generated sequencing 135 
data from sorted activated naive and memory cells identified as CD4+CD25+CD45RAhigh and CD4+CD25+CD45RAlow, 

respectively. B. Principal component analysis using the expression of all genes. The first two components explain collectively 

53.7% of the observed variability and correlate with stimulation strength and cell type. Each dot corresponds to an individual 

sample, colored by stimulation and shaped according to the cell type. C. Number of upregulated genes upon stimulation defined by 

pairwise differential expression test between stimulated cells and resting cells (fold-change ≥ 2 and FDR ≤ 0.05). D. Proportion of 140 
differentially expressed genes (DEG), differentially accessible regions (DARs) and differentially modified histone regions 

(DMHRs) upon stimulation with both stimuli, strong TCR alone (high TCR) or strong CD28 alone (high CD28). Written inside the 

barplot is the corresponding number of detected differential changes. The coloring represents different stimulatory conditions. 

Grey indicates a small number of peaks that were shared between high TCR alone and high CD28 alone stimulations. E. 

Proportion of differentially expressed genes that have at least one differentially regulated region nearby (< 150kb away from 145 
TSS) as detected by ATAC-seq (DAR) and H3K27ac ChM-seq (DMHR).  
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Naive and memory T cells operate different gene expression programmes upon 
activation 

We first applied principal component analysis (PCA) to the RNA-seq data and observed that 
PC1 reflected cell stimulation while PC2 corresponded to cell type (Fig. 1B and Suppl. Fig. 150 
S2A). Indeed, the majority of the gene expression variance was explained by stimulation 
(47%) and by the different cell type (10%) (Suppl. Fig. S2B and Materials and 
Methods). The separation of naive and memory T cells by PC2 indicated clear differences in 
transcriptional responses between naive and memory T cells. The different conditions 
clustered together, capturing the gradient of stimulation intensity in both cell types, with 155 
high levels of both TCR and CD28 stimuli being the furthest separated from unstimulated 
cells on PC1 and intermediate intensity of stimuli mapping in between. Surprisingly, strong 
CD28 alone (FcR-anti-CD28) was amongst the lower responding conditions in naive cells yet 
it clustered with the more highly stimulated conditions in memory cells. Furthermore, naive 
cells stimulated with strong CD28 alone clustered towards the memory cells along PC2. 160 
Thus, the transcriptional program of cell activation is modulated by the intensity of TCR and 

CD28 signals, and CD28 stimulation enriches for the characteristics of memory T cells. 

To understand cell type specific responses induced by the different stimuli, we compared 
gene expression profiles between resting and stimulated naive and memory T cells (false 
discovery rate (FDR) ≤ 0.05 and fold-change ≥2; Fig. 1C and Suppl. Table S1). As expected, 165 

the majority of the upregulated genes were shared between the two cell types, however, 
naive cells displayed a larger number of differentially upregulated genes (DEGs) (average of 
1,240 genes) than memory cells (average of 840 genes), with an exception of CD28 
stimulation alone, where more genes were upregulated in memory cells. This likely reflects 
the greater changes in gene expression levels resulting from transitioning to activation from 170 
a deeper quiescent state in naive cells. Indeed, differential expression analysis between 
naive and memory cells in the resting state revealed a larger number of genes expressed 

highly in memory cells compared to naive (Suppl. Fig. S3). 

When looking globally at the whole genome maps of H3K27ac and chromatin accessible 
regions (ATAC-seq), memory cells were characterised by more peaks in the resting state in 175 
both ATAC-seq (17.5% more peaks) and H3K27ac ChM-seq (10.6% more peaks). In order 
to gain a better understanding of the dynamic responses upon stimulation, we performed 
the same comparisons as with the RNA-seq data. At the mRNA level we observed 35% of 
the genes to be differentially expressed upon stimulation, however the chromatin regulatory 
landscape showed far fewer changes; only 8% of the chromatin changed in accessibility and 180 
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9% of the regions changed in histone acetylation. This is probably due to the fact that the 
majority of these genes are already expressed at low levels, which would be reflected by 
chromatin being already open and enhancers being marked by H3K27ac acetylation. 
Furthermore, similarly to the differential gene expression, the majority of differential histone 
modified regions (DMHRs; 54%; see Materials and Methods) and differentially accessible 185 
regions (DARs; 58%) were shared across responses to TCR, CD28, or both. However, as 
with the gene expression analysis, we observed a larger proportion of acetylation changes 
driven by CD28 alone in memory compared to naive cells (Fisher’s exact test RNA p-value = 
4.9x10-11; H3K27ac p-value < 2.2x10-16), indicating that CD28, in line with our observations 
for the RNA, is also more potent in inducing chromatin changes in memory T cells. 190 
Conversely, in response to strong TCR stimulation alone, we detected a larger proportion of 
differentially acetylated H3K27 regions and chromatin accessible sites in naive cells 
compared to memory cells (Fisher’s exact test RNA p-value < 2.2x10-16; H3K27ac p-value < 
2.2x10-16; ATAC p-value < 2.2x10-16; Fig. 1D). As such, the observed high number of 
stimulus-specific differentially regulated regions suggests that there are unique chromatin 195 

remodelling changes acquired in both a cell type and stimulus-specific context. 

Given the observation that TCR and CD28 induced different number of changes in chromatin 
accessibility and histone modifications, we next assessed if there was a difference in the 
proportion of these chromatin activity changes that were also predictive of the observed 
differential gene expression (see Materials and Methods) (Wang et al., 2013). We found 200 
that DARs and DMHRs were predictive of a large proportion of upregulated genes (mean 
46.5%; Fig. 1E). Although, globally, TCR induced more changes in chromatin activity, the 
percentage of upregulated genes predicted by DMHRs and DARs was similar between TCR 
and CD28 (Suppl. Fig. S4). We observed that the majority of genes for which we had 
assigned predictive differentially regulated regions included peaks differentially regulated 205 
upon a specific stimulus (naive TCR 82.3%; memory TCR 70.6%; naive CD28 62.23%; 
memory CD28 50.2%). This indicates that each stimulus uniquely contributes to the gene 

regulatory landscape of a cell. 

T cell effector functions are predominantly controlled by CD28 

Based on the above observations we sought to better understand the role of each 210 
stimulatory signal in gene upregulation in naive and memory T cells. To classify genes as 
either CD28- or TCR-sensitive, we used two models (linear and switch modes) of gene 
expression where the linear model reflected changes in stimulation intensity whereas the 
switch model reflected a digital on/off state (Fig. 2A). In both cell types together, we were 
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able to assign a unique stimulus sensitivity to 1,567 genes, meaning that the expression of 215 
these genes was sensitive to either TCR or CD28 intensity. We observed that the majority of 

stimulus-sensitive genes (88%) followed the linear model (Suppl. Fig. S5A).  

