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1. Sample collection 

Patients with advanced cancer not curable by local treatment options and being candidates for any type 
of systemic treatment and any line of treatment were included as part of the CPCT-02 (NCT01855477) 
and DRUP (NCT02925234) clinical studies, which were approved by the medical ethical committees 
(METC) of the University Medical Center Utrecht and the Netherlands Cancer Institute, respectively. A 
total of 41 academic, teaching and general hospitals across the Netherlands participated in these studies 
and collected material and clinical data by standardized protocols1. Patients have given explicit consent 
for whole genome sequencing and data sharing for cancer research purposes. Clinical data, including 
primary tumor type, biopsy location, gender and birth year were collected in electronic case record forms 
and stored in a central database. 
 
Core needle biopsies were sampled from the metastatic lesion, or when considered not feasible or not 
safe, from the primary tumor site when still in situ. One to four biopsies were collected (average of 2.1 per 
patient) and frozen in liquid nitrogen directly after sampling and further processed at a central pathology 
tissue facility. Frozen biopsies were mounted on a microtome in water droplets for optimal preservation of 
all types of biomolecules (DNA, RNA and proteins) for subsequent and future omics-based analyses. A 
single 6 micron section was collected for hematoxylin-eosin (HE) staining and estimation of tumor 
cellularity by an experienced pathologist. Subsequently, 25 sections of 20 micron, containing an 
estimated 25,000 to 500,000 cells, were collected in a tube for DNA isolation. In parallel, a tube of blood 
was collected in CellSave (Menarini-Silicon Biosystems) tubes, which was shipped by room temperature 
to the central sequencing facility at the Hartwig Medical Foundation. Left-over material (biopsy, DNA) after 
sample processing was stored in biobanks associated with the studies at the University Medical Center 
Utrecht and the Netherlands Cancer Institute. 

2. Sequencing workflow 
DNA was isolated from biopsy and blood on an automated setup (QiaSymphony) according to supplier's 
protocols (Qiagen) using the DSP DNA Midi kit for blood and QIAsymphony DSP DNA Mini kit for tissue 
and quantified (Qubit). Typically, DNA yield for the tissue biopsy ranged between 50 and 5,000 ng. A total 
of 50 - 200 ng of DNA was used as input for TruSeq Nano LT library preparation (Illumina), which was 
performed on an automated liquid handling platform (Beckman Coulter). DNA was sheared using 
sonication (Covaris) to average fragment lengths of 450 nt. Barcoded libraries were sequenced as pools 
(blood control 1 lane equivalent, tumor 3 lane equivalents) on HiSeqX (V2.5 reagents) generating 2 x 150 
read pairs using standard setting (Illumina). 
 
BCL output from the HiSeqX platform was converted using Illumina bcl2fastq tool (versions 2.17 to 2.20 
have been used) using default parameters. Reads were mapped to the reference genome GRCH37 using 
BWA-mem v0.7.5a2 , duplicates were marked for filtering and INDELs were realigned using GATK 
v3.4.46 IndelRealigner. GATK Haplotype Caller v3.4.46 was run to call germline variants in the reference 
sample.  For somatic SNV and INDEL variant calling, GATK BQSR3 is also applied to recalibrate base 
qualities. 

3. Somatic point mutation calling 

We called SNV & INDEL somatic variants using Strelka v1.0.144 with the following optimisations: 
● Preservation of known variants: From the raw Strelka output we marked all known pathogenic 

variants from external databases such that these would be preserved from all subsequent 
filtering. The list of pathogenic variants used was the union of: 
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○ Point mutations in CIViC5 with level C evidence or higher (download = 01-mar-2018) 
○ Somatic variants from CGI6 (update: 17-jan-2018) 
○ Oncogenic or likelyOncogenic variants from OncoKb7 (download = 01-mar-2018); 

http://oncokb.org/api/v1/utils/allAnnotatedVariants.txt) 
○ TERT promoter variants at genomic coordinates: 5:1295242, 5:1295228, 5:1295250 

● Modified quality score filtering 
○ We split variants into high confidence (HC) and low confidence (LC) regions using the 

NA12878 GIABv3.2.2 high confidence region definitions8, based on the observation that 
we produce far higher rates of false positives variant calls in LC regions  

○ Set quality score cutoffs for SNV & INDEL to 10 for HC regions and 20 for LC regions 
(default = 15 for SNV, 30 for INDEL) 

○ Added an additional quality filter to tighten filtering for low allelic frequency variants: 
quality score * allele frequency > 1.3 

● Improved repeat sensitivity: Switched off the default Strelka repeat filter to improve indel calling 
in microsatellites and short repeats. 

● Panel of normals (PON) to remove germline leakage: Filtered out any variants which were 
found by GATK haplotypecaller in more than 5 samples in a germline PON consisting of 2000 of 
our reference blood samples. PON available at (https://resources.hartwigmedicalfoundation.nl/) 

● PON to remove strelka-specific artefacts: Filtered any variant which was supported by 2 or 
more reads in strelka in the reference sample in at least 4 patients in our cohort. PON available at 
(https://resources.hartwigmedicalfoundation.nl/) 

● Removal of INDELS near a PON filtered INDEL - Regions of complex haplotype alterations are 
often called as multiple long indels which can make it more difficult to construct an effective PON, 
and sometimes we find residual artefacts at these locations. Hence we also filter inserts or 
deletes which are 3 bases or longer where there is a PON filtered INDEL of 3 bases or longer 
within 10 bases in the same sample. 

