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Abstract 27 

Olfaction induces adaptive motivated behaviors. Odors associated with food induce attractive 28 
behavior, whereas those associated with dangers induce aversive behavior. We previously reported 29 
that learned odor-induced attractive and aversive behaviors accompany activation of the olfactory 30 
tubercle (OT) in a domain- and cell type-specific manner. Odor cues associated with a sugar reward 31 
induced attractive behavior and c-fos expression in the dopamine receptor D1-expressing neurons 32 
(D1 neurons) in the anteromedial OT. In contrast, odor cues associated with electrical shock induced 33 
aversive behavior and c-fos expression in the D2 neurons in the anteromedial OT, as well as the D1 34 
neurons in the lateral OT. Here, we investigated whether the D1 and D2 neurons in the anteromedial 35 
OT play distinct roles in attractive or aversive behaviors, using optogenetic stimulation and real-time 36 
place preference (RTPP) tests. Mice expressing ChETA (ChR2/E123T)-EYFP in the D1 neurons in 37 
the anteromedial OT spent a longer time in the photo-stimulation side of the place preference 38 
chamber than the control mice expressing EYFP. On the other hand, upon optogenetic stimulation of 39 
the D2 neurons in the anteromedial OT, the mice spent a shorter time in the photo-stimulation side 40 
than the control mice. Local neural activation in the anteromedial OT during the RTPP tests was 41 
confirmed by c-fos mRNA expression. These results suggest that the D1 and D2 neurons in the 42 
anteromedial OT play distinct roles in attractive and aversive behaviors, respectively. 43 
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1 Introduction 45 

Odor sensation elicits various motivations, which enable adaptive behavioral responses such as 46 
obtaining food rewards or avoiding potential dangers (Doty, 1986). Although some odorants elicit 47 
innate motivated behaviors in mice, such as fear responses to predator odors(Kobayakawa et al., 48 
2007; Saito et al., 2017) or attractive responses to social odors (Inokuchi et al., 2017), animals can 49 
acquire appropriate behaviors to odor cues according to their experience, through odor-reward or 50 
odor-danger associative learning. However, the neural circuit mechanisms engaged in these odor-51 
induced adaptive behaviors are still unclear. 52 

 Recent studies have revealed the importance of the olfactory tubercle (OT) in the odor-53 
induced motivated behaviors (DiBenedictis et al., 2015; Gadziola et al., 2015; Yamaguchi, 2017; 54 
Zhang et al., 2017a; Murofushi et al., 2018). The OT is a part of the olfactory cortex that receives 55 
olfactory inputs directly from the olfactory bulb as well as indirectly from other parts of the olfactory 56 
cortex and the orbitofrontal cortex (Shepherd, 2004; Zhang et al., 2017b). The OT is also a part of the 57 
ventral striatum, in addition to the nucleus accumbens (NAc), that receives massive dopaminergic 58 
inputs from the ventral tegmental area (Ikemoto, 2007; Zhang et al., 2017b; Poulin et al., 2018). The 59 
OT is composed of three major types of neurons: medium spiny neurons, dwarf cells, and granule 60 
cells (Millhouse and Heimer, 1984; Xiong and Wesson, 2016). The medium spiny neurons are 61 
distributed in the whole OT, forming the layer II (dense cell layer) of the cortex-like region 62 
(Millhouse and Heimer, 1984). A majority of the medium spiny neurons in the OT as well as the 63 
NAc and dorsal striatum express either dopamine receptor D1 or D2 (Yung et al., 1995; Murata et al., 64 
2015). Dwarf cells are clustered in the lateral part of the OT, forming the cap region, which is 65 
interspersed throughout the antero-posterior axis (Hosoya and Hirata, 1974; Murata et al., 2015). The 66 
dwarf cells are considered a smaller type of the medium spiny neurons, and express D1 but not D2 67 
(Murata et al., 2015). Granule cells are clustered through the anteromedial surface to the central deep 68 
part of the OT, forming the Islands of Calleja, which is presumably a continuous structure (Fallon et 69 
al., 1978; de Vente et al., 2001). The granule cells weakly express D1, and do not express D2 70 
(Murata et al., 2015). In addition to these three types of neurons in the striatal component, the OT 71 
contains the ventral pallidal component and axon bundles that project from the striato-pallidal 72 
structure to other brain areas, forming the medial forebrain bundle (Heimer, 1978). 73 