We next assessed if naive and memory cells differed in sensitivity to the two stimuli. We 
observed that most of the stimulus-sensitive genes in naive T cells were TCR-sensitive 
(1,057; Fig. 2B and Suppl. Table S2), whereas a smaller number of genes was CD28-220 
sensitive (n=363). Conversely, in memory cells we observed that a larger number of genes 
was CD28-sensitive (n=351) than TCR-sensitive (n=299). As such, a both TCR sensitive 
genes and CD28 sensitive genes were unevenly distributed between naive and memory 
cells, with a shift towards naive cells for TCR genes (Fisher’s exact test p-value < 2.2x10-16) 
and a shift towards memory cells for CD28 genes (Fisher’s exact test p-value < 2.14x10-5). 225 
Based on the pairwise comparisons across the six conditions against the resting state, we 
defined a group of genes that was upregulated upon stimulation. Among this group we 
observed that the expression of 1,228 genes in naive cells (55%) and only 490 genes in 
memory cells (29%) was sensitive to a single stimulus (Suppl. Fig. S5B). This indicated 
that the majority of the upregulated genes in memory cells either responded to both stimuli 230 
(i.e. TCR or CD28 were both capable of driving the response) or they were truly CD28 

costimulation dependent, requiring TCR and CD28 together. 

Since the majority of human T cell stimulation experiments use both TCR and CD28 to 
activate cells, it is unclear which T cell functions are controlled by TCR and which by CD28, 
and how they differ between naive and memory cells. Using this approach, we found that 235 
many classical T cell activation markers such as EGR2, EGR3 and CTLA4 were TCR-sensitive 
in both cell types, while TNFRSF8 (encodes for CD30) and CD69 were TCR-sensitive in naive 
cells only (Fig. 2C), possibly explained by the fact that they were already expressed at high 
levels in resting memory cells (TNFRSF8 log2FC = 1.19 and CD69 log2FC = 1 between 
resting memory and naive cells) and thus not detected as differentially expressed upon 240 
memory T cell stimulation (Suppl. Fig. S3). In contrast, we found that the majority of 
cytokines and chemokines were CD28-sensitive (Fig. 2E and Suppl. Fig. S5C). Among the 
chemokines, we observed that CXCL9, CXCL10, CXCL11 and the CCL25 chemokine were 
CD28-sensitive in both cell types. Notably, the expression of cytokines essential for the 
differentiation of the major Th subsets were also found to be under CD28 control, including 245 
IFNG (Th1), IL4 and IL13 (Th2) and IL17A, IL17F and IL22 (Th17). In addition, we 
observed that expression of the Treg transcription factor, FOXP3, was also dependent on 
CD28 stimulation. Taken together, these results demonstrate that a number of genes 
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associated with effector functions of CD4 T cells are predominantly controlled by the CD28 

pathway in both naive and memory cells. 250 

Different co-stimulatory and co-inhibitory receptors along with their ligands function at 
different stages of the T cell differentiation cascade which might explain a differential 
requirement on TCR or CD28 for their expression (Chen and Flies, 2013). We therefore also 
investigated the control of expression of costimulatory ligands and receptors, since they play 
a key role in T cell activation (Fig. 2F and Suppl. Fig. S5D). The expression of CD28 itself 255 
was only upregulated upon strong TCR stimulation alone, suggesting that TCR signalling 
makes cells more receptive to CD28 engagement. However, the presence of CD28 stimulus 
impeded an increase in its expression, highlighting that this is not a self-reinforcing process. 
Other co-stimulatory/co-inhibitory receptors involved in the co-regulation of T cells were 
CD28-sensitive, in both naive and memory T cells. These included, the CD27-CD70 260 
costimulatory pair and CD274 (PD-L1) (the expression of PD1 was not detectable). On the 
other hand, CD80 and ICOS were CD28-sensitive specifically in memory cells. Thus, we were 
able to detect different modes of regulation for CD28, CTLA4 and ICOS, despite the fact that 
they are all encoded within the same 260kb locus on chromosome 2. This implies complex 
mechanisms of gene expression regulation in the two cell types and a fine-tuned control 265 

highlighting that co-located genes can be regulated by different modes of stimulation. 
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Figure 2: A. Classification of genes as CD28- or TCR-sensitive using different models of gene expression. In the linear model, 

we required a linear increase of gene expression along with stimulus intensity (incremental fold-change ≥ 1.5 in gene expression), 

separately evaluating naive and memory cells. Genes that did not follow the linear model were tested for the switch model. Here, we 270 
assumed an “on-and-off” mode of expression where a gene is significantly upregulated (fold-change ≥ 2) in response to the presence of 

either CD28 or TCR. In both of these models, we used all seven conditions, e.g. when testing for CD28-sensitive genes we grouped the TCR 

alone stimulation with the resting, since neither received CD28 signal. A gene was classified in one of the two categories without overlap 

and prioritised for the linear model. B. Comparison of the number of genes in naive and in memory cells under TCR control or 

CD28. C+D. Selected examples of TCR- or CD28-sensitive genes. The x-axis corresponds (C) to the level of TCR (anti-CD3 275 
antibody in μg/ml) or (D) to the level of CD28 (proportion of T cells to CHO-CD86 cells) and the y-axis corresponds to the log2 

counts of gene expression. Labels next to the gene name indicate the cell type in which stimulus sensitivity is observed. E. 
Cytokines and chemokines, and F. costimulatory ligands and receptors that are sensitive to at least one stimulus in at least one 

cell type. Colouring represents the log2 fold change of gene expression. 

DNA replication and proliferation are driven by different stimuli in naive and memory 280 
T cells 

To determine whether genes sensitive to CD28 or TCR regulate the same cellular processes 
in naive and memory T cells we tested if these genes were over-represented in hallmark 
functional pathways (Liberzon et al., 2015) (Materials and Methods; Fig. 3A and Suppl. 
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Fig. S4). We observed seven shared pathways enriched in both cell types. For example, IL2 285 
signalling through STAT5 and TNF-α signalling via NF-κβ were significantly enriched in both 
naive and memory cells and sensitive to both TCR and CD28. However, the expression of 
the majority of genes broadly classified as immune cell pathways, such as IL6 signalling 
through the Jak/Stat3 and interferon α and ɣ response, were CD28-sensitive in both cell types. 

In contrast, genes that are targets of Myc and E2F transcription factors were controlled by 290 
TCR in naive cells, which is concordant with MYC and E2F6 genes being TCR-sensitive, and 

also with previous studies in mice (Allison et al., 2016).  