 
The settings and tools for this optimized HMF pipeline are available at https://github.com/hartwigmedical/. 
We tested the default and HMF optimized settings on a GIAB mix-in sample (ref = NA24385, tumor = 70% 
NA24385, 30% NA12878) to test sensitivity at a realistic purity and on a null tumor (ref = NA12878, tumor 
= NA12878) to test precision. The results of this analysis are as follows: 
 

Configuration SNV sensitivity SNV false positive / 
genome 

INDEL sensitivity Indel false positive / 
genome 

Default 93% 3500 24% 41 

Optimized HMF pipeline 96% 109 77% 27 
 
We performed external validation of a set of single nucleotide variants (SNV) and short insertion/deletions 
(indels) that have been detected by Whole Genome Sequencing (WGS) using the single molecule 
Molecular Inversion Probe (smMIP) technology9. SNV and short indels variants were semi-randomly 
selected from 30 patient samples. The first selection was to include every variant that was reported in the 
patient report (114 gene panel) as obtained during the routine CPCT-02 study analysis. This way, a total 
of 82 variants (67 SNVs, 15 indels) were selected in 45 genes. The second selection involved random 
sampling of 256 coding and non-coding variants from the same 30 patient samples. 
 
A custom smMIP panel was designed to cover the selected variants. For 45 variants (17.6%) no smMIP 
design was possible, all of which were intergenic variants. For the other 211 variants probes could 
successfully be designed. Analysis of the smMIP sequencing data indicated that for 17 of the 211 variants 
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(8.1%) the smMIP sequencing data was of insufficient quality (mostly due to repeat stretches), while the 
WGS data seemed sufficiently reliable for accurate calling (confirmed by visual inspection of the read 
data), including 3 coding variants (RB1, ERBB4 and BRCA2) and 14 intergenic regions. The retrospective 
investigation of the WGS data indicated that for another three variants (1.4%) the smMIP as well as the 
WGS data was of insufficient quality due to large homopolymer stretches.  
 
In total 192 variants could be successfully sequenced and analyzed using the smMIP and could be used 
for confirmation of the WGS findings. 189 SNVs and indel variants (98.4%) were confirmed by smMIP 
sequencing, indicating a very high accuracy of WGS-derived variant calling results. All three variants that 
could not be confirmed by smMIP were from intergenic regions, including 1 variant that showed a mixed 
double-variant (chr3:75887550_G>T/C) and for which both technologies had difficulties in accurately 
calling the genotype. For the remaining 2 variants (chr8:106533360_106533361insAC, 
chr12:125662751_125662752insA), it remains unclear if these could not be detected by smMIP or were 
falsely called by WGS, as they fall in repetitive genomic stretches. 

  

 
The 189 successfully confirmed variants showed a good linear correlation in variant allele frequency 
between WGS and smMIP sequencing (average of duplicates) with an R2 of 0.733. This result indicated 
that WGS, with its lower read depth (on average between 100-110x) than smMIP and without a read-
barcoding system, is accurate in quantitatively determining the variant frequency at frequencies above 
5%. One variant (ch19:55276095C>T, indicated in red in the figure above) showed a large deviation in 
variant frequency, which was likely caused due to the much lower than expected coverage of the variant, 
both in the WGS (37 reads) as well as in the smMIP data (28 and 35 reads). 

4. MNV correction 

Strelka somatic variants that appear on consecutive positions, or 1 base apart were considered 
potential multi nucleotide variants (MNVs). The BAM files were re-examined, and the variants were 
merged into a single MNV if greater than 80% of the reads with a mapping quality score of at least 10 and 
which are neither unmapped, duplicated, secondary, nor supplementary containing any of the individual 
variants also contained the other variants of the potential MNV. The attributes of the resulting MNV 
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variant were determined by picking the minimum values from the individual variants forming the MNV. 
MNVs were marked as PON filtered only if both individual variants were PON filtered. 

5. Somatic structural variant calling 

Structural Variants were called using Manta(v1.0.3)10 with default parameters. We then re-examined each 
breakpoint calculated variant allele frequencies for each break end and applied seven additional filters to 
the Manta output to improve precision using an internally built tool called ‘Breakpoint-Inspector’ (BPI) 
v1.5.  Two main types of filters are applied by BPI: 

● Evidence of variant in reference sample -   variants are filtered if we can find any evidence of 
paired read support , split read support or soft clipping concordance (5+ bases at exact 
breakpoint) in the matching blood sample. 

● Inadequate support for variant in tumor sample - For all inversions and translocations and for 
long deletions and tandem duplications (>1000 bases between breakpoints) we require at least 1 
read with paired read support. For short deletions and duplications (<1000 bases between 
breakpoints) we require at least 1 read with split read support.   In both cases at least one of 
those reads must be anchored with at least 30 bases at each breakpoint.   We also require the 
minimum read coverage across each breakpoint in the tumor to be > 10 depth. 

 
Code and description of filters for BPI are available at 
https://github.com/hartwigmedical/hmftools/tree/master/break-point-inspector. 

Each break end was annotated with it’s position in all transcripts from ‘KNOWN’ genes in 
Ensembl v89.3711. Each gene was marked as disrupted if there was at least one structural variant that 
impacted on the canonical transcript.  

6. Identification of gene fusions 

For each structural variant, every combination of annotated overlapping transcripts from each breakend 
was tested to see if it could potentially form an intronic inframe fusion. A list of 411 curated known fusion 
pairs was sourced by taking the union of known fusions from the following external databases: 

● Cosmic curated fusions12 (v83) 
● OncoKb7 (download = 01-mar-2018) 
● CGI6 (update: 17-jan-2018) 
● CIViC5 (download = 01-mar-2018) 

 
We then also created a list of promiscuous fusion partners using the following rules 

● 3’ promiscuous: Any gene which appears on the 3’ side in more than 3 of the curated fusion 
pairs OR appears at least once on the 3’ side and is marked as promiscuous in either OncoKb, 
CGI or CIVIC 

● 5’ promiscuous: Any gene which appears on the 5’ side in more than 3 of the curated fusion 
pairs OR appears at least once on the 5’ side and is marked as promiscuous in either OncoKb, 
CGI or CIVIC 

 
For each promiscuous partner we also curated a list of essential domains that must be preserved to form 
a viable fusion partner. 
 
Finally, we report an intronic inframe fusion if the following conditions are met 

● Matches an exact fusion from the curated list OR is intergenic and matches 5’ promiscuous OR 
matches 3’ promiscuous gene 
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● Curated domains are preserved 
● Does not involve the 3’UTR region of either gene 
● For intragenic fusions, must start and end in coding regions of the gene 

7. Copy number calling 

We use an in house developed integrated tool, PURity & PLoidy Estimator (PURPLE), that combines B-
allele frequency (BAF), read depth and structural variants to estimate the purity and copy number profile 
of a tumor sample. Version v2.14 of PURPLE has been used. 
 

