1	Bayesian tip dating reveals heterogeneous
2	morphological clocks in Mesozoic birds
3	
4	Chi Zhang ^{1,2,*} and Min Wang ^{1,2}
5	September 18, 2018
6	¹ Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate
7	Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044,
8	China
9	² Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences,
10	Beijing 100044, China
11	*Corresponding author: E-mail: zhangchi@ivpp.ac.cn
12	
13	Running head: BAYESIAN TIP DATING OF MESOZOIC BIRDS
14	

15	Abstract.—Recently, comprehensive morphological datasets including nearly all the
16	well-recognized Mesozoic birds become available, making it feasible for statistically
17	rigorous methods to unveil finer evolutionary patterns during early avian evolution.
18	However, few quantitative and statistical studies have yet been performed. Here, we
19	exploited the advantage of Bayesian tip dating under relaxed morphological clocks to
20	infer both the divergence times and evolutionary rates while accounting for their
21	uncertainties. We further subdivided the characters into six body regions (i.e., skull,
22	axial skeleton, pectoral girdle and sternum, forelimb, pelvic girdle, and hindlimb) to
23	assess evolutionary rate heterogeneity both along the lineages and across partitions.
24	We observed extremely high rates of morphological character changes during early
25	avian evolution and the clock rates are quite heterogeneous among the six regions.
26	The branch subtending Pygostylia shows extremely high rate in the axial skeleton,
27	while the branches subtending Ornithothoraces and Enantiornithes show very high
28	rates in the pectoral girdle and sternum, and moderately high rates in the forelimb.
29	The extensive modifications in these body regions largely correspond to refinement of
30	the flight capability. The rest of the relatively slow and even rates suggest that there is
31	no dominant selective pressure in favoring of modifications in the skull and pelvis.
32	This study reveals the power and flexibility of Bayesian tip dating implemented in
33	MrBayes to investigate evolutionary dynamics in deep time.
34	

35 *Keywords*: Mesozoic birds, tip dating, relaxed clock, MrBayes

36 Introduction

37	Birds are one of the most speciose (over 10,000 recognized species) and ecological
38	diverse living vertebrates (Gill 2007). The origin and evolution of birds have long
39	been a hot debate in evolutionary biology, although it has been generally accepted that
40	birds underwent two large-scale radiations during their 160 million years evolution,
41	one for the stem groups in the Cretaceous, and the other for the crown groups in the
42	Paleogene (Mayr 2009; Prum et al. 2015; Wang and Zhou 2017). Over the last few
43	years, numerous well-preserved Mesozoic bird fossils have been described (Chiappe
44	and Meng 2016; Wang and Zhou 2017), and consensus has been approached
45	regarding their systematic relationships (O'Connor and Zhou 2013; Wang et al. 2017;
46	2018). These wealthy data have significantly bridged the large morphological gap
47	between birds and their non-avian theropod predecessors (O'Connor and Zhou 2015;
48	Wang and Zhou 2017), and demonstrated their evolutionary success related to novel
49	traits. Expanded morphological characters that cover the major Mesozoic avian
50	groups with chronological data become accessibly recently (Wang and Lloyd 2016),
51	making it possible to trace the early avian evolution more quantitively and to address
52	important questions such as the divergence times of the major clades and the patterns
53	of morphological character changes in and between lineages (Brusatte et al. 2014;
54	Lloyd 2016). However, few quantitative and statistical studies for early avian
55	evolution have yet been performed.

56	In a previous study, Wang and Lloyd (2016) investigated evolutionary rate
57	heterogeneity in Mesozoic birds under maximum parsimony using a large
58	morphological dataset containing 262 characters and 58 taxa (Wang et al. 2015). The
59	approach was stepwise: first to infer the most parsimonious trees, then to inform the
60	internal node ages using certain ad hoc measures, and last to obtain the branch rates
61	from dividing the number of parsimonious changes by the time durations along the
62	corresponding branches. It did not account for the uncertainties of tree topology, times
63	and rates statistically, and was unable to model the evolutionary process explicitly.
64	The dataset was then extended to 280 characters and 68 taxa recently (Wang and
65	Zhou 2018), with newly recognized species and significantly revised morphological
66	character scorings. Moreover, we revised this dataset according to (Field et al. 2018),
67	mainly focusing on the cranial morphology of Ichthyornithiformes and
68	Hesperornithiformes. The modified dataset contains nearly all the well-recognized
69	Mesozoic birds and represents the most comprehensive morphological characters at
70	present, thus provides more power to unveil finer evolutionary patterns and becomes
71	applicable to more statistically rigorous methods.
72	We further subdivided the characters into six partitions, each representing a
73	different anatomical region (i.e., skull, axial skeleton, pectoral girdle and sternum,
74	forelimb, pelvic girdle, and hindlimb), to assess evolutionary rate heterogeneity.
75	Partitioned analysis has been attempted by Clarke and Middleton (2008) on a much
76	smaller dataset of stem birds under a Bayesian non-clock model to examine the