Interestingly, we observed that some pathways were differentially sensitive to TCR and 
CD28 in the two cell types. Most notably, the G2M checkpoint, which marks DNA replication 
and cell division, was CD28-sensitive in memory cells but TCR-sensitive in naive cells, 295 
suggesting that commitment to cell division is more dependent on TCR in naive cells but 
driven by CD28 in memory cells. To functionally test this observation we stimulated 
CellTrace Violet (CTV) labelled naive and memory T cells with either anti-CD3 or anti-CD28 
crosslinked by CHO cells expressing an FcR (Fig. 3B). Five days following stimulation, T cell 
division was measured by flow cytometry. In accordance with the results from the gene 300 
expression, naive T cells proliferated extensively following TCR crosslinking but mounted 
poor responses to CD28. In contrast, cross-linking CD28 was sufficient to induce division in 
memory cells whereas TCR stimulation was clearly less effective. Thus, although combined 
TCR and CD28 costimulation is generally utilised to trigger T cell proliferation, our data 
indicates a division of labour between these stimuli, where control of cell cycle in naive cells 305 

is generally TCR-sensitive, whilst in memory cells it is more dependent on CD28. 

We noticed that there were three genes (CDC6, CDC20 and CHEK1) driving the enrichment 
of the G2M pathway, which were TCR sensitive in naive cells but switched to CD28 
sensitivity in memory cells. We therefore sought to identify if there were more “switching” 
genes present in our dataset, i.e. genes sensitive to a different stimulus between the two 310 
cell types. We identified a group of 18 genes that were TCR-sensitive in naive cells and 
changed to CD28 sensitivity in memory cells. Among others, we identified transferrin 
receptor TFRC (CD71), which is necessary for iron uptake and fueling of the proliferation, as 
well as MCM10 that is an important factor initiating DNA helicase activity and replication 
(Fig. 3C and Suppl. Table S3). Together these data highlight the enrichment of cell 315 
cycle/DNA replication pathways as targets for CD28 in memory T cells which, in contrast, are 

controlled by the TCR in naive cells. 
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Figure 3: A. Hallmark pathways enriched for TCR-sensitive and CD28-sensitive genes in naive and memory cells. B. CTV 

labelled naive and memory T cells were stimulated with anti-CD3 or anti-CD28 in the presence of CHO-FcR. The proliferation of 320 
naive and memory T cells was measured by flow cytometry five days following stimulation. Upper panel boxplots show the 

number of proliferating cells. Lower panel flow cytometry histograms show proliferation of naive and memory T cells measured 

by dilution of CTV. C. Gene expression profiles of selected switcher genes, genes that change stimulus sensitivity between the 

two cell types. The number below the stimulus name represents the significance of the difference between naive and memory 

T cells derived using t-test. 325 

AP1 initiated transcriptional cascade is costimulation dependent in memory cells 

To understand how TCR and CD28 stimuli exert effects on gene expression we tested for 
enrichment of transcription factor binding sites (TFBSs) in DARs identified by ATAC-seq that 
were concordant with gene expression (Materials and Methods, Fig. 4A). We tested 242 

transcription factors with detectable levels of gene expression in our dataset.  330 

We identified 5 different motifs enriched in naive cells and 20 motifs in memory cells (p-
value ≤ 0.01). In naive T cells we observed an enrichment for Blimp-1, a transcriptional 

repressor that maintains T cell homeostasis (Martins et al., 2006), combined with interferon 
response elements, IRF2, IRF3 and IRF8. Increases in TCR signalling have been shown to 
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induce the IRF4 transcription factor, which mediates Blimp-1 abundance in mice (Man et al., 335 
2013). As expected, the enrichment was driven by TCR, with little enhancement in response 
to CD28 costimulation. Blimp-1 and the identified IRFs recognize a very similar motif (Fig. 
4B), and antagonize each others binding in vitro (Doody et al., 2010). 

In memory T cells we observed that the profile driven by TCR was similar to naive cells, 
consisting of a combination of Blimp-1 with interferon response elements. However, in 340 
marked contrast, a much more robust response was observed in the presence of CD28 co-
stimulation. Notably, this was characterised by the enrichment of AP1 transcription factors 
(Fig. 4A). Specifically, only IRF4, JunD and BATF transcription factor binding sites co-
occurred in regions that changed in response to strong TCR alone, whereas c-Fos, FOSL1, c-
jun, jun-B and JDP2 all required the presence of CD28. C-jun and c-Fos constitute the 345 
backbone of AP1, a transcription factor that plays an important role in the induction of the 
immune response. Thus our observations are consistent with previous work which suggested 
that CD28 regulates the expression and activity of AP1 transcription factors (Edmead et al., 
1996; Fraser et al., 1991; Shapiro et al., 1997). Interestingly, BATF and c-jun transcription 
factors can also form a heterodimer and cooperate with IRF4 and recognise AP1–IRF 350 
composite elements (AICEs) in pre-activated CD4 T cells (Fig. 4B) (Li et al., 2012). These 
transcription factors play a crucial role in the initiation of transcriptional programs specific to 

T cell activation and cell division. 
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Figure 4: A. Transcription factor binding sites (TFBS) enriched in the differentially regulated ATAC-seq peaks that were 355 
assigned to predict gene expression changes. B. Position weight matrices (PWMs) for the enriched TFBS motifs. 

Immune GWAS loci are enriched for CD28-sensitive genes  

The role of T cell activation in the development of immune-mediated diseases is well 
established and SNPs nearby genes relevant to T cell activation, differentiation and 
trafficking have been implicated through GWAS (Farh et al., 2015; Hu et al., 2014; Okada et 360 
al., 2014; Trynka et al., 2013). We sought to investigate if immune disease associated loci 
were enriched for the genes we identified as TCR or CD28-sensitive, thereby implicating the 

involvement of either of these stimulatory pathways in disease pathogenesis. 

In our enrichment analysis (see Materials and Methods and Suppl. Table S4) we tested 
eight immune-mediated conditions, Crohn’s disease (CD), ulcerative colitis (UC), celiac 365 
disease (CeD), rheumatoid arthritis (RA), type-1 diabetes (T1D), systemic sclerosis (SSc), 
multiple sclerosis (MS) and psoriasis (PSO). We used bone mineral density (BMD) as a 
negative control as we would not expect to observe significant enrichment among BMD loci. 
The majority of the tested immune diseases were more strongly enriched (permuted p-value 
< 0.01) for CD28-sensitive than TCR-sensitive genes. One exception was T1D where genes 370 
sensitive to TCR showed a higher enrichment (Fig. 5A). In addition, we observed that TCR-
sensitive genes were enriched in CeD loci in both cell types (permuted p-value = 0.0097) 
and in RA (permuted p-value = 0.0096) and MS (permuted p-value = 0.0054) specifically in 
memory cells. Taken together, this indicates that the variants associated with common 
immune-mediated diseases could regulate the expression of genes sensitive to CD28 and 375 

through this pathway modulate the outcome of T cell activation.  