There are 5 key steps in the PURPLE pipeline: 
 
1. Calculate BAF in tumor at high confidence heterozygous germline loci 
We determine the BAF of the tumor sample by finding heterozygous locations in the reference sample 
from a panel of 796,447 common germline heterozygous SNP locations. To ensure that we only capture 
heterozygous points, we filter the panel to only loci with allelic frequencies in the reference sample 
between 40% and 60% and with depth between 50% and 150% of the reference sample genome wide 
average. Typically, this yields 140k-200k heterozygous germline variants per patient. We then calculate 
the allelic frequency of corresponding locations in the tumor.  
 
2. Determine read depth ratios for tumor and reference genomes 
The raw read counts per 1,000 base window for both normal and tumor samples, by counting the number 
of alignment starts in the respective bam files with a mapping quality score of at least 10 that is neither 
unmapped, duplicated, secondary, nor supplementary. Windows with a GC content less than 0.2 or 
greater than 0.6 or with an average mappability below 0.85 are excluded from further analysis. 
 
Next we apply a GC normalization to calculate the read ratios. We divide the read count of each window 
by the median read count of all windows sharing the same GC content then normalise further to the ratio 
of the median to mean read count of all windows.  
 
Finally, the reference sample ratios have a further ‘diploid’ normalization applied to them to remove 
megabase scale GC biases. This normalization assumes that the median ratio of each 10Mb window 
(minimum 1Mb readable) should be diploid for autosomes and haploid for sex chromosomes in males in 
the germline sample. 
 
3. Segmentation 
We segment the genome into regions of uniform copy number by combining segments generated from 
the read ratios for both tumor and reference sample, from the BAF points with structural variant 
breakpoints derived from Manta & BPI. Read ratios and BAF points are segmented independently using 
the Bioconductor copynumber package13 which uses a piecewise constant fit (PCF) algorithm (with 
custom settings gamma = 100, k =1). These segment breaks are then combined with the structural 
variants breaks according to the following rules: 
 

1. Every structural variant break starts a new segment, as does chromosome starts, ends and 
centromeres. This is regardless of if they are distinguishable from existing segments or not.  

2. Ratio and BAF segment breaks are only included if they are distinguishable from an existing 
segment.  

3. To be distinguishable, a break must be at least one complete mappable read depth window away 
from an existing segment.  
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Once the segments have been established we map our observations to them. In each segment we take 
the median BAF of the tumor sample and the median read ratio of the tumor and reference samples. We 
also record the number of BAF points within the segment as the BAFCount.  
 
A reference sample copy number status is determined at this this stage based on the observed copy 
number ratio in the reference sample, either ‘DIPLOID’ (0.8<= read depth ratio<=1.2), 
‘HETEROZYGOUS_DELETION’ (0.1<=ratio<0.8), ‘HOMOZYGOUS_DELETION’ 
(ratio<0.1),’AMPLIFICATION’(1.2<ratio<=2.2)or ‘NOISE’ (ratio>2.2). The purity fitting and smoothing 
steps below use only the DIPLOID germline segments. 
 
4. Purity Fitting 
Next we jointly fit tumor purity and sample ploidy (expressed as a normalisation factor) according to the 
following principles: 
 

1. The absolute copy number of each segment should be close to an integer ploidy 
2. The BAF of each segment should be close to a % implied by integer major and minor allele 

ploidies. 
3. Higher ploidies have more degenerate fits but are less biologically plausible and should be 

penalised 
4. Segments are weighted by the count of BAF observations which is treated as a proxy for 

confidence of BAF and read depth ratio inputs. 
5. Segments with lower observed BAFs have more degenerate fits and are weighted less in the fit 

 
For any given tumor purity and sample ploidy we calculate the score by first modelling the major and 
minor allele ploidy of each segment and minimising the deviation between the observed and modelled 
values according to the following formulas:  
 
ModelDeviation = abs(ObservedRatio - ModelRatio) + abs(ObservedBaf - ModelBaf) 
ModelBaf = (tumorPurity * (segmentMinorPloidy - 1) + 1) / (tumorPurity * (segmentPloidy - 2) + 2) 
ModelRatio = sampleNormFactor + (segmentPloidy - 2) * tumorPurity * sampleNormFactor / 2d; 
 
Once modelled, each segment is given a ploidy penalty: 
 
PloidyPenalty = 1 +min(SingleEventDistance, WholeGenomeDoublingDistance); 
WholeGenomeDoublingDistance = 1 + abs(segmentMajorAllele - 2) +abs(segmentMinorAllele - 2); 
SingleEventDistance = abs(segmentMajorAllele - 1) + abs(segmentMinorAllele - 1); 
 
Summing up over all the segments generates a score for each tumor purity / sample ploidy combination 
from which we can select the minimum: 
݁=ݎ݋ܿܵݕݐ݅ݎݑܲ݀݁ݐ݅ܨ  ଵ	ୀ	෍௡௜	ݐ݊ݑ݋ܥ݂ܽܤ݈ܽݐ݋1ܶ ݕݐ݈ܽ݊݁ܲݕ݀݅݋݈ܲ ௜ × ݊݋݅ݐܽ݅ݒ݁ܦ݈݁݀݋ܯ ௜ × ݐ݊ݑ݋ܥ݂ܽܤ ௜× ݂ܽܤ݀݁ݒݎ݁ݏܾܱ ௜ 
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Given a fitted purity and sample ploidy we are then able to determine the purity adjusted copy number 
and BAF of each segment in the tumor from the unadjusted read ratios and BAFs respectively.  
 
The purity estimates of PURPLE were validated using the tumor cell line COLO829. We created diluted 
in-silico mixture models of the tumor and blood cell lines for COLO829 with simulated puities of 20%, 
30%, 40%, 60%, 80% and 100%, and ran PURPLE on the simulated BAM files against a reference 
sample.  
 