 In our previous study, we divided the OT into domains, using the cap and Islands of Calleja 74 
as a landmark, and mapped c-fos expression when mice showed learned odor-induced attractive or 75 
aversive behaviors (Murata et al., 2015). Odor cues associated with a sugar reward induced attractive 76 
behavior and c-fos expression in the D1-expressing neurons (D1 neurons) in the cortex-like region of 77 
the anteromedial domain, which is covered by the superficially located Islands of Calleja. In contrast, 78 
odor cues associated with electrical shock induced aversive behavior and c-fos expression in the D2-79 
expressing neurons (D2 neurons) in the cortex-like region of the anteromedial domain, as well as D1 80 
neurons in the cap and cortex-like regions of the lateral domain, which is surrounded by the cap 81 
region. These results raise the possibility that the D1 and D2 neurons in the anteromedial OT play 82 
opposing roles in odor-guided motivated behaviors. Consistent with this idea, the D1 and D2 neurons 83 
in the NAc have distinct roles in attractive and aversive learning (Hikida et al., 2010). Here, we 84 
investigated whether activation of the D1 and D2 neurons induces attractive and aversive behaviors, 85 
respectively, by combining optogenetic stimulation and real-time place preference (RTPP) tests 86 
(Zhang et al., 2017a). 87 
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2 Materials and Methods 89 

Animals 90 

All experiments were conducted in accordance with the Guidelines for Animal Experimentation in 91 
Neuroscience of the Japan Neuroscience Society, and were approved by the Experimental Animal 92 
Research Committee of University of Fukui. The D1-Cre and D2-Cre mice used were heterozygotes 93 
and bred from D1-Cre (the Mutant Mouse Resource & Research Centers, STOCK Tg(Drd1a-94 
cre)FK150Gsat/Mmucd, stock number: 029178-UCD) (Gong et al., 2003; Gong et al., 2007) and D2-95 
Cre (the Mutant Mouse Resource & Research Centers, B6.FVB(Cg)-Tg(Drd2-96 
cre)ER44Gsat/Mmucd, stock number: 032108-UCD) (Gong et al., 2003; Gong et al., 2007) by 97 
mating the heterozygote transgenic mice with wild type C57BL/6J mice (Japan SLC). All mice were 98 
housed with their littermates until the surgery and then individually housed with a 12/12-h light/dark 99 
cycle. Food and water were freely available. 100 

Virus preparation 101 

We used a Cre-dependent adeno-associated virus (AAV) vector encoding enhanced yellow 102 
fluorescent protein (EYFP) or ChETA(ChR2/E123T)-EYFP for cell type-specific gene delivery. We 103 
obtained AAV5-EF1a-DIO-EYFP from the UNC vector core at a titer of 3.5 × 1012 genome 104 
copies/mL; AAV2-EF1a-DIO-ChETA-EYFP was packaged and concentrated to a titer of 1.6 × 1012 105 
genome copies/mL, as previously reported (Kobayashi et al., 2016), using the Addgene (Cambridge, 106 
MA, USA) plasmid, pAAV-Ef1a-DIO ChETA-EYFP (gift from Karl Deisseroth, # 26968 (Gunaydin 107 
et al., 2010)). 108 