The majority of immune disease associated genetic variants fall in the non-coding regions of 
the genome and previous studies showed that disease associated variants are enriched in 
active enhancers (Trynka et al., 2013, 2015). We therefore investigated if disease SNPs map 
within active or open chromatin regions as defined by H3K27ac or ATAC peaks near the 380 
genes driving the enrichment. Given that the majority of peaks were shared between the 
cell types and stimuli, these chromatin marks were uninformative in discriminating if disease 
SNPs were more significantly enriched in specific conditions. However, we observed that, on 
average across traits, 73% of the genes driving the enrichment also had at least one disease 
associated variant overlapping an active promoter or enhancer. We therefore tested whether 385 
any of these SNPs disrupted a TFBS, limiting our analysis to the TFs that we had previously 
identified as enriched. We found 13 unique SNPs that disrupted a binding motif (Table 1). 
Two SNPs, associated with MS and in high LD with the reported index variant rs1021156 
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(r2>0.8), disrupted the IRF TFBS within the ZC2HC1A/IL7 locus (Fig. 5B). The first one, 
rs3808619 is localised in the promoter of ZC2HC1A and the risk allele led to decreased 390 
binding by IRF family of transcription factors (Fig. 5B). The second variant, rs60486739, is 
located in intron 3 of IL7, and the minor allele led to increased binding by IRF transcription 
factors (Fig. 5B). Both genes were sensitive to CD28 stimulation in memory cells and the 
H3K27ac peak that contained the rs60486739 variant was only present in stimulated 
memory cells, suggesting a potential functional role of the variant in modulating TF binding 395 

in this enhancer and affecting the expression levels of the gene. 
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Figure 5. A. Enrichment of TCR- and CD28-sensitive genes in immune-mediated disease loci. Bone mineral density (BMD) is 400 
used as a negative control. (Crohn’s disease - CD, ulcerative colitis - UC, celiac disease - CeD, type-1 diabetes - T1D, 

rheumatoid arthritis - RA, systemic sclerosis - SSc, multiple sclerosis - MS, psoriasis - PSO). B. MS associated locus containing 

two genes, ZC2HC1A and IL7, that are CD28-sensitive. In the upper panel in red are indicated all the SNPs in LD with 

previously reported GWAS index variant, rs1021156. Of these, the two highlighted variants, rs3808619 and rs60486739, 

overlap CD28-upregulated H3K27ac peaks and are predicted to disrupt and IRF binding site. 405 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2018. ; https://doi.org/10.1101/421099doi: bioRxiv preprint 

https://doi.org/10.1101/421099
http://creativecommons.org/licenses/by/4.0/


18 

 

SNP All Gene 
Stimulu
s Cell TF 

PWM 
delta Trait 

rs2852151 G/A SEH1L TCR naive RELA -132 T1D, CeD 

rs3181365 A/T TNFSF15 CD28 memory BLIMP1 -249 CD, UC 

rs6715826 T/G MYO1B, STAT1 CD28 memory BLIMP1 -55 CeD, RA, CD, UC, MS 

rs2548530 T/C ERAP2 CD28 naive IRFs -159 CD, UC 

rs10061936 T/C ERAP2 CD28 naive IRFs -50 CD, UC 

rs9392504 G/A IRF4 TCR 
naive, 
memory IRFs 93 CeD, RA 

rs4679081 T/C TRIM71 TCR memory MEF2C, IRFs -32, -14 CeD, MS 

rs2115592 T/C REL TCR memory IRFs, BLIMP1 382, 14 CeD, RA, MS 

186498:20:00 C/CT SOCS1 CD28 
naive, 
memory IRFs -24 MS 

rs60486739 G/A IL7, ZC2HC1A CD28 memory IRFs 311 MS 

rs3808619 A/C IL7, ZC2HC1A CD28 memory IRFs -71 MS 

rs11249219 C/T CLIC4 CD28 memory IRFs -24 CeD, PSO 

rs3784789 C/G 
CYP1A1, 
CYP1A2 CD28 naive SPI1 -172 CeD, SSc 

 

Table 1: Transcription factor binding sites in open chromatin or H3K27ac peaks that are disrupted by 
immune-disease associated variants. SNP - disease SNP residing within an ATAC peak and disrupting 
TFBS; All - SNP alleles; TF - transcription factor recognising the binding site; Delta PWM - 410 
difference in PWM score between the reference and the alternative allele; Trait - disease for which 
the association was reported (T1D - type-1 diabetes, CeD - celiac disease, CD - Crohn’s disease, UC - 
ulcerative colitis, RA - rheumatoid arthritis, MS - multiple sclerosis, PSO - psoriasis, SSc - systemic 
sclerosis); Cell - cell type in which disease gene shows stimulus sensitivity; Stim - stimulus to which 
the gene is sensitive; Gene - gene that is stimulus-sensitive and maps to the disease locus. 415 

 

Discussion 

Productive T cell activation is thought to involve recognition of antigen by the TCR in 
association with co-stimulatory signals via receptors such as CD28 (Esensten et al., 2016). 
However, the relative quantities of both signals are likely to be highly variable depending on 420 
the setting of T cell activation. There is evidence to suggest that naive and memory cells 
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have different requirements for CD28 costimulation, and a widely held view is that CD28 
costimulation is less required for activation of memory than naive T cells (Croft et al., 1994; 
Dubey et al., 1995; London et al., 2000; Luqman and Bottomly, 1992). Understanding the 
requirements for CD28 costimulation during immune responses is important for many 425 
therapeutic approaches including immune suppression in autoimmunity and transplantation, 

as well as cancer immunotherapy. 

Previous genomic studies have solely focussed on the additional effects of CD28 as a co-
stimulus, and not on varying the levels of CD28 itself, and were carried out in populations of 
mixed cells which includes cells that have successfully undergone activation as well as the 430 
resting cells (Allison et al., 2016; Diehn et al., 2002; Wakamatsu et al., 2013). The data 
presented here reveal that CD28 has an important impact on memory T cells, particularly 
their proliferation. We were able to reach this conclusion thanks to three key components in 
our experimental design: (i) we specifically isolated and profiled only stimulated cells, 
therefore reducing the confounding effect of variable cell activation across different cell 435 
cultures, (ii) we separately assessed naive and memory cells, and (iii) we provided the first 
genome-wide perspective of gene expression regulation through mapping RNA and 
chromatin changes induced by strong CD28 stimulation in the absence of TCR. Thus, 
although providing CD28 on its own might not be physiological, this system allowed us for 

the first time to disentangle genes that are TCR or CD28 sensitive.  440 

We observed a significant upregulation of genes in memory T cells in response to 
stimulation with CD28 alone that were related to cell cycle, suggesting a role for CD28 in 
memory cell proliferation. Indeed, we validated this directly by stimulating T cells for five 
days and demonstrating proliferation in memory T cells following activation with CD28 alone. 
Furthermore, we observed a significant upregulation of effector cytokines and chemokines in 445 
response to CD28, indicating that CD28 is also key to cell effector functions. However, our 
experiment was performed on a mixed memory cell population of effector and central Th 
cells, which differ in their levels of expression of CD28 (Koch et al., 2008). The differences in 
the expression levels of CD28 might have an impact in the immune response initiated, as 
influenza infected mice treated with CTLA4Ig shift their memory T cell pool to one 450 
predominantly composed of central memory cells, while influenza specific memory cells in 
untreated mice were predominantly effector cells (Ndejembi et al., 2006). This could explain 
why activated effector memory T cells produce cytokines more efficiently than central 
memory T cells (Barski et al., 2017). Finally, the variability in expression of the CD28 
receptor between young and old is only significant in effector memory T cells (Koch et al., 455 
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2008). This suggests that the memory T cell activation is concordant with their ability to 
sense CD28, and to initiate proliferation as we demonstrate here. Therefore, the decrease of 

CD28 signal might contribute towards immunosenescence. 