The PURPLE estimates match the simulation closely as follows: 
 

Simulated  
Purity 

PURPLE estimated purity Difference 

20% 20% 0% 
30% 30% 0% 
40% 40% 0% 
50% 50% 0% 
60% 60% 0% 
80% 81% 1% 

100% 100% 0% 
 
 
5. Smoothing  
Since the segmentation algorithm is highly sensitive, and there is a significant amount of noise in the read 
depth in whole genome sequencing, many adjacent segments created above will have a similar copy 
number and BAF profile and can be combined and averaged to form a larger, smoothed, region.  
 
We apply a number of rules to merge adjacent regions to create a smooth copy number profile.  
 

1. Never merge a segment break created from a structural variant break end. 
2. Use the count of BAF points as a proxy for confidence or weight in the region. Note that some 

segments may have a BAF count of 0.  
3. Merge segments where the difference in BAF and copy number is within tolerances. 
4. BAF tolerance is linear between 0.03 and 0.35 dependent on BAF count. 
5. Copy number tolerance is linear between 0.3 and 0.7 dependent on BAF count. The tolerance 

also increases linearly as purity of the tumor sample decreases below 20%. 
6. Start from most confident segment and smooth outwards until we reach a segment outside of 

tolerance. Move on to next highest unsmoothed section.  
7. It is possible to merge in (multiple) segments that would otherwise be outside of tolerances if: 

a. The total dubious region is sufficiently small (<30k bases or <50k bases if approaching 
centromere); and 

b. The dubious region does not end because of a structural variant; and 
c. The dubious region ends at a centromere, telomere or a segment that is within 

tolerances. 
8. When the entire short arm of a chromosome is lacking copy number information (generally on 

chromosome 13,14,15,21, or 22), the copy number of the long arm is extended to the short arm.  
9. Any remaining unknown segments are given the expected copy number of their associated 

chromosome, i.e. 2 for autosomes and female allosomes, 1 for male allosomes.  
 
Where clusters of SVs exist which are closer together than our read depth ratio window resolution of 
1,000 bases, the segments in between will not have any copy number information associated with them. 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/415133doi: bioRxiv preprint first posted online Sep. 20, 2018; 

http://dx.doi.org/10.1101/415133


 
Pan-cancer whole genome analyses of metastatic solid tumors                                 Priestley, Baber, et al. 

 

Page 9 of 24 
 

 

To resolve this, we infer the ploidy from the surrounding copy number regions. The outermost segment of 
any SV cluster will be associated with a structural variant with a ploidy that can be determined from the 
adjacent copy number region and the VAF of the SV. We use this ploidy and the orientation of structural 
variant to calculate the change in copy number across the SV and hence the copy number of the 
outermost unknown segment. We repeat this process iteratively and infer the copy number of all regions 
within a cluster. 
 
Once region smoothing is complete, it is possible there will be regions of unknown BAF, if no BAF points 
were present in a copy number region. We infer this BAF by assuming that they share their minor allele 
ploidy with their neighbouring region. If there are multiple neighbouring regions with known BAF we use 
the highest confident region (i.e. highest BAF count) to infer. 
 
At this stage we have determined a copy number and minor allele ploidy for every base in the genome. 

8. Sample filtering based on copy number output 

Following our copy number calling, samples were QC filtered from the analysis based on 4 criteria: 
● NO_TUMOR - If PURPLE fails to find any aneuploidy AND the number of somatic SNVs found is 

less than 1,000 then the sample is marked as NO_TUMOR. 
● MIN_PURITY - We exclude samples with a purity of <20% 
● FAIL_SEGMENT - We remove samples with more than 120 copy number segments unsupported 

at either end by SV breakpoints. This step was added to remove samples with extreme GC bias, 
with differences in depth of up to or in excess of 10x between high and low GC regions. GC 
normalisation is unreliable when the corrections are so extreme so we filter. 

● FAIL_DELETED_GENES - We removed any samples with more than 280 deleted genes. This 
QC step was added after observing that in a handful of samples with high MB scale positive GC 
bias we sometimes systematically underestimate the copy number in high GC regions. This can 
lead us to incorrectly infer homozygous loss of entire chromosomes, particularly on chromosome 
17 and 19. 

 
Where multiple biopsies exist for a single patient, we always choose the highest purity sample for our 
analysis of mutational load and drivers. 

9. Assessment of impact of sequencing depth coverage on variant calling sensitivity 

To assess the impact of our sequencing depth on variant calling sensitivity, we selected 10 samples at 
random, downsampled the BAMs by 50%. We then reran the identical somatic variant calling pipeline.  
 
Comparing the output to the original runs, we found near identical purities and ploidies for the down 
sampled runs (Extended Data Fig. 2). We observed an average decrease in sensitivity of 10% for SNV, 
15% for MNV, 19% for SV, and 2% for INDEL.  

10. Clonality and biallelic status of point mutations 

For each point mutation we determined the clonality and biallelic status by comparing the estimated 
ploidy of the variant to the local copy number at the exact base of the variant. The ploidy of each variant 
is calculated by adjusting the observed VAF by the purity and then multiplying by the local copy number 
to work out the absolute number of chromatids that contain the variant.  
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We mark a mutation as biallelic (i.e. no wild type remaining) if Variant Ploidy > Local Copy Number - 0.5. 
The 0.5 tolerance is used to allow for the binomial distribution of VAF measurements for each variant. For 
example, if the local copy number is 2 than any somatic variant with measured ploidy > 1.5 is marked as 
biallelic. 
 
For each variant we also determine a probability that it is subclonal. This is achieved via a 2 step process 
 
1. Fit the somatic ploidies for each sample into a set of clonal and subclonal peaks 
 
We apply an iterative algorithm to find peaks in the ploidy distribution: 

● Determine the peak by finding the highest density of variants within +/- 0.1 of every 0.01 ploidy 
bucket. 