77	branch-length variations across three body regions. Since each branch length was a
78	product of geological time duration and evolutionary rate, the two elements could not
79	be distinguished without a time tree and clock assumption.
80	Here, we exploited the advantage of tip dating to infer both the divergence times
81	and evolutionary rates while accounting for their uncertainties in a coherent Bayesian
82	statistical framework. The technique was originally developed for analyses combining
83	both morphological and molecular data (Pyron 2011; Ronquist et al. 2012a; 2016;
84	Zhang et al. 2016; Lee 2016; Gavryushkina et al. 2016) and has been termed as
85	"total-evidence dating". It has also been productively applied to morphological data
86	only (Lee et al. 2014; Bapst et al. 2016; Matzke and Wright 2016; King et al. 2017)
87	and we use "tip dating" for that matter. This approach has the essential strengths of
88	incorporating various sources of information from the fossil record directly in the
89	analysis, modeling the speciation process explicitly through a probabilistic model
90	allowing for parameter inference and model selection, and utilizing the state-of-the-art
91	developments in Bayesian computation.

92 Materials and methods

93 Morphological data

The morphological data used in this study is based on Wang and Zhou (2018)
which is extended and revised from Wang et al. (2015). Character scorings for *Ichthyornis dispar, Hesperornis regalis, Parahesperornis alexi*, and *Baptornis*

97	advenus were further revised according to Field et al. (2018). The modified dataset
98	consists of 280 morphological characters and 68 operational taxonomic units
99	(Dromaeosauridae as the outgroup, 65 Mesozoic and 2 extant birds). Detailed
100	character descriptions are listed in Supplementary Material.
101	The characters were further partitioned into six anatomical regions to assess
102	evolutionary rate heterogeneity across these regions: skull (53 characters), axial
103	skeleton (36 characters), pectoral girdle and sternum (48 characters), forelimb (65
104	characters), pelvic girdle (23 characters), and hindlimb (55 characters). Each partition
105	included more than 20 characters to ensure sufficient information for inference.

106 *Tip dating*

107	In Bayesian tip dating framework, we infer the posterior probability distribution of
108	the model parameters, which combines the information from the morphological
109	characters (likelihood) and the priors (including the distributions of the fossil ages and
110	the other parameters in the tree model and clock model). For the likelihood, the Mkv
111	model (Lewis 2001) was used for the character state substitution with gamma rate
112	variation across characters. The gamma distribution has mean 1.0 ($\alpha = \beta$) and was
113	approximated with four discrete categories (Yang 1994). 36 characters were defined
114	as ordered (Supplementary Information), which means instantaneous change is only
115	allowed between adjacent states, the rest of the characters were thus unordered. The

116	prior for gamma shape α was exponential(1), while the priors for the time tree and the
117	relaxed clock model parameters are described in detail in the following sections.
118	In order to root the tree properly and infer the evolutionary rates more reliably, we
119	applied five topology constraints as Aves, Pygostylia, Ornithothoraces, Enantiornithes
120	and Ornithuromorpha (Fig. 1), each of which forms a monophyletic clade.
121	The posterior distribution was estimated using Markov chain Monte Carlo
122	(MCMC). We executed two independent runs with four chains (one cold and three hot)
123	per run for 40 million iterations and sampled every 2000 iterations. The first 25%
124	samples were discarded as burn-in for each run, and the remaining samples from the
125	two runs were combined after checking consistency between runs.
126	Tree model

127	The fossilized birth-death process (Stadler 2010; Heath et al. 2014; Gavryushkina
128	et al. 2014; Zhang et al. 2016) was used to model speciation, extinction, fossilization
129	and sampling, which gave rise to the prior distribution of the time tree \mathcal{T} . The process
130	starts at the root with two lineages sharing the same origin. Each lineage bifurcates
131	with a constant rate λ and goes extinct with a constant rate μ . Concurrently, each
132	lineage is sampled with a constant rate ψ and is removed from the process upon
133	sampling with probability r. Extant taxa are sampled with probability ρ . The explicit
134	derivation of the probability density function was given in Gavryushkina et al. (2014,
135	Equation 4). When the removal probability $0 \le r < 1$, the sampled tree may contain

fossil ancestors (i.e., fossils with sampled descendants), while setting r = 1 disables

- 137 fossil ancestors (i.e., all fossils are at the tips).
- 138 The age of each fossil bird was assigned a uniform prior with lower and upper
- bounds from the corresponding stratigraphic range (Supplementary Information). The
- root age was assigned an offset exponential prior with mean 169 Ma (slightly older
- than the first appearance datum of Dromaeosauridae) and minimum 153 Ma (slightly
- 142 older than the first appearance datum of *Archaeopteryx*). For inference, we
- reparametrized the speciation, extinction and sampling rates and assigned priors as d

144 = $\lambda - \mu - r\psi$ ~ exponential(100) with mean 0.01, $v = (\mu + r\psi)/\lambda$ and $s = \psi/(\mu + \psi)$ ~

uniform(0, 1). The sampling proportion of extant taxa (Anas and Gallus) was set to

- 146 0.0002, based on the number of described living bird species around ten thousands
- 147 (Gill and Wright 2006).