Our data provide a new context for the interpretation of several previous observations on 
CD28 function. Firstly, the ill-fated CD28 superagonist antibody (TGN1412) trial for B-cell 460 
chronic lymphocytic leukemia and rheumatoid arthritis, which tested the ability of CD28 
costimulation to specifically expand and activate Tregs, revealed a powerful effector 
response to CD28 stimulation driven by effector memory T cells (Hünig, 2012). Secondly, 
recent data indicated that human Treg cells can be expanded by utilising CD28 antibodies 
alone (He et al., 2017). This is in line with our observations, given that Tregs predominantly 465 
consist of memory cells and that CD28 stimulation upregulates FOXP3. Thirdly, there is now 
increasing evidence using conditional deletion of CD28 in mice that memory T cell responses 
are dependent on CD28 stimulation (Fröhlich et al., 2016; van der Heide and Homann, 
2016; Linterman et al., 2014; Ndlovu et al., 2014). Finally, we showed that a strong TCR 
signal alone is sufficient to induce the expression of key drivers of cell division and 470 
consequently trigger proliferation of naive T cells, but surprisingly had smaller effect on the 

proliferation of memory T cells. As such, we conclude that memory cells are not simply more 

sensitive to activation signals, but that there is a true difference in the TCR and CD28 
requirement between the two cell types. Taken together, our data provides a genomic 
explanation for the requirement of CD28 in the activation and effector functions of memory 475 

T cell. 

Lastly, the concept that CD28 is involved in the proliferation of memory T cells is intriguing 
in the light of recent data related to checkpoint blockade for cancer treatment. It has been 
suggested that PD-1 blockade, which is important to the reinvigoration of exhausted effector 
T cells, requires CD28 signaling (Hui et al., 2017; Kamphorst et al., 2017). Again, this aligns 480 
well with our data and supports the concept that differentiated memory T cells in tumours 
utilise CD28 and that CTLA-4 and the PD1 blockade are known to trigger autoimmunity (Ben 

Nasr et al., 2017; Bertrand et al., 2015).  

Our findings have further implications for understanding susceptibility to complex immune-
mediated diseases, where T cell activation is one of the hallmark pathobiological processes. 485 
GWAS of immune diseases have mapped hundreds of associated risk loci, many of which 
harbour genes of immune function. However, the specific role of the identified genes in T 
cell activation processes is unclear. By examining T cell gene expression sensitivity in 
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response to specific stimuli we demonstrated that GWAS loci are enriched for CD28-sensitive 
genes, rather than TCR-sensitive genes, thereby increasing support for the role of T cell 490 
activation via CD28 costimulation in susceptibility of immune-mediated diseases. For 
example, a recent study identified that cytokine oncostatin M (OSM) is expressed at higher 
levels in inflamed intestinal tissues from IBD patients compared to healthy controls (West et 
al., 2017). In our dataset OSM is CD28-sensitive and is among the genes driving the 
enrichment of CD28-sensitive genes in IBD. The importance of CD28 costimulation in 495 
immune-mediated diseases is further supported by data from the CTLA-4 field (Walker and 
Sansom, 2015). Indeed, loss of CTLA-4 in mice and heterozygous mutations in humans 
reveal profound autoimmunity where enteropathy is a consistent feature (Kuehn et al., 
2014; Schubert et al., 2014; Tivol et al., 1995). The fact that the CTLA-4 pathway directly 
regulates CD28 stimulation by competing for the same ligands strongly suggests that CD28 500 
plays a key role in susceptibility to immune-mediated diseases and that increased CD28 
costimulation may be sufficient for effector T cells to support their survival, proliferation and 
secretion of proinflammatory cytokines (Khattri et al., 1999; Qureshi et al., 2011). Our data 
shows that memory T cells are highly sensitive to CD28 stimulation, which is consistent with 

these cells being under the control of CTLA-4. 505 

Taken together, our study provides new insights into the role of TCR and CD28 
costimulation in the activation and proliferation of human naive and memory CD4 T cells, 

and the influence of these stimuli on immune disease susceptibility. 
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acceptance we will make the data publically available through the European Genome-
Phenome Archive (EGA; http://ega-archive.org). All the codes used in the data analysis will 

be made available through github upon manuscript acceptance. 

Methods 525 

Sample collection and DNA isolation 

Blood samples were obtained from eight healthy adults, aged from 22 to 46 years. 
Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Paque PLUS (GE 
healthcare, Buckingham, UK) density gradient centrifugation. CD4+ T cells were isolated 
from PBMCs using EasySep® CD4+ enrichment kit (StemCell Technologies, Meylan, France) 530 
according to the manufacturer's instructions. DNA was isolated from live PBMCs using 

Qiagen DNeasy blood and tissue kit. 

All samples were obtained in accordance with commercial vendor’s approved institutional 
review board protocols and their research use was approved by the Research Ethics 

Committee (reference number: 15/NW/0282). 535 

Flow cytometry and cell sorting 

CD4+ enriched cells were stained with the following antibodies for sorting: CD4 (OKT4)-APC 
(Biolegend) (AB_571944); CD25 (M-A251)-PE (Biolegend) (AB_2561861); CD127 
(eBioRDR5)-FITC (eBioscience) (AB_1907343) and Live/Dead fixable blue dead cell stain. 
Live conventional T cells (Tcons, CD4+ CD25low CD127high) were isolated and cultured for 540 
16h. Stimulated naive and memory cells were sorted based on the expression of CD25-PE, 
CD45RA- Alexa700 (Biolegend) (AB_493763) and DAPI. Resting naive and memory cells we 

sorted for low expression of CD25 (proportion of CD25+ cells < 1%, see Suppl. Fig S1). 