Stereotaxic surgery 109 

Stereotaxic surgeries were performed on mice aged 10–16 weeks. Mice were anesthetized with a 110 
mixture of three anesthetics (medetomidine, midazolam, and butorphanol) (Nakamura et al., 2017), 111 
and then placed in a stereotaxic apparatus (Narishige, SR-5M). The skull above the targeted areas 112 
was thinned using a dental drill and removed carefully. Injections were administered using a syringe 113 
pump (WPI, UltraMicroPump III) connected to a Hamilton syringe (Hamilton, RN-1701), and a 114 
mounted glass micropipette with a tip diameter of 50 µm connected by an adaptor (Hamilton, 55750-115 
01). 116 

We ipsilaterally injected 300 nL AAV5-EF1a-DIO-EYFP for confirmation of cell type-117 
specific expression (Fig. 1C–D) and as a control for optogenetic stimulation, or AAV2-EF1a-DIO-118 
ChETA-EYFP into the anteromedial OT of D1-Cre or D2-Cre mice using the following coordinates: 119 
anterior-posterior, +1.5 mm; medial-lateral, 0.7 mm from bregma; and dorso-ventral, 4.35 mm from 120 
the brain surface. Two to 3 weeks later, the mice were ipsilaterally implanted with a chronic optical 121 
fiber (numerical aperture = 0.39, 200-µm diameter; Thorlabs, CFMC12U) targeted to the 122 
anteromedial OT with the same coordinates described above. One to 2 weeks after fiber implantation, 123 
the following behavioral tests were conducted. 124 

Optogenetic stimulation and RTPP tests 125 

For optogenetic stimulation, the implanted optic fiber was connected to a blue light laser via patch 126 
cords with a fiber-optic rotary joint (Thorlabs, RJPSF2). All photo-stimulation experiments used 5-127 
ms, 5–7-mW, 473-nm light pulses at 20 Hz via a solid-state laser for light delivery (Ultra Laser, 128 
CST-L-473-50-OEM) triggered by a stimulator (Bio Research Center, STO2). 129 
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 After being connected to the blue light laser, the mice were placed in a place preference 130 
chamber (30 [width] × 30 [depth] × 25 [height] cm) equipped with vertical or horizontal striped wall, 131 
as shown in Fig. 1B, for 20 min. The non-stimulation control side was as assigned at the start of the 132 
experiment. Laser stimulation at 20 Hz was constantly delivered when the mice crossed to the 133 
stimulation side, and stopped when they returned back to the initial non-stimulation side. All 134 
behavioral tests were recorded using a USB digital video camera (Logicool  c920r), and offline 135 
analyses of the time spent in each chamber and tracking data were performed using a videotracking 136 
software (Panlab, SMART 3.0); 30 min after the end of the RTPP tests, mice were deeply 137 
anesthetized by intraperitoneal injection of sodium pentobarbital, and then fixed for histochemical 138 
analysis. 139 

Histochemistry 140 

Mice were transcardially perfused with phosphate-buffered saline (PBS), followed by 4% 141 
paraformaldehyde (PFA). After cryoprotection with sucrose solution, the brain was frozen and sliced 142 
into coronal sections with a thickness of 20 μm. The sections were rinsed in PBS and 0.1 M 143 
phosphate buffer, mounted on glass slides using a paint brush, dried overnight in a vacuum 144 
desiccator, and then stored at 4 °C until histochemistry. 145 