148 Clock model

We applied the independent gamma (white noise) relaxed clock model (Lepage et al. 2007) to investigate evolutionary rate heterogeneity both along the tree and across the six anatomical regions (partitions). The model was reparametrized aiming to articulate the relative rates. Specifically, the model assumes that the substitution rate (clock rate, in unit of substitutions per character per myr) of branch *i* in partition *j*, c_{ij} , is a product of the mean rate *c* and the relative rate r_{ij} (i.e., $c_{ij} = cr_{ij}$), and r_{ij} is gamma distributed with mean 1.0 and variance $\sigma_i/(t_ic)$, where t_i is the geological time duration

156	of branch i ($i = 1,, 2m - 2, j = 1,, n$). Thus, the clock model has $n + 1$ parameters
157	$(c, \sigma_1,, \sigma_n)$, and there are $(2m - 2) \times n$ independent rates in the tree. The relative
158	rate r_{ij} serves as a multiplier to the mean rate. Large deviation of r_{ij} from 1.0 indicates
159	severe heterogeneity of the morphological clock, while r_{ij} 's all being similar to 1.0
160	models a somewhat strict clock. The branch length (distance, in unit of substitutions
161	per character) in the Mkv likelihood calculation, b_{ij} , is the product of time duration t_i
162	and clock rate c_{ij} (i.e., $b_{ij} = t_i c_{ij} = t_i cr_{ij}$).
163	The prior used for the mean clock rate c was gamma(2, 200) with mean 0.01 and
164	standard deviation 0.007, and that for σ_j was exponential(10).

165 Results and Discussion

166	There is no clear evidence for us to believe that all fossils are at the tips <i>a priori</i> ,
167	however, we encountered severe mixing problem in the MCMC when allowing fossil
168	ancestors while partitioning the morphological characters into six anatomical regions.
169	When treating the characters as a single partition on the other hand, we were able to
170	achieve good mixing both allowing and disallowing fossil ancestors (setting $r = 0$ and
171	r = 1 respectively). Thus, we first show the results without partitioning the data and
172	compare the difference between with and without fossil ancestors, then we focus on
173	the evolutionary rate heterogeneity when the data is partitioned (only under $r = 1$). In
174	general, the parameter estimates are quite similar whether fossil ancestors are allowed,
175	the difference is more dramatic whether the data is partitioned (see below).

176 Single partition

177	The phylogeny estimated from tip dating allowing fossil ancestors ($r = 0$) is shown
178	in Figure 1. The tree is well resolved, with a few polytomies mainly nested within
179	Enantiornithes that represent the uncertainty of the taxa relationships. This topology
180	agrees with previously published trees in the placements of the major clades (Wang et
181	al. 2015; Wang and Lloyd 2016; Wang and Zhou 2018). The root age is estimated at
182	162.56 (153.00, 171.26) Ma (see also Table 1), which covers the fixed age of 168.7
183	Ma (1 myr older than the first appearance datum of Dromaeosauridae using the
184	minimum branch length method) (Wang and Lloyd 2016). The posterior age of
185	Dromaeosauridae is 154.90 (141.66, 167.69) Ma, mainly within Late Jurassic, while
186	the prior range expands the whole Cretaceous (66.0, 167.7). As the posterior mean
187	relative rate at the branch of Dromaeosauridae is 1.08 (close to 1.0), the similarity of
188	the morphological characters informs a short time span. The mean ages of the
189	divergences of Pygostylia, Ornithothoraces and Enantiornithes are about 6-8 myr
190	older than the fixed ages in the previous study (Wang and Lloyd 2016). We
191	emphasize that the age estimates using tip dating integrates all available sources of
192	information but the minimum branch length method only used the first appearance
193	datum of the oldest taxa thus might underestimate the ages.
194	When disallowing fossil ancestors ($r = 1$), one concern might arise is that some
195	node ages might be overestimated due to forcing every tip to be the result of
196	speciation. However, the difference from allowing fossil ancestors ($r = 0$) is really