● Sample the variants within a 0.05 ploidy range around the peak.  
● For each sampled variant, use a binomial distribution to estimate the likelihood that the variant 

would appear in all other 0.05 ploidy buckets.  
● Sum the expected variants from the peak across all ploidy buckets and subtract from the 

distribution. 
● Repeat the process with the next peak 

 
This process yields a set of ploidy peaks, each with a ploidy and a total density (i.e. count of variants). To 
avoid overfitting small amounts of noise in the distribution, we filter out any peaks that account for less 
than 40% of the variants in the ploidy bucket at the peak itself. After this filtering we scale the fitted peaks 
by a constant so that the sum of fitted peaks = the total variant count of the sample.     
 
Finally we mark a peak as subclonal if the peak ploidy < 0.85 
 
2. Calculate the probability that each individual variant belongs to each peak 
 
Once we have fitted the somatic ploidy peaks and determined their clonality, we can calculate the 
subclonal likelihood for any individual variant as the proportion of subclonal variants at that same ploidy.  
 
The following diagram illustrates this process for a typical  sample. Figure A shows the histogram of  
somatic ploidy for all SNV and INDEL in blue. Superimposed are four peaks in different colours fitted from 
the sample as described above. The red filled peak is below the 0.85 threshold and is thus considered 
subclonal.  The black line shows the overall fitted ploidy distribution. Figure B shows the likelihood of a 
variant being subclonal at any given ploidy.   

 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/415133doi: bioRxiv preprint first posted online Sep. 20, 2018; 

http://dx.doi.org/10.1101/415133


 
Pan-cancer whole genome analyses of metastatic solid tumors                                 Priestley, Baber, et al. 

 

Page 11 of 24 
 

 

 
Subclonal counts in this paper are calculated as the total density of the subclonal peaks for each sample.  
Subclonal driver counts are calculated as the sum across the driver catalog of subclonal probability * 
driver likelihood (driver likelihood is explained in detail below). 

11. WGD status determination 

We implement a simple heuristic that determines if Whole Genome Duplication has occurred: 
 
 Major allele Ploidy >1.5 on at least 50% of at least 11 autosomes 
 
The principle behind this heuristic is that if sufficient independent chromosomes are predominantly 
duplicated, the most parsimonious explanation is that the duplication occurred in a single genome-wide 
event. 
 
The number of duplicated autosomes per sample (ie. the number of autosomes which satisfy the above 
rule) follows a bimodal distribution with 95% of samples have either <= 6 or > =15 autosomes duplicated. 
Hence, the classification of a genome as WGD is not particularly sensitive to the choice of cut-off as is 
evident the following chart: 
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12. MSI status determination 

To determine the MSI status of all samples we used the method described by the MSISeq tool14. In brief, 
we count the number of INDELS per million bases occuring in homopolymers of 5 or more bases or 
dinucleotide, trinucleotide and tetranucleotide sequences of repeat count 4 or more. MSIseq scores 
ranged from 0.004 up to 98.63, with a long tail towards lower MSI scores as shown in the following chart: 

 
To be able to accurately set and validate the MSIseq cutoff for classification of MSI we compared the 
WGS results with the standard, routinely used MSI assessment using a 5-marker PCR panel (BAT25, 
BAT26, NR21, NR24 and MONO27 markers). For a batch of 48 pre-selected samples, the MSI PCR 
assay was blindly performed by an independent ISO-accredited pathology laboratory. Both the binary MSI 
and MSS classifications were determined, but also the number of positive markers.  
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A sample was considered as MSI if two or more of the five markers were score as positive (instable). 
PCR-based analysis identified 16 MSI samples, all of which were also identified by MSIseq with scores 
>4. MSIseq identified one sample that was missed by PCR-based analysis, although this sample showed 
microsatellite instability for one out the five markers. The MSIseq scores thus highly correlate with the 
number of positive MSI PCR markers and all, except one, samples with an elevated score are classified 
as MSI by pathology. Based on this data we determined the best cutoff for MSIseq classification to be at 
a score of 4.  
 
Results of the PCR-based and WGS based MSI classification are summarized in the table below. The 
sensitivity of WGS-based MSI classification on this set was 100% (95%CI 82.6 – 100%) with a specificity 
of 97% (95%CI 88.2-96.9%). The calculated Cohen’s kappa score was 0.954 (95%CI 0-696-0.954), 
indicative of a very high agreement. 
 

 PCR-MSS PCR-MSI Total 
MSISeq -MSS 31 0 31 
MSIseq - MSI 1 16 17 

Total 32 16 48 

13. Holistic gene panel for driver discovery 

We used Ensembl release 89 as a basis for our gene definitions and have taken the union of Entrez 
identifiable genes and protein coding genes as our base panel. 

Certain genes have multiple definitions. NPIPA7 for example has two definitions which are 
equally valid, ENSG00000214967 and ENSG00000183889. To solve this we select a single gene 
definition based on the following steps: 

1) Exclude non protein coding genes. 
2) Favour genes that are present in both Havana and Ensembl. 
3) Select gene with longest transcript.  

 
This returns our final gene panel tally to 25,963 genes of which 20,083 genes are protein coding. For 
each gene we chose the canonical transcript or the longest if no canonical transcript exists.  

For CDKN2A, we included both the p16 and p14arf transcripts in the analysis given the known 
importance of both transcripts to tumorigenesis15 and the fact that the two transcripts use alternate 
reading frames in the same exon. 

14. Significantly mutated driver genes discovery 

Using all SNV and INDEL variants from the holistic gene panel, we ran dNdScv16 to find significantly 
mutated genes (SMGs) and also to estimate the proportion of missense, nonsense, essential splice site 
and INDEL variants which are drivers in each individual gene in the panel.  
 
Pan cancer and at an individual cancer level we tested the normalised dNdS rates against a null 
hypothesis that dNdS = 1 for each variant subtype. To identify SMGs in our cohort we used a strict 
significance cutoff of q<0.01. 
 