 To confirm cell type-specific EYFP expression, we performed double fluorescent 146 
immunolabelling for EYFP and mRNAs of D1 or D2 as follows. Digoxigenin (DIG)-labeled RNA 147 
probes were prepared using an in vitro transcription kit (Roche) according to the manufacturer’s 148 
protocol with a plasmid kindly provided by Dr. Kazuto Kobayashi (Sano et al., 2003). The dried 149 
sections were fixed in 4% PFA, digested using proteinase K (10 μg/mL) for 30 min, and post-fixed in 150 
4% PFA. After prehybridization, the sections were incubated overnight at 65 °C with DIG-labelled 151 
RNA probes. After stringent washing, the sections were incubated in 1% blocking buffer (Roche, 152 
11096176001) for 1 h. Primary antibody against EYFP (1:1000; Medical & Biological Laboratories) 153 
and an anti-DIG antibody conjugated with alkaline phosphatase (1:500, Roche) were included in the 154 
incubation mixture. The sections were washed three times in TNT (0.1 M Tris-HCl [pH 7.5], 0.15 M 155 
NaCl, 0.1% Tween 20) and incubated with an Alexa Fluor 488-conjugated secondary antibody 156 
(1:400; Jackson ImmunoResearch Labs) for 2 h. After three washes in TNT and one wash in Tris 157 
saline (0.1 M Tris-HCl [pH 8.0], 0.1 M NaCl, 50 mM MgCl2), alkaline phosphatase activity was 158 
detected using the HNPP Fluorescence Detection Set (Roche, 11758888001) according to the 159 
manufacturer’s instructions. The sections were incubated with the substrate three times for 30 min 160 
each, and the reaction was stopped by washing the sections in PBS. The sections were then 161 
counterstained with 4′,6-diamidino-2-phenylindole diluted in PBS (2 µg/mL) for 5 min. After 162 
washing in PBS, the sections were mounted in PermaFluor (Thermo Fisher Scientific). 163 

 For c-fos mRNA detection, we performed in situ hybridization using DIG-labeled antisense 164 
RNA probes. The RNA probe was prepared using an in vitro transcription kit (Roche) according to 165 
the manufacturer’s protocol with a plasmid kindly provided by Dr. Hirohide Takebayashi (Bepari et 166 
al., 2012). Hybridization and washing were performed as described above. Subsequently, the sections 167 
were blocked with 10% normal sheep serum, 1% bovine serum albumin, and 0.1% Triton X-100 in 168 
PBS. Subsequently, the sections were incubated overnight at 4 °C with alkaline phosphatase-169 
conjugated anti-DIG antibody (1:1000, Roche). The sections were washed in TNT, followed by 170 
alkaline phosphatase buffer (100 mM NaCl, 100 mM Tris-HCl [pH 9.5], 50 mM MgCl2, 0.1% Tween 171 
20, 5 mM levamisole). The sections were treated overnight with nitro-blue tetrazolium/5-bromo-4-172 
chloro-3'-indolylphosphate (Roche) mixture at room temperature in a dark room for color 173 
development. Then, they were rinsed in PBS and mounted in PermaFluor (Thermo Fisher Scientific). 174 
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Microscopy and image analysis 175 

Sections were examined using a confocal laser microscope (Olympus, FV1200) and a bright field 176 
virtual slide system (Hamamatsu Photonics, NanoZoomer). To quantify density of c-fos mRNA-177 
expressing cells, the area of the anteromedial domain of the OT was delineated, and the number of 178 
cells was counted using Image J (National Institutes of Health). 179 

Statistics 180 

Statistical significance was tested using Prism 7 (GraphPad Software). Differences were considered 181 
statistically significant at p < 0.05. 182 
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3 Results 184 

To address whether D1 and D2 neurons in the anteromedial OT play distinct roles in attractive and 185 
aversive behaviors, we used optogenetic stimulation and performed RTPP tests (Fig. 1A and B). We 186 
injected AAV2-EF1a-DIO-ChETA-EYFP into the anteromedial OT of D1-Cre and D2-Cre 187 
transgenic mice; AAV5-EF1a-DIO-EYFP was injected as a control for optogenetic stimulation (Fig. 188 
1A). At first, we examined cell type-specificity of the Cre-mediated gene expression by the AAV 189 
vector. Three weeks after injection of AAV5-EF1a-DIO-EYFP into the anteromedial OT of the D1-190 
Cre and D2-Cre mice, we performed double fluorescence immunolabeling of EYFP and D1 or D2 191 
mRNAs (Fig. 1C and D). In the D1-Cre mice, 94% of the EYFP(+) neurons in the cortex-like region, 192 
which were putative medium spiny neurons, expressed D1 mRNA, and 5.9% of them expressed D2 193 
mRNA (n = 3 mice, Fig. 1C and D). On the other hand, 14% of the EYFP(+) neurons expressed D1 194 
mRNA, and approximately 83% of them expressed D2 mRNA in the D2-Cre mice (n = 3 mice, Fig. 195 
1C and E). These data confirmed that these Cre transgenic mice exhibited preferential expression of 196 
Cre-dependent AAV-derived genes in the D1 and D2 neurons. 197 