197	minor in our case. The node ages are only about 1–2 myr older if not otherwise
198	similar (Fig. 1). The topologies in these two cases are almost identical, except for two
199	places—one is the placement of Cruralispennia which becomes unresolved in the big
200	polytomy within Enantiornithes, the other is Archaeornithura which becomes a
201	sibling of <i>Tianyuornis</i> . In fact, the estimated proportion of fossil ancestors is 0.13
202	(0.06, 0.21), indicating most fossils are indeed tip fossils. <i>Enaliornis</i> and
203	Archaeornithura have the highest posterior probabilities of being ancestral (0.95 and
204	0.93 respectively).
205	The evolutionary rates are thus very similar for the two cases and we only show the
206	result under $r = 0$ (Fig. 1). The mean clock rate (c) is estimated around 0.01
207	substitutions per character per myr (i.e., approximately one character-state change per
208	100 million years) (Table 1). The relative clock rate at each branch represents the
209	deviation from the mean rate. We observe extremely high rates during early avian
210	evolution (Fig. 1). The relative rates at the two branches from Aves to Pygostylia are
211	6.63 (0.97, 17.49) and 5.34 (0.01, 15.52), and accelerate to 10.89 (0.00, 32.5) at the
212	branch subtending Ornithothoraces. High rates are also encountered along the early
213	branches of Ornithuromorpha, then slow down substantially towards crownward
214	branches including the one leading to extant birds. Enantiornithes shows even higher
215	rate of 11.24 (1.49, 30.75) when it diverges from Ornithuromorpha in the Early
216	Cretaceous, and the rates decrease dramatically in its later history. These observations
217	concurs with previous comparative studies that birds underwent a large scale of

218 diversification in tandem with the dinosaur-bird transition (Benson and Choiniere

219 2013; Lee et al. 2014; Wang and Lloyd 2016).

220 Six partitions

221	The evolutionary rates inferred above are averaged across all morphological
222	characters. Further partitioning the data into six anatomical regions make it feasible
223	for us to estimate refined evolutionary rates both along branches and across partitions.
224	Different partitions have their own independent rate variations while sharing the same
225	tree topology and geological time duration (i.e., single time tree \mathcal{T}). As mentioned
226	above, the mixing was very poor if fossil ancestors were allowed $(r = 0)$ and
227	independent runs did not give consistent estimates. The difficulty was probably due to
228	limited data in each partition interfered with inefficient reversible-jump MCMC
229	(rjMCMC) algorithm (Green 1995) implemented. Further investigations are required.
230	At the moment, we just show the result disallowing fossil ancestors $(r = 1)$ which
231	simplifies the tree structure with no need for rjMCMC. In this case, the major clades
232	inferred in the tree are unchanged, although a few taxa with large uncertainties shuffle
233	a bit (Supplementary Figs S1–S6). Comparing with the node ages estimated under a
234	single partition, those at the early avian diversifications are slightly older (Fig. 1, see
235	also Table 1) while the younger ages become more similar. The age differences are
236	more dramatic whether the data is partitioned than whether fossil ancestors are
237	allowed.

238	The rates of morphological character changes are quite heterogeneous among the
239	six regions during early avian evolution (Fig. 2), although the mean rate (c) estimated
240	is almost identical as before (Table 1). The branch subtending Pygostylia shows
241	extremely high rate in the axial skeleton (Fig. 2, Supplementary Fig. S2), which is one
242	order of magnitude higher than in the rest five regions. Clearly, the high rate observed
243	here indicates extensive morphological changes in the vertebral column, and the most
244	recognizable change is that a long tail consisting of over 20 caudal vertebrae in
245	Archaeopteryx and Jeholornis is replaced by a short element called pygostyle which is
246	formed by the fusion of several caudal most vertebrae (Wang and Zhou 2017). The
247	transition from long to short tail is functionally important for the evolution of
248	powered flight in birds: a short tail could forward the gravitational center, and with
249	attached feathers become indispensable for the avian flight apparatus (Gatesy and
250	Dial 1996). The branches subtending Ornithothoraces and Enantiornithes show very
251	rapid morphological changes in the pectoral girdle and sternum, and moderately high
252	rates in the forelimb (Fig. 2, Supplementary Figs S3&S4). In comparison, the
253	corresponding rates in the other regions are close to 1.0 with slight variation. These
254	results suggest that most of the changes related to the shoulder and forelimb are close
255	to the origin of Ornithothoraces, for example, the presence of an ossified sternum with
256	a keel (attachment for the major flight muscle in modern birds) and further elongate
257	forelimb (O'Connor and Zhou 2015), contributing to the refinement of flight
258	capability. The rapid morphological changes towards Enantiornithes correspond to