2 of the HMF SMG candidates were subsequently removed via manual curation as they were deemed to 
be likely artefacts of our methods: 

● POM121L12 - found only to be significant due to an extreme covariate value in dndscv 
● TRIM49B - found to have poor mappability on nearly all its variants and a known close paralog 
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15. Significantly amplified & deleted driver gene discovery 

To search for significantly amplified and deleted genes we first calculated the minimum exonic copy 
number per gene across our holistic gene panel. For amplifications, we searched for all the genes with 
high level amplifications only (defined as minimum Exonic Copy number > 3 * sample ploidy). For 
deletions, we searched for all the genes in each sample with either full or partial gene homozygous 
deletions (defined as minimum exonic copy number < 0.5). The Y chromosome was excluded from the 
deletion analysis since the Y chromosome is deleted altogether in 35% of all male cancer samples in our 
cohort and hence is difficult to distinguish at the gene level. 
 
We then searched separately for amplifications and deletions, on a per chromosome basis, for the most 
significant focal peaks, using an iterative GISTIC-like peel off method17, specifically: 

● Find the highest scoring gene.  
○ For deletions the score is simply the count of samples with homozygous deletions in the 

gene.  
○ For amplifications, we need to consider both the count and strength of the amplification 

so we use: 
■  score = sum(log2(copy number/ sample ploidy)). 

● Record gene as a peak, and mark all consecutive genes with a score within 15% and 25% of the 
highest score for deletions and amplifications respectively as part of the candidate peak.  

● ‘Peel’ off all samples which contributed to the peak across the entire chromosome  
● Repeat the process 

 
A filter was applied where we removed deletions from a handful of noisy copy number regions in the 
genome where we found more than 50% of the observed deletions were not supported on either 
breakend by a structural variant. 
 
Most of the deletion peaks resolve clearly to a single target gene reflecting the fact that homozygous 
deletions are highly focal, but for amplifications this is not the case and the majority of our peaks have 10 
or more candidates. We therefore annotated the peaks, to choose a single putative target gene using an 
objective set of automated curation rules in order of precedence: 

● If more than 50% of the copy number events in the peeled samples include the telomere or 
centromere than mark as <CHR>_<ARM>_<TELOMERE/CENTROMERE>  

● Else choose highest scoring candidate gene which matches a list of actionable amplifications 
from OncoKB, CGI and CIViC clinical annotation DBs. 

● Else choose highest scoring candidate gene found in our panel of significantly mutated genes 
● Else choose highest scoring candidate gene found in cosmic census 
● Else choose highest scoring protein coding candidate gene 
● Else choose longest non-coding candidate gene 

 
 
Finally, we filter the peaks to only highly significant deletions and amplifications using the following rules 

● Deletions => Keep any peak with > 5 homozygous deletions 
● Amplifications => Keep any peak with score > 29 

 
These cut-offs were chosen using a binomial model which assumes the probability of any given gene 
being observed to be randomly deleted or highly amplified is equal to the average number of genes 
amplified or deleted in each event divided by the total number of genes considered. The cut-offs were 
chosen to be the lowest score with a q-value below 0.25. Since amplifications are generally much broader 
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(averaged genes affected per event of 41.6 compared to just 5.4 for deletions) a much higher number of 
genes is required to reach significance.  
 
The calculation details for the cut-offs are presented in the table below. 
 

 
This model is likely to be highly conservative as it assumes that all the events are passengers, whereas in 
fact a high proportion contain driver genes. 

16. Fragile site annotation 

Homozygous deletions were also annotated as common fragile site (CFS) based on their genomic 
characteristics. This annotation is not definitive, but is useful as CFS are known to be regions of high 
genomic instability. Hence despite being significantly deleted, their status as a genuine cancer driver 
remains unclear.  
 
There is no absolute agreement on which regions should be classified as CFS, but two well-known 
features are a strong enrichment in long genes and a high rate of observed deletions of up to 1 
megabase18. Hence for this analysis we classified a gene as a fragile site if it met all the following criteria: 

● Total length of gene > 500,000 bases 
● More than 30% of all SVs with breakpoints that disrupt the gene are deletions with length greater 

than 20,000 bases and less than 1 megabase.  
● The gene is not found to be significantly mutated (by dNdScv) in our cohort or in Martincorena et 

al.16 
 
Using these criteria we annotated the following list of 16 Genes as fragile: 

Gene Chr  Start 
position 

 Length (bases)  Total Disruptive 
SV Count 

% of SV that are DELs 
(>20kb & <1MB) 

LRP1B 2 140,988,992 1,900,278 1,272 0.469 

FHIT 3 59,735,036 1,502,097     2,128 0.596 

LSAMP 3 115,521,235 2,194,860     1,306 0.364 

NAALADL2 3 174,156,363 1,367,065     1,198 0.456 

CCSER1 4 91,048,686 1,474,378     1,398 0.441 

PDE4D 5 58,264,865 1,553,082     1,166 0.458 

GMDS 6 1,624,041 621,885      399 0.441 

PARK2 6 161,768,452 1,380,351     1,296 0.555 

IMMP2L 7 110,303,110 899,463     1,028 0.444 

PTPRD 9 8,314,246 2,298,477     1,264 0.309 
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PRKG1 10   52,750,945 1,307,165      781 0.318 

GPHN 14 66,974,125 674,395      291 0.306 

WWOX 16 78,133,310 1,113,254     1,319 0.541 

MACROD2 20 13,976,015 2,057,827     3,039 0.605 

DMD X 31,115,794 2,241,764      789 0.328 

DIAPH2 X 95,939,662 920,334      331 0.381 

 
We also noted that 4 other significantly deleted genes (STS,HDHD1,LRRN3 and LINC00290), though not 
fulfilling the length criteria above have a particularly high proportion of deletion SVs between 20kb and 1 
megabase (over 60%) and hence were also marked as fragile: 
 

Gene Chr  Start 
position 

 Length (bases)  Total Disruptive 
SV Count 

% of SV that are DELs 
(>20kb & <1MB) 

LINC00290 4 181,985,242 95,060 64 0.641 

LRRN3 7 110,731,062 34,448 70 0.686 

STS X 7,137,497 135,354 168 0.649 

HDHD1 X 6,966,961 99,270 126 0.659 

 
Two of these genes (STS and HDHD1) fall in a previously identified CFS region (FRAXB) and a third, 
LRNN3, falls in another knowns CFS region (FRAX7). The final one, LINC00290 is a long non-coding 
RNA with an unknown status as cancer driver.  