Cell Culture and stimulation 

Chinese hamster ovary (CHO) cells expressing CD86 or FcR (FcRγII, CD32) were cultured in 545 
DMEM (Life Technologies, Paisley, UK) supplemented with 10% v/v FBS (Sigma, Gillingham, 
UK), 50 U/ml penicillin and streptomycin (Life Technologies), and 200 μM l-glutamine (Life 
Technologies) and incubated at 37°C in a humidified atmosphere of 5% CO2. CHO cells 
expressing CD86 and FcR were generated as previously described (Qureshi et al., 2011). T 
cells were co-cultured with glutaraldehyde fixed CHO-CD86 to provide CD28 signal or CHO-550 
FcR for 16 hours in RPMI 1640 supplemented with 10% v/v FBS, 50 U/ml penicillin and 
streptomycin, and 200 μM l-glutamine. Cultures stimulated with CHO-CD86 were treated 
with with anti-CD3 (clone OKT3). Here high TCR corresponds to 1 ug/ml, low TCR 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2018. ; https://doi.org/10.1101/421099doi: bioRxiv preprint 

https://doi.org/10.1101/421099
http://creativecommons.org/licenses/by/4.0/


23 

corresponds to 0.01 ug/ml; high CD28 corresponds to 1:2.5 CHO-CD86 to T cell ratio and 
low CD28 corresponds to 1:25 CHO-CD86 to T cell ratio.  Cultures stimulated with CHO-FcR 555 

were treated with 1 µg/ml of anti-CD3 (OKT3) or 1 µg/ml of anti-CD28 (9.3).  

T cell proliferation assay 

Prior to stimulation with CHO-FcR cells and anti-CD3 or anti-CD28, naive and memory T cells 
were labeled with CellTrace Violet dye (Life Technologies) according to the manufacturer’s 
instructions. Five days following stimulation, T cell proliferation was analyzed by flow 560 
cytometry and proliferation was modeled using the Flowjo proliferation platform. Total T cell 
numbers per sample were established relative to AccuCheck counting beads (Invitrogen). 

  

RNA-seq 

Naive and memory T cells were placed in 0.5ml of Trizol (Invitrogen) and stored at -80°C. 565 
Samples were thawed at 37°C before adding 100 μl chloroform. After reaching equilibrium, 
samples were centrifuged for 15 min at 4°C at 10,000g. The collected aqueous phase was 
mixed 1:1 with 70% ethanol before proceeding with minElute columns (Qiagen) for 
purification, according to the manufacturer’s protocol. RNA was quantified using Bioanalyzer. 
The RNA was sequenced in two separate batches. Libraries were prepared using Illumina 570 
TruSeq index tags and sequenced on the Illumina HiSeq 2500 platform using V4 chemistry 
and standard 75 bp paired-end. The first batch consisted of 56 samples that were 
multiplexed at equimolar concentrations and sequenced across 14 lanes, to yield on average 
71.3 million reads per sample. The second batch consisted of 18 samples that were 
multiplexed at equimolar concentrations and sequenced across 3 lanes to yield on average 575 

61 million reads per sample.  

RNA-seq data processing 

Sequence reads were aligned to the GRCh38 human reference genome using STAR (v2.5.0c) 
(Dobin et al., 2013; Qureshi et al., 2011) and the Ensembl reference transcriptome (v83). 
Gene counts were estimated using featureCounts (v1.5.1) tools (Liao et al., 2014) from the 580 
subread package and only  reads assigned to the transcripts were used for further 

processing (84-90% of reads were assigned). 

To find genes that were upregulated upon stimulation, we first defined differentially expressed 

genes by performing pairwise comparison of all the conditions to the resting state, in a cell type 

specific manner, using Benjamini-Hochberg controlled FDR of 5% and an absolute fold-change ≥ 2. 585 
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We then build a linear and a switch model of gene expression using the LRT algorithm of DESeq2 

(v1.14.1) separately for naive and memory cells. In the linear model, we assumed a linear increase of 

gene expression along with stimulus intensity (incremental fold-change ≥ 1.5 in gene expression). 

Genes that did not follow the linear model were tested for the switch model. Here, we assumed an 

“on-and-off” mode of expression, where a gene is significantly upregulated (fold-change ≥ 2) in 590 

response to the presence of either CD28 or TCR (Fig. 1B). In both of these models, we used all 

seven conditions, e.g. when testing for CD28-sensitive genes we grouped the TCR alone 
stimulation with the resting, since neither received CD28 signal. A gene was classified in one 

of the two categories without overlap and prioritised for the linear model. 

To control for the different batches in which we processed the blood, which accounted for 595 
12% of the observed variability, we performed batch correction prior to PCA using the 
combat algorithm as implemented by the sva package (Leek et al., 2012). To estimate the 
percentage of the variance explained separately by each of the recorded variables, such as 
the stimulus, the cell type, the gender of the donors etc., we fitted a linear model with only 

the stimulus or the cell type as variables  (method adapted from (McCarthy et al., 2017)). 600 

Pathway enrichment 

We performed pathway enrichment analysis by testing whether different gene-sets were 
over-represented in particular hallmark pathways (Leek et al., 2012; Liberzon et al., 2015). 
We used the Jaccard index to quantify the proportion of stimuli-specific genes present in a 
tested pathway and assessed the statistical significance of the over-representation using a 605 
permutation strategy. For that, within each cell type and condition, we randomly sampled 
10,000 gene sets of the same size as in the observed dataset, matching for the gene size 

and gene expression levels. 

ChIPmentation-seq (ChM-seq) 

ChIPmentation-seq was performed according to published protocol (Schmidl et al., 2015), 610 
with the following modifications to make it compatible with the iDeal Histone ChIP kit 
(Diagenode) buffers. Five hundred thousand crosslinked cells were washed using 250μl IL1 
buffer and resuspended in 250μl IL2 lysis buffer, both of which contained 1X protease 
inhibitor cocktail (PIC). Cells were left to lyse for 5 minutes at 4°C on a rotator and then 
centrifuged at 4°C (3000g) for 5 minutes. The pellets were resuspended in 250μl IS1 buffer 615 
and sonicated using the Bioruptor®Pico (Diagenode, Belgium) for 5 minutes for resting cells 
or 4 minutes for stimulated cells (Diagenode). We kept a portion of the chromatin from two 
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samples aside, one naive and one memory stimulated with highTCR and highCD28, and 

used them as a ChM-seq input. 

The chromatin was immunoprecipitated using protein-A coated IP beads. Twenty microliters 620 
of beads were washed four times using 40μl IC1 buffer on the magnetic rack before being 
resuspended in 20μl of IC1. The beads were mixed with 56μl 5X IC1 buffer, 6μl 50X BSA, 
1.5μl 200X PIC and 1ug antibody. We added to the mix 100μl of chromatin (equivalent to 

200,000 cells) and incubated the samples overnight at 4ºC at 10 rpm. 