259	their unique shoulder morphology relative to the ancestor Ornithothoraces; for
260	instance, enantiornithines have a sternum with a caudally restricted keel and an
261	elongate acromion of the scapula, both of which are the major components of the
262	flight apparatus in birds (Chiappe and Walker 2002; Wang and Zhou 2017). Previous
263	morphometric study suggested that Enantiornithes have different flight style
264	compared with other Mesozoic birds in terms of limb proportion (Dyke and Nudds
265	2009). The rest of the relatively slow and even rates suggest that there is no dominant
266	selective pressure in favoring of modifications in the skull and pelvis.
267	When we compared the evolutionary rates between Enantiornithes and
268	Ornithuromorpha across the six regions by summarizing the mean relative rates
269	within each clade (excluding Anas, Gallus and their common ancestral branch), the
270	differences are not striking, with medians uniformly close to 1.0 (Fig. 3). However,
271	significantly high rates (outliers) are detected along some early diverging branches
272	within these two clades, and a slowdown in more crownward branches (Fig. 3,
273	Supplementary Figs S1–S6), suggesting that morphological changes are rapid in early
274	diversifications and the process slows down subsequently due to saturated ecological
275	niches for these two avian groups, as proposed in previous study (Wang and Lloyd
276	2016).
277	To test the robustness of age estimates to the root age prior and the impact on
278	evolutionary rates in consequence, we halved and doubled the range between the
279	mean and minimal in the original prior, that is, using offset-exp(153, 161) and

280	offset-exp(153, 185) priors for the root age. This comparison showed slightly varied
281	posterior age estimates deep in the tree. For the root age in particular, the estimates
282	are 170.83 (161.33, 179.78) and 174.31 (164.34, 184.77) under the smaller and larger
283	prior mean respectively. Thus, the conclusion of evolutionary rate heterogeneity
284	above is not changed as the age differences are minor comparing with the
285	significantly high rates which are usually one order of magnitude higher than 1.0.
286	Another concern related to the accuracy of age estimates might be the nonuniform
287	fossil record both in its geographical and stratigraphic distribution. Although more
288	complicated models allowing fossil sampling rate vary over time are available
289	(Gavryushkina et al. 2014; Zhang et al. 2016), it is not practical to apply in our case to
290	make reliable inference. The current model assuming constant sampling rate is a
291	balance between model complexity (number of parameters) and model adequacy
292	(accommodating rate variation across lineages). Since the focus of our study is on the
293	deep divergence times and the evolutionary rates, the rich fossil record in Early
294	Cretaceous provided a great deal of information to produce reliable estimates deep in
295	the tree. For the age estimates in the Late Cretaceous or later, biases might be severe
296	due to limited fossil record. In particular, the divergence time of Anas and Gallus has
297	been estimated at the early Eocene (Prum et al. 2015) associated with high
298	evolutionary rates at the crown. In comparison, we inferred much younger age of 9.46
299	(4.57, 15.07) Ma with a long, low-rate ancestral branch. The underestimation was

mainly due to lacking fossil or node calibrations within that clade, so the posterior

301 estimate tended to be similar to the prior.

302	The gamma shape parameter (α) of character rate variation is larger than 1.0 (Table
303	1), indicating that the evolutionary rates are fairly homogeneous across characters.
304	Note this gamma distribution models rate variation across characters and is
305	independent of the gamma distributions for rate variation across branches in the
306	relaxed clock model.
307	Partitioning the data is a common practice in molecular phylogenetic analyses
308	(Nylander et al. 2004; Brown and Lemmon 2007). The different partitions may
309	correspond to different genes and may also correspond to different codon positions in
310	a protein-coding gene. On the other hand, morphological characters are typically
311	treated as a single partition unless sufficient characters are available (Lee 2016) or
312	simple model assumptions are made (Clarke and Middleton 2008). While successfully
313	demonstrating the different evolutionary dynamics modeled by independent rate
314	parameters in the six partitions, we note that the variance is very large (Fig. 2, widths
315	of the error bars) due to limited number of characters in each partition. Further effort
316	of coding more characters would refine the resolution.
317	In summary, the Bayesian tip dating approach implemented in MrBayes is a
318	powerful and flexible tool to simultaneously estimate the tree topology, divergence
319	times, evolutionary rates, and the other parameters of interest while accounting for

their uncertainties. In the priors, we are able to incorporate the uncertainty of each

321	fossil age, model the speciation, extinction, fossilization and sampling process					
322	explicitly, and take advantage of the relaxed clock model to investigate rate variation					
323	cross branches and partitions. It is feasible to integrate all available sources of					
324	information in the analysis, rather than discarding certain information or uncertainties					
325	in the parsimony and stepwise approach. Although the focal species are Mesozoic					
326	birds in this study, tip dating is a general framework applicable to a wide range of					
327	taxonomic groups with potential future extensions to the theoretical model and					
328	practical implementation.					
329	Availability					
330	The models described above were implemented in MrBayes version 3.2.7					
331	(Ronquist et al. 2012b. https://github.com/NBISweden/MrBayes; last accessed					
332	September 10, 2018).					
333	Supplementary Material					
334	Data available from the Dryad Digital Repository: http://dx.doi.org/					
335	Funding					
336	This research is supported by the 100 Young Talents Program of Chinese Academy					
337	of Sciences (to C.Z.). M.W. is supported by National Natural Science Foundation of					
338	China (41722202).					