17. Driver catalog construction 

We created a catalog of each and every driver in our cohort across all variant types on a per patient 
basis. This was done in a similar incremental manner to Sabarinathan et al19 (N. Lopez, personal 
communication) whereby we first calculated the number of drivers in a broad panel of known and 
significantly mutated genes across the full cohort, and then assigned the drivers for each gene to 
individual patients by ranking and prioritising each of the observed variants. Key points of difference in 
this study were both the prioritisation mechanism used and our choice to ascribe each mutation a 
probability of being a driver rather than a binary cutoff based on absolute ranking.  
 
The four detailed steps to create the catalog are described below: 
 
1. Create a panel of driver genes for point mutations using significantly mutated genes and known 
drivers 
We created a gene panel using the union of 

● Martincorena significantly mutated genes16 (filtered to significance of q<0.01) 
● HMF significantly mutated genes (q<0.01) at global level or at cancer type level 
● Cosmic Curated Genes12 (v83) 

 
2. Determine TSG or Oncogene status of each significantly mutated gene 
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We used a logistic regression model to classify the genes in our pane as either tumor suppressor gene 
(TSG) or oncogene. We trained the model using unambiguous classifications from the Comic curated 
genes, i.e. a gene was considered either a Oncogene or TSG but not both. We determined that the dNdS 
missense and nonsense ratios (w_missense and w_nonsense) are both significant predictors of the 
classification. The coefficients are given in the table below.  
 

 Estimate Std. Error z value Pr(>|z|)

intercept 0.1830 0.3926 0.466 0.64106 

w_missense -0.6869 0.2643  -2.599 0.00936 

w_nonsense 0.5237 0.1116 4.691 2.72e-06 

 
We applied the model to all significantly mutated genes in Matincorena and HMF as well as any 
ambiguous Cosmic curated genes.  
 
The following figure shows all genes that have classified using the logistic regression model. Figures A 
and C show the likelihood of a gene being classified as a TSG under a single variate logistic model of 
w_missense and w_nonsense respectively. Figure B shows the classification after the multivariate 
regression using both predictors.  
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3. Add drivers from all variant classes to the catalog 
Variants were added to the driver catalog which met any of the following criteria 

● All missense and inframe indels for panel oncogenes 
● All non synonymous and essential splice point mutations for tumor suppressor genes 
● All high level amplifications (min exonic copy number > 3 * sample ploidy) for both significantly 

amplified target genes and panel oncogenes 
● All homozygous deletions for significantly deleted target genes and panel TSG (except for the Y 

chromosome as described before) 
● All known or promiscuous inframe gene fusions as described above 
● Recurrent TERT promoter mutations 

 
4. Calculate a per sample driver likelihood for each gene in the catalog 
A driver likelihood estimate between 0 and 1 was calculated for each variant in the gene panel to ensure 
that only excess mutations are used for determining the number of drivers in cancer cohort groups or at 
the individual sample level. High level amplifications, Deletions, Fusions, and TERT promoter mutations 
are all rare so were assumed to have a likelihood of 1 when found affecting a driver gene, but for coding 
mutations we need to account for the large number of passenger point mutations that are present 
throughout the genome and thus also in driver genes. 
 
For coding mutations we also marked coding mutations that are highly likely to be drivers and/or highly 
unlikely to have occurred as passengers  as driver likelihood of 1, specifically: 

● Known hotspot variants 
● Variants within 5 bases of a known pathogenic hotspot in oncogenes 
● Inframe indels in oncogenes with repeat count < 8 repeats. Longer repeat count contexts are 

excluded as these are often mutated by chance in MSI samples 
● Biallelic variants in tumor suppressor genes 

 
For the remaining variants (non-hotspot missense variants in oncogenes and non-biallelic variants in 
TSG) these were only assigned a > 0 driver likelihood where there was a remaining excess of unallocated 
drivers based on the calculated dNdS rates in that gene across the cohort after applying the above rules. 
Any remaining point mutations were assigned a driver likelihood between 0 and 1 using a bayesian 
statistic to calculate a sample specific likelihood of each gene based on the type of variant observed 
(missense, nonsense, splice or INDEL) and taking into account the mutational load of the sample. The 
principle behind the method is that the likelihood of a passenger variant occuring in a particular sample 
should be approximately proportional to the tumor mutational burden and hence variants in samples with 
lower mutational burden are more likely to be drivers.  
 
The sample specific likelihood of a residual excess variant being a driver is estimated for each gene using 
the following formula: 
 

P(Driver|Variant) = P(Driver) / (P(Driver) + P(Variant|Non-Driver) * (1-P(Driver))) 
 

where P(Driver) in a given gene is assumed to be equal across all samples in the cohort, ie: 
 

P(Driver) = (residual unallocated drivers in gene) / # of samples in cohort 
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And P(Variant|Non-Driver), the probability of observing n or more passenger variants of a particular variant type in a 
sample in a given gene, is assumed to vary according to tumor mutational burden, and is modelled as a poisson 
process: 

 
P(Variant|Non-Driver) = 1 - poisson(λ = TMB(Sample) / TMB(Cohort) * (# of passenger variants in 

cohort),k=n-1) 

 
All counts reported in the paper at a per cancer type or sample level refer to the sum of driver likelihoods 
for that cancer type or sample. 

18. Driver co-occurrence analysis 

To examine the co-occurence of drivers, the driver-gene catalog was filtered to exclude fusions and any 
driver with a driver likelihood of < 0.5. Separately for each cancer type, every pair of driver genes was 
tested to see whether they co-occur more or less frequently than expected if they were independent using 
Fisher’s Exact Test. The results were adjusted to a FDR using the number of gene-pair comparison being 
tested in each cancer type cohort. Gene pairs with a positive correlation which were on the same 
chromosome were excluded from the analysis as they are frequently co-amplified or deleted by chance. 