We then tested the hypothesis that optogenetic activation of the D1 and D2 neurons in the 198 
anteromedial OT may play distinct roles in eliciting attractive and aversive behaviors using RTPP 199 
tests. We activated the D1 and D2 neurons using ChETA, a type of ChR2 with faster kinetics 200 
(Gunaydin et al., 2010), which possibly enabled precise timing of stimulation when mice crossed the 201 
chambers. The RTPP tests revealed that D1-Cre mice expressing ChETA spent significantly longer 202 
time in the photo-stimulation side (64% of the 20-min RTPP tests, n = 6 mice) than the control mice 203 
(52% of the 20-min RTPP tests, n = 7 mice; unpaired t-test: t = 3.261, df = 11) which expressed 204 
EYFP without ChETA (Fig. 2A and B). In contrast, D2-Cre mice expressing ChETA spent 205 
significantly shorter time in the photo-stimulation side (28% of the 20-min RTPP tests, n = 6 mice) 206 
than the control mice (51% of the 20-min RTPP tests, n = 7 mice; unpaired t-test: t = 3.994, df = 11) 207 
(Fig. 2A and B). These data suggest that activation of the D1 and D2 neurons in the anteromedial OT 208 
elicit attractive and aversive behaviors, respectively. 209 

After the RTPP tests, we confirmed the neural activation of the anteromedial OT by examining 210 
c-fos mRNA expression (Bepari et al., 2012). As expected, the ipsilateral side of the anteromedial OT 211 
showed a significant increase in the number of c-fos expressing cells in in both ChETA-EYFP-212 
expressing D1-Cre (n = 5 mice; unpaired t-test: t = 4.628, df = 8) and D2-Cre (n = 6 mice; unpaired t-213 
test: t = 4.427, df = 10) mice (Fig. 2C and D). In contrast, no clear increase in the c-fos expression in 214 
either control D1-Cre (n = 7 mice; unpaired t-test: t = 1.239, df = 12) or D2-Cre (n = 7 mice; 215 
unpaired t-test: t = 0.7561, df = 12) mice was observed (Fig. 2C and D). These results confirmed 216 
activation of the anteromedial OT by optogenetic stimulation during the RTPP tests. 217 
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4 Discussion 219 

In this study, we demonstrate that cell type-specific activation of the D1 and D2 neurons in the 220 
anteromedial OT elicits attractive and aversive behaviors, respectively. To achieve selective 221 
manipulation of the D1 or D2 neurons, which are intermingled in the cortex-like region of the OT, 222 
we used D1-Cre and D2-Cre transgenic mouse lines and Cre-dependent AAV vectors (Fig. 1A and 223 
C–E). This combination enabled us to deliver AAV-derived genes preferentially to the D1 or D2 224 
neurons in the anteromedial OT. Optogenetic activation of the D1 and D2 neurons in the 225 
anteromedial OT induced attraction to and aversion from the photo-stimulation chamber, respectively 226 
(Figs. 1B, and 2A and B). After the RTPP tests, activation of the anteromedial OT was confirmed by 227 
local increase in the c-fos expression (Fig. 2C and D). These results suggest that the D1 and D2 228 
neurons in the anteromedial OT are involved in eliciting attractive and aversive behaviors, 229 
respectively. 230 