339 Acknowledgments

- 340 We sincerely thank three anonymous reviewers for constructive criticisms of the
- 341 original article and excellent suggestions for improvement.

342 References

- Bapst D.W., Wright A.M., Matzke N.J., Lloyd G.T. 2016. Topology, divergence dates,
- and macroevolutionary inferences vary between different tip-dating approaches
- applied to fossil theropods (Dinosauria). Biol. Lett. 12:20160237.
- Benson R.B.J., Choiniere J.N. 2013. Rates of dinosaur limb evolution provide
- evidence for exceptional radiation in Mesozoic birds. Proc. Biol. Sci.
- 348 280:20131780-20131780.
- Brown J.M., Lemmon A.R. 2007. The importance of data partitioning and the utility
- of Bayes factors in Bayesian phylogenetics. Syst. Biol. 56:643–655.
- 351 Brusatte S.L., Lloyd G.T., Wang S.C., Norell M.A. 2014. Gradual assembly of avian
- body plan culminated in rapid rates of evolution across the dinosaur-bird
- transition. Curr. Biol. 24:2386–2392.
- Chiappe L.M., Meng Q. 2016. Birds of stone: Chinese avian fossils from the age of
 dinosaurs. Johns Hopkins University Press.
- Chiappe L.M., Walker C.A. 2002. Skeletal morphology and systematics of the

357	Cretaceous Euenantiornithes (Ornithothoraces: Enantiornithes). In: Chiappe L.M.,
358	Witmer L.M. editors. Mesozoic birds: above the heads of dinosaurs. California:
359	University of California Press. pp. 240–267.
360	Clarke J.A., Middleton K.M. 2008. Mosaicism, modules, and the evolution of birds:
361	Results from a Bayesian approach to the study of morphological evolution using
362	discrete character data. Syst. Biol. 57:185–201.
363	Dyke G.J., Nudds R.L. 2009. The fossil record and limb disparity of enantiornithines,
364	the dominant flying birds of the Cretaceous. Lethaia. 42:248–254.
365	Field D.J., Hanson M., Burnham D., Wilson L.E., Super K., Ehret D., Ebersole J.A.,
366	Bhullar BA.S. 2018. Complete Ichthyornis skull illuminates mosaic assembly of
367	the avian head. Nature. 557:96–100.
368	Gatesy S.M., Dial K.P. 1996. Locomotor modules and the evolution of avian flight.
369	Evolution. 50:331–340.
370	Gavryushkina A., Heath T.A., Ksepka D.T., Stadler T., Welch D., Drummond A.J.
371	2016. Bayesian total-evidence dating reveals the recent crown radiation of
372	penguins. Syst. Biol. 66:57–73.
373	Gavryushkina A., Welch D., Stadler T., Drummond A.J. 2014. Bayesian inference of
374	sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput.

Biol. 10:e1003919.

- Gill F.B. 2007. Ornithology. New York: W.H. Freeman.
- Gill F.B., Wright M.T. 2006. Birds of the world: recommended English names.
- 378 Princeton: Princeton University Press.
- 379 Green P.J. 1995. Reversible jump Markov chain Monte Carlo computation and
- Bayesian model determination. Biometrika. 82:711–732.
- Heath T.A., Huelsenbeck J.P., Stadler T. 2014. The fossilized birth-death process for
- coherent calibration of divergence-time estimates. Proc. Natl. Acad. Sci. USA.
- 383 111:E2957–66.
- King B., Qiao T., Lee M.S.Y., Zhu M., Long J.A. 2017. Bayesian morphological
- clock methods resurrect placoderm monophyly and reveal rapid early evolution in
- jawed vertebrates. Syst. Biol. 66:499–516.
- Lee M.S.Y. 2016. Multiple morphological clocks and total-evidence tip-dating in
- 388 mammals. Biol. Lett. 12:20160033.
- Lee M.S.Y., Cau A., Naish D., Dyke G.J. 2014. Morphological clocks in paleontology,
- and a mid-Cretaceous origin of crown Aves. Syst. Biol. 63:442–449.
- Lepage T., Bryant D., Philippe H., Lartillot N. 2007. A general comparison of relaxed
- molecular clock models. Mol. Biol. Evol. 24:2669–2680.
- Lewis P.O. 2001. A likelihood approach to estimating phylogeny from discrete

394	morphological	character d	lata. Syst.	Biol. 5	0:913-925.