The beads were then washed on the magnet with 350μl of iW1, iW2 and iW3 buffers and a 625 
final wash with 2X 1000μl 10 mM Tris pH 8. The beads with the chromatin, as well as the 
two input samples, were then resuspended in 29μl ChM buffer (Tris pH 8 1M, MgCl2 1M, 
ChIP grade water) with 1μl Tn5 and incubated for 10 minutes at 37ºC at 1500 rpm. The 
tagmentation was stopped with the addition of 2X 350μl iW3. Finally, the beads were 
washed with 350μl iW4. The chromatin from the beads was eluted using 96μl iE1 and 630 
incubated for 30min at room temperature at 1500 rpm. The chromatin was reverse cross-
linked overnight using 4μl of iE2 buffer. The DNA was then purified using the MinElute PCR 
CLeanup kit (QIAGEN) and eluted in 30μl of water. Sequencing libraries were prepared using 
Nextera primers as described in the ATAC-seq protocol (Buenrostro et al., 2013). Eighteen 
libraries were indexed and pooled in equimolar concentration and sequenced on three lanes 635 
using the Illumina HiSeq 2500 platform and V4 chemistry using standard 75 bp paired-end 

reads to yield on average 80 million reads per sample. 

ATAC-seq    

ATAC-seq was performed according to published protocol (Buenrostro et al., 2013), with the 
following modifications. Fifty thousand cells were washed with 1ml of ice-cold PBS. The cells 640 
were then resuspended in the tagmentation buffer containing Tn5 transposase (Illumina 
Nextera) and 0.01% digitonin and incubated for 30 minutes at 37ºC before purifying the 
DNA using the MinElute PCR purification kit (QIAGEN). Sequencing libraries were prepared 
using Nextera primers as described in the ATAC-seq protocol (Buenrostro et al., 2013). 
Sixteen libraries were indexed and pooled in equimolar concentration and sequenced on 645 
three lanes using the Illumina HiSeq 2500 platform and V4 chemistry using standard 75 bp 

paired-end reads to yield on average 65 million reads per sample. 
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ChM and ATAC Data Processing  

The quality of the sequence reads was assessed using the fastx toolkit and the adaptors 
were trimmed using skewer (v0.2.2) (Jiang et al., 2014). Reads were mapped to the human 650 
genome reference GRCh38 using the bwa mem algorithm (v0.7.9a) (Li and Durbin, 2010). 
We only kept uniquely mapped reads, removed PCR duplicated reads and for the ATAC we 
excluded mitochondrial reads using samtools (v0.1.9) (Li and Durbin, 2010; Li et al., 2009). 
We retained 83.3% of ATAC and 73.8% of ChM reads. Genome browser tracks were created 
using BEDTools (v2.22.0) (Quinlan and Hall, 2010) and the UCSC binary utilities. 655 
Furthermore, we generated insert size distributions using PICARD tools (v2.6.0) 
CollectInsertSizeMetrics function which can be indicative of over-sonicated chromatin and 
excess of adapters in the data. The mapped reads were converted into bed files and 
chimeras were removed. Peaks were called using MACS2 (v2.1.1) (Zhang et al., 2008) 
setting the parameters to -q 0.05 --nomodel --extsize 200 --shift -100 for ATAC, and --broad 660 
--broad-cutoff 0.1 --nomodel --extsize 146 for H3K27ac ChM. For ChM, all samples were 
downsampled to to the same read number (21.6 million reads) prior to peak calling against 

the input. 

We used the fraction of reads in peaks (FRiP), the proportion of peaks with signal value 
(fold-change compared to the background or the input) greater than 10, the insert size 665 
distribution and the genome tracks to investigate the quality of our data. The median FRiP 
score for ATAC was 59.2% and 73.5% for H3K27ac ChM. The proportion of peaks with fold-
change > 10 was 22.9% for ATAC and 4.8% for ChM. We therefore concluded that the 
quality of our data was high. We merged all the ATAC samples and called peaks again using 
the parameters described above. For the H3K27ac ChM samples, we first merged the donors 670 
within each cell type and condition and then randomly sampled 17 million reads from each 
into one sample to reach the same read number as in the input. Since we merged already 
QCed samples we used the --keep-dup flag when calling peaks with MACS2, as the PCR 
duplicated reads for individual samples were already removed and we expected to observe a 
small proportion of the same reads present in independent samples by chance. We also 675 
increased the -q value threshold to 0.1 for both assays. The resulting peak files were used 
as a reference to count the number of reads falling into peak regions using featureCounts, 
therefore generating a quantitative table of read counts specifically present across the 

different conditions and cell types. 

To ensure our analysis focused on high confidence peaks we removed the bottom 10th percentile of 680 

peaks with the lowest read counts in each dataset and obtained a final count of 142,306 and 49,638 
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peaks for ATAC and ChM, accordingly. To define differentially accessible regions (DARs) and 

differentially modified histone regions (DMHRs) the dataset was processed using DESeq2. To find 

regions that were upregulated upon stimulation, we compared all conditions to the resting state and 

used Benjamini-Hochberg controlled FDR of 5% and an absolute fold-change ≥ 2. 685 

Binding Expression Target Analysis 

To identify regions of the genome that changed upon stimulation, which could subsequently 
regulate gene expression, we used Binding Expression Target Analysis (BETA) in the plus 
mode (Wang et al., 2013; Zhang et al., 2008). We carried the analysis using both DMHRs 
and DARs, as well as the list of regions that required one or the other stimulus. For 690 
example, TCR specific DMHRs or DARs were defined as the regions that are present in TCR 
stimulation but not in CD28 stimulation. We used the differential gene expression output 
from the pairwise comparison between stimulated and resting states. The median distance 
of interaction between an enhancer and gene promoter is estimated at 150kb (Mumbach et 
al., 2017), we therefore used the same window size around the transcription start site (TSS) 695 
of the differentially expressed genes to define boundaries for the analysis, along with the 
transcription activation domains (TADs) identified in CD4 T cells (Javierre et al., 2016). That 

is, if the extended 150kb region fell beyond the TAD boundary we consider the TAD coordinates as 

the boundary for testing predictive effects of DMHRs and DARs on gene expression. We relied on the 

ATAC-seq output for the transcription factor enrichment analysis (p-value ≤ 0.01) as it generates 700 

narrow peaks allowing for a more accurate estimation of the TFBS. 

Disease SNP enrichment for stimulus-sensitive genes 

We collected the GWAS data for 8 common traits from the studies listed in Suppl. Table 4, 
excluding all variants that fell within the MHC locus and using a genome wide p-value 
threshold of < 5x10-8. We defined the disease loci by mapping all the SNPs in linkage 705 
disequilibrium (LD) with the reported index SNP, using r2 > 0.8 calculated across the 
European populations present in the 1000 Genomes Project data, and extending the LD 
boundaries by 150kb on each side, to account for the possibility of distant gene expression 
regulation between enhancers and gene promoters. This resulted in 234 unique regions 

associated to one of the eight tested traits.  710 

We then tested whether the stimulus sensitive genes that were defined in the linear and the 
switch models fell within the SNP loci boundaries more often than expected by chance using 
a permutation strategy. To build our null distribution we selected the same number of 

genes, matching for gene size and expression level. We repeated the process 10,000 times. 
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We tested whether any of the SNPs used to define the LD boundaries overlapped with an 715 
H3K27ac or an ATAC peak identified in the specific stimulatory condition; strong CD28 alone 
stimulation for CD28 sensitive genes and strong TCR stimulation for TCR sensitive genes. 
The disruption of TFBS by SNPs was assessed using the SNP2TFBS database (Javierre et al., 

2016; Kumar et al., 2016). 