 Previous studies have shown that the anteromedial domain of the OT plays an important role 231 
in the reward system. Local self-administration of cocaine into the OT and NAc revealed that the 232 
anteromedial domain of the OT more robustly mediates the rewarding action of cocaine than other 233 
domains of the OT and NAc (Ikemoto, 2003). Optogenetic stimulation of the dopaminergic fiber 234 
from the ventral tegmental area to the medial OT elicits rewarding effects which generate place and 235 
odor preference (Zhang et al., 2017a). These local manipulations should exert excitatory effect on the 236 
D1 neurons via increased dopamine level in the anteromedial OT because D1 is coupled with Gs 237 
(Stoof and Kebabian, 1981). In line with these previous reports, our result directly demonstrates the 238 
role of the D1 neurons in the anteromedial OT in eliciting attractive behavior. In contrast, D2 is 239 
coupled with Gi (Stoof and Kebabian, 1981). Aversive stimuli reduce tonic firings of dopaminergic 240 
neurons (Ungless et al., 2004; Cohen et al., 2012) resulting in decreased ambient dopamine level at 241 
the target structure, which should exert excitatory effect on the D2 neurons. Consistent with the 242 
report that blunting the tonic dopamine release in the ventromedial striatum leads to conditioned 243 
place aversion (Liu et al., 2008), our results reveal the role of the D2 neurons in the anteromedial OT 244 
in eliciting aversive behavior. As we previously reported, neurons in the OT are activated by odor 245 
cues that induce motivated behaviors. The understanding of these cell type-specific roles of the D1 246 
and D2 neurons in the anteromedial OT will provide a neural basis for odor-guided adaptive 247 
motivated behaviors. 248 
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10 Figure Legends 358 

Figure 1. Cell type-specific gene delivery in dopamine receptor D1- and D2-expressing neurons 359 
in the anteromedial OT of the D1-Cre and D2-Cre mice using AAV vectors 360 

(A) Schematic diagram of cell type-specific optogenetic stimulation of the anteromedial OT. We 361 
injected Cre-dependent AAVs encoding EYFP or ChETA-EYFP and implanted optic fiber canula 362 
into the anteromedial OT of D1-Cre or D2-Cre mice. (B) Place preference chamber. In the RTPP 363 
tests, mice were placed in either side, which was assigned as the control side (no photo-stimulation). 364 
Blue light was delivered when mice were in the opposite side of the initial position. (C) and (D) 365 
Confocal images of AAV-derived EYFP expressing cells (green) and D1 (upper panels) or D2 (lower 366 
panels) mRNAs (red) from D1-Cre mouse (C) or D2-Cre mouse (D). Color merged panel contains 367 
DAPI staining (blue). Scale bars: 20 µm. (E) Percentage of D1 or D2 mRNA expressing-cells among 368 
EYFP-expressing cells in D1-Cre and D2-Cre mice. Data shows mean with SD. OT, olfactory 369 
tubercle; AAV, adeno-associated virus; EYFP, enhanced yellow fluorescent protein; RTPP, real-time 370 
place preference; D1, dopamine receptor D1; D2, dopamine receptor D2; DAPI, 4′,6-diamidino-2-371 
phenylindole; SD, standard deviation 372 

Figure 2. Cell type-specific effect of optogenetic stimulation of the anteromedial OT in the 373 
RTPP tests 374 

(A) Tracking data of the RTPP tests. Right side is the photo-stimulation side. (B) Percentage of time 375 
spent in the photo-stimulation side in the 20-min RTPP tests. Data shows mean with SD. **, p < 376 
0.01. (C) Images of c-fos mRNA expression in the OT coronal sections after the RTPP tests. Left 377 
panels, ipsilateral; right panels, contralateral. Scale bar: 200 µm. (D) Density of c-fos mRNA-378 
expressing cells in the anteromedial OT. Data shows mean with SD. ns, not significant; *, p < 0.05; 379 
**, p < 0.01. OT, olfactory tubercle; RTPP, real-time place preference; SD, standard deviation 380 
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