395	Lloyd G.T. 2016. Estimating morphological diversity and tempo with discrete
396	character-taxon matrices: implementation, challenges, progress, and future
397	directions. Biological Journal of the Linnean Society. 118:131–151.
398	Matzke N.J., Wright A. 2016. Inferring node dates from tip dates in fossil Canidae:
399	the importance of tree priors. Biol. Lett. 12:20160328.
400	Mayr G. 2009. Paleogene fossil birds. Berlin Heidelberg: Springer-Verlag.
401	Nylander J.A.A., Ronquist F., Huelsenbeck J.P., Nieves-Aldrey J.L. 2004. Bayesian
402	phylogenetic analysis of combined data. Syst. Biol. 53:47-67.
403	O'Connor J.K., Zhou Z. 2013. A redescription of Chaoyangia beishanensis (Aves)
404	and a comprehensive phylogeny of Mesozoic birds. Journal of Systematic
405	Palaeontology. 11:889–906.
406	O'Connor J., Zhou Z. 2015. Early evolution of the biological bird: perspectives from
407	new fossil discoveries in China. Journal of Ornithology. 156:333-342.
408	Prum R.O., Berv J.S., Dornburg A., Field D.J., Townsend J.P., Lemmon E.M.,
409	Lemmon A.R. 2015. A comprehensive phylogeny of birds (Aves) using targeted
410	next-generation DNA sequencing. Nature. 526:569–573.
411	Pyron R.A. 2011. Divergence time estimation using fossils as terminal taxa and the

412	origins of	Lissamphibia	. Syst. Biol	. 60:466–481.
-----	------------	--------------	--------------	---------------

413	Ronquist F., Klopfstein S., Vilhelmsen L., Schulmeister S., Murray D.L., Rasnitsyn
414	A.P. 2012a. A total-evidence approach to dating with fossils, applied to the early
415	radiation of the Hymenoptera. Syst. Biol. 61:973–999.
416	Ronquist F., Lartillot N., Phillips M.J. 2016. Closing the gap between rocks and
417	clocks using total-evidence dating. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371:
418	20150136.
419	Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget
420	B., Liu L., Suchard M.A., Huelsenbeck J.P. 2012b. MrBayes 3.2: efficient
421	Bayesian phylogenetic inference and model choice across a large model space.
422	Syst. Biol. 61:539–542.
423	Stadler T. 2010. Sampling-through-time in birth-death trees. J. Theor. Biol.
424	267:396–404.
425	Wang M., Lloyd G.T. 2016. Rates of morphological evolution are heterogeneous in
426	Early Cretaceous birds. Proc. Biol. Sci. 283:20160214.
427	Wang M., O'Connor J.K., Pan Y., Zhou Z. 2017. A bizarre Early Cretaceous
428	enantiornithine bird with unique crural feathers and an ornithuromorph
429	plough-shaped pygostyle. Nat Commun. 8:14141.

430 Wang M., O'Connor J.K., Zhou Z. 2018. A taxonomical revision of the

431	Confuciusornithiformes	(Aves:	Pygostylia).	Vertebrata	Palasiatica.
-----	------------------------	--------	--------------	------------	--------------

432	Wang M., Zheng X., O'Connor J.K., Lloyd G.T., Wang X., Wang Y., Zhang X., Zhou
433	Z. 2015. The oldest record of ornithuromorpha from the early cretaceous of China.
434	Nat Commun. 6:6987.
435	Wang M., Zhou Z. 2017. The evolution of birds with implications from new fossil
436	evidences. In: Maina N.J., editor. The Biology of the Avian Respiratory System.
437	Cham: Springer International Publishing. pp. 1–26.
438	Wang M., Zhou Z. 2018. A new confuciusornithid (Aves: Pygostylia) from the Early
439	Cretaceous increases the morphological disparity of the Confuciusornithidae.
440	Zoological Journal of the Linnean Society. in press.
441	Yang Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences
442	with variable rates over sites: approximate methods. J. Mol. Evol. 39:306–314.
443	Zhang C., Stadler T., Klopfstein S., Heath T.A., Ronquist F. 2016. Total-evidence
444	dating under the fossilized birth-death process. Syst. Biol. 65:228–249.