 720 

Supplementary Materials: 
Table S1 – S4 
Fig S1 – S6 
 

 725 
Table S1. Differential expression analysis output tables from DESeq2 from the RNA data 
pairwise comparison between stimulated states and the resting state.  
 
Table S2. Differential expression analysis output tables from DESeq2 from the RNA data 
linear and switch models comparisons between stimulated states and the resting state.  730 
 
Table S3. List of switcher genes identified in the study.  
 
Table S4. Details of the GWA studies used in this analysis. 
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Supplementary Figures 
 

 965 

Supplementary Figure 1. Percentage of activated naive and memory T cells upon 
stimulation across the experimental conditions. Cells we sorted based on the 
CD4+CD127+CD45RA+ for naive and CD4+CD127+CD45RA- for memory T cells. Activation 

was measured based on CD25 expression. 
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Supplementary Figure 2. A. Principal component analysis using the expression of all 
genes. The third and fourth components explain collectively 15.3% of the observed 975 
variability and correlate with TCR and CD28 intensity. Each dot corresponds to an individual 
sample, colored by stimulation and shaped according to the cell type. B. The percentage of 

the total variance explained by stimulation and cell type. 
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 980 

Supplementary Figure 3. Volcano plot of differential gene expression test between 
resting naive cells and resting memory cells. Genes colored in blue correspond to 
differentially expressed genes with log2 fold-change > 1 and FDR < 5%. Labelled are DEG 

with the lowest p-values. 
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Supplementary Figure 4. Proportion of differential accessible regions (DARs) and 
differentially modified histone regions (DMHRs) that regulate at least one differentially 

expressed gene (< 150kb away from TSS).  990 
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Supplementary Figure 5. A. Number of TCR and CD28 sensitive genes identified by the 
linear (priority) and the switch model in the two cell types. B. Number of differentially 995 
expressed genes (DEG) upon stimulation. The coloring represents different stimulatory 
dependencies. Grey indicates a small number of peaks that were only shared between hTCR 
alone and hCD28 alone stimulations. C+D.Heatmap of the log2 fold-change identified using 
the linear model of gene expression for (C) cytokines and chemokines and (D) costimulatory 

ligands and receptors that are expressed in the dataset. 1000 
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Supplementary Figure 6. Enrichment p-values for all hallmark pathways for TCR-sensitive 1005 

and CD28-sensitive genes in naive and memory cells. 
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Supplementary tables 1015 

 

Table S1. Differential expression analysis output tables from DESeq2 from the RNA data 
pairwise comparison between stimulated states and the resting state.  
https://drive.google.com/file/d/1QGrNAgRjVvaiHwGUnES11x0_V3SqD7g_/view?usp=sharing 
 1020 
Table S2. Differential expression analysis output tables from DESeq2 from the RNA data 
linear and switch models comparisons between stimulated states and the resting state.  
https://drive.google.com/file/d/1qnRuVl1iCL1GfA6D5x6KHraw1QwSO59a/view?usp=sharing 
 
Table S3. List of switcher genes identified in the study. 1025 

gene 
log2FC memory 
CD28 

FDR memory 
CD28 

log2FC naive 
TCR 

FDR naive 
TCR 

TRNP1 0.635 9.08x10-5 0.627 2.06x10-3 

CDC20 0.636 1.56x10-4 0.88 2.03x10-9 

AK4 0.756 0.0351 1.407 7.36x10-6 

DTL 1.153 8.09x10-8 0.807 1.32x10-3 

MTHFD2 1.149 0.0134 0.923 1.04x10-4 

CCL20 1.075 3.34x10-4 0.971 1.87x10-3 

TFRC 0.691 2.47x10-4 0.91 5.16x10-8 

STC2 3.051 2.85x10-3 1.534 4.81x10-4 

EPB41L4B 0.771 7.18x10-4 0.968 3.82x10-4 

TXN 0.68 2.69x10-4 0.683 1.86x10-4 

MCM10 1.173 1.62x10-8 1.107 2.83x10-5 

DNAJC12 1.011 2.18x10-3 1.015 3.72x10-5 
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DGAT2 1.07 5.53x10-3 0.75 2.99x10-6 

CHEK1 0.727 2.31x10-9 0.603 1.57x10-8 

NETO2 0.807 1.45x10-4 1.355 1.59x10-5 

NLN 0.635 6.08x10-3 0.919 5.06x10-6 

CDC6 0.658 1.74x10-4 0.734 4.65x10-7 

NME1-NME2 1.072 0.033 1.054 5.67x10-7 

* In italics are the log2 fold-change and p-values identified only in the switch model. 

 

Table S4. Details of the GWA studies used in this analysis. 

trait 
acrony
m source GWAS_type 

Processing 
notes 

Bone mineral 
density BMD 

GWAS catalog (search term: 
"Bone Mineral Density") NA 1 

Crohn's 
disease CD Jostins, 2012, Nat 

Meta-analysis and 
finemapping IBD, CD and UC 2 

Ulcerative 
colitis UC Jostins, 2012, Nat 

Meta-analysis and 
finemapping IBD, CD and UC 2 

Celiac disease CeD Trynka, 2011 Nat Genet Immunochip 3 

Multiple 
sclerosis MS Beecham, 2013 Nat Genet. Immunochip 4 

Rheumatoid 
arthritis RA Okada, 2014 Nat 

Meta-analysis GWAS and 
Immunochip 5 

Psoriasis PSO Tsoi, 2012, Nat Genet 
Meta-analysis GWAS and 
Immunochip 4 
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Systemic 
sclerosis SSc 

Bossini-Castillo 2015 Semin 
Immunopathol 

Summary GWAS and 
Immunochip 6 

Type 1 
Diabetes T1D 

Onengut-Gumuscu, 2015, Nat 
Genet Immunochip 4 

 

1. Duplicated SNPs were removed and LD pruning R>0.1 was performed. The HLA was removed 1030 
2. 193 statistically independent signals of association at GWAS significance in at least one of the 

two analyses. 
3. Low-frequency and rare variants are included, along with second (and third) independent 

signals conditioned on the first (and second) reported variant(s). 
4. Second (and third) independent signals conditioned on the first (and second) reported 1035 

variant(s) are included 
5. Only SNPs associated with the European population were maintained. 
6. For some loci, all reported associated SNPs are included (no LD pruning). 
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