	single partition, $r = 0$	single partition, $r = 1$	six partitions, $r = 1$
α	1.81 (1.35, 2.31)	1.82 (1.35, 2.31)	1.80 (1.33, 2.27)
$d = \lambda - \mu - r\psi$	0.010 (0.00087, 0.022)	0.010 (0.00075, 0.021)	0.010 (0.00042, 0.020)
$v = (\mu + r\psi)/\lambda$	0.98 (0.94, 1.00)	0.93 (0.81, 1.00)	0.92 (0.79, 1.00)
$s = \psi/(\mu + \psi)$	0.028 (0.00047, 0.075)	0.33 (0.00051, 0.90)	0.35 (0.00059, 0.90)
t _{mrca}	162.56 (153.00, 171.26)	164.17 (153.33, 173.34)	172.61 (164.01, 180.81)
С	0.012 (0.0090, 0.015)	0.011 (0.0083, 0.014)	0.010 (0.0081, 0.012)
σ or σ_1	0.058 (0.035, 0.084)	0.058 (0.036, 0.084)	0.070 (0.026, 0.12)
σ_2			0.069 (0.028, 0.12)
σ_3			0.057 (0.028, 0.090)
σ_4			0.053 (0.025, 0.087)
σ_5			0.042 (0.0017, 0.084)
σ_6			0.061 (0.029, 0.095)

Table 1. Posterior distributions (mean and 95% HPD interval) of model parameters

447

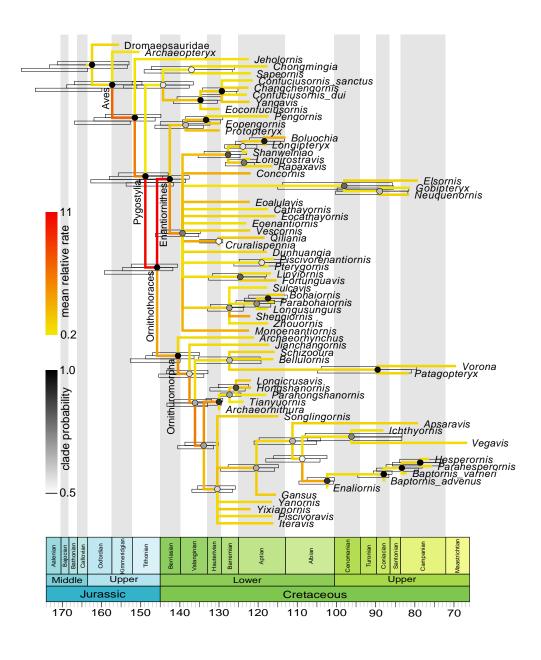


Figure 1. Dated phylogeny (time tree) of Mesozoic birds. The topology (majority-rule consensus tree) shown is inferred allowing fossil ancestors (r = 0) without partitioning the morphological characters. The node ages in the tree are the posterior medians and the shade of each circle represents the posterior probability of the corresponding clade. The color of the branch represents the mean relative clock rate at that branch. The error bars on the top (in blue) at the internal nodes denote the 95% HPD intervals of

457	age estimates.	In comparison,	the error bars	below (if p	present, in cyan)	denote the 95%
-----	----------------	----------------	----------------	-------------	-------------------	----------------

- 458 HPD intervals when disallowing fossil ancestors (r = 1) under a single partition.
- 459 Additionally, the error bars shown at the early avian diversifications (in green) are the
- 460 95% HPD intervals of age estimates when the characters are partitioned into six
- anatomical regions and disallowing fossil ancestors (r = 1). The two extant species
- 462 (*Anas* and *Gallus*) were included in the analyses but not shown in the representation
- 463 (as a sister clade of *Vegavis*).

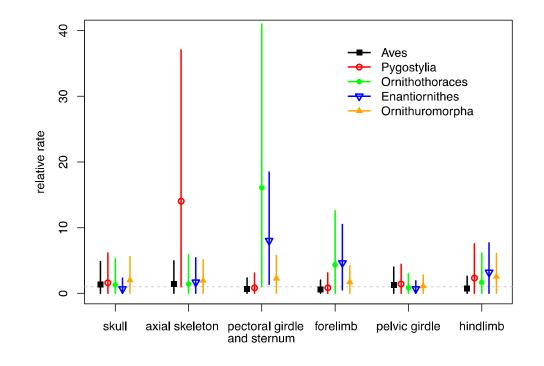


Figure 2. Posterior estimates of the relative clock rates along the branches subtending
the major transitions of early avian evolution for six anatomical regions of the bird
body. The dot and error bar denote the mean and 95% HPD interval for each estimate.
The horizontal dashed line indicates the mean relative rate of 1.0 in the relaxed model.

Figure 3. Boxplots summarizing the mean relative clock rates across branches in the
Enantiornithes clade (left) and Ornithuromorpha clade (right) respectively, for the six
anatomical regions. The box denotes the 1st, 2nd (median) and 3rd quartiles while the
dots are the outliers. The horizontal dashed line indicates the mean relative rate of 1.0
in the relaxed clock model.