19. Actionability analysis 

To determine clinical actionability of the variants observed in each sample, we mapped all variants to 3 
external clinical annotation databases 

● OncoKB7 (download = 01-mar-2018) 
● CGI6 (update: 17-jan-2018) 
● CIViC5 (download = 01-mar-2018) 

 
In order to be able to aggregate and compare this data, we have mapped each of the databases to a 
common data model using the following rules: 

 
1. Level of evidence mapping 
The 3 databases we used in this study define different level for evidence items, depending on evidence 
strength. In order to be able to aggregate and compare this data, we have mapped the CGI and OncoKB 
evidence levels on the CIViC evidence levels defined at: https://civicdb.org/help/evidence/evidence-
levels.  
 

HMF CIViC CGI OncoKB
A A FDA guidelines,  

NCCN guidelines, NCCN/CAP 
guidelines, CPIC guidelines,  

European Leukemia 
Net guideline 

1 
2 

R1 

B B Clinical trials,  
Late trials,  

Late trials,Pre-clinical 

3 
R2 

C C Early trials,  
Case report  

 

D D Pre-clinical 4,R3 
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In this study we considered only A and B level variants. This classification roughly corresponds to the 
recently proposed ESMO Scale for Clinical Actionability of molecular Targets (ESCAT)20 in the following 
way: 
HMF A: ESCAT I-A+B (for on label) and I-C (for off-label) 
HMF B: ESCAT II-A+B (for on label) and III-A (for off-label) 
 
2. Response type Mapping 
We also mapped response type to a common data model. First we filtered out evidence items from the 
annotation databases that do not lead to clinical actionability (for example prognostic biomarkers). The 
remaining evidence items were mapped as either responsive or resistant based on the following rules: 
 

HMF CIViC CGI OncoKB
Responsive Sensitivity Responsive 1 

2 
3 
4 

Resistant Resistant or Non-Response Resistant R1 
R2 
R3 

 
3. Mutation/Event type mapping 
Each evidence item was mapped to HMF data as one of 4 event types according to the following criteria 
 

HMF Event type Matching Criteria
Somatic Point Mutation HGVS / genomic coordinates converted to chromosome, position, ref and alt and 

mapped to exact variants in our database 
Somatic Range Event Matched to missense / inframe variants in Oncogenes and any non-synonymous 

variant in TSG contained within a defined range, either exon level, transcript level or 
specific coordinates. Where a transcript was not specified, the canonical transcript 
was always used to map coordinates 

Somatic CNA ‘Deletion’ mapped to homozygous deletions and ‘Amplification’ mapped to high level 
amplification (>3x sample ploidy) 

Fusion Exact matching to an inframe fusion in our database. For OncoKB ‘loss-of-function’ 
fusions were excluded 

 
A small number of items from CIViC level B evidence level were deemed either not specific enough or 
insufficiently supportive of actionability for this study and were filtered: 

● Evidence items supporting TP53, KRAS & PTEN as actionable 
● Evidence items supporting actionability with ‘chemotherapy’ (ie. chemotherapy in general rather 

than a specific treatment), ‘asprin’ or ‘steroids’ 
 
Finally, a number of suspicious fusions from each of the database were curated by either changing the 5’ 
and 3’ partners or filtered out altogether based on referring to the original evidence sources, specifically: 
 

HMF Curation CIViC CGI OncoKB
Filtered Fusions BRAF - CUL1 RET - TPCN1  

5’ and 3’ partners 
exchanged 

  ABL1 - BCR 
 PDGFRA - FIP1L1 
 PDGFB - COL1A1 

 ROS1 - CD74 
 EP300 - MLL 
 EP300 - MOZ 
 RET - CCDC6 
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Some of the more complex event types from the 3 databases have not been fully interpreted and have 
been excluded from this analysis. 
 
4. Cancer type mapping 
Each evidence event mapped was also determined to be either on-label (ie. evidence supports treatment 
in that specific cancer type) or off-label (evidence exists in another cancer type) for each specific sample.  
To do this, we have annotated both the patient cancer types and the database cancer types with relevant 
DOIDs, using the disease ontology database available at: http://disease-ontology.org. 
 
Patient cancer types from the HMF database were annotated according to the following table: 
 

HMF tumor type DOID
Biliary 4607 

Bone/Soft tissue 201;9253 
Breast 1612 
CNS 3620;3070 

Colon/Rectum 9256;219 
CUP - 

Esophagus 5041;4944 
Head and neck 11934;8618 

Kidney 263;8411 
Liver 3571 
Lung 1324 

Mesothelioma 1790 
NET - 
Other - 
Ovary 2394 

Pancreas 1793 
Prostate 10283 

Skin 4159 
Stomach 10534 

Urinary tract 3996 
Uterus 363 

 
 
Database cancer types were mapped to a DOID by automatically querying the ontology on the disease 
names. Some CIViC evidence items are already annotated with a DOID in the database, this was used if 
present. We also manually annotated with DOIDs some of the database cancer types that failed the 
automatic query: 
 

cancerType DOID Ontology term 
All Tumors 162 cancer 

Any cancer type 162 cancer 

B cell lymphoma 707 B-cell lymphoma 
Billiary tract 4607 biliary tract cancer 

Bladder 11054 urinary bladder cancer 
Cervix 4362 cervical cancer 

CNS Cancer 3620 central nervous system cancer 
Dedifferentiated Liposarcoma 3382 liposarcoma 

Endometrium 1380 endometrial cancer 
Esophagogastric Cancer 5041 esophageal cancer 
Gastrointestinal stromal 9253 gastrointestinal stromal tumor 
Giant cell astrocytoma 3069 astrocytoma 
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Hairy-Cell leukemia 285 hairy cell leukemia 
Head and neck 11934 head and neck cancer 

Head and neck squamous 5520 head and neck squamous cell carcinoma 
Hepatic carcinoma 686 liver carcinoma 

Hepatocellular Mixed Fibrolamellar 
Carcinoma 

0080182 mixed fibrolamellar hepatocellular carcinoma 

Inflammatory myofibroblastic 0050905 inflammatory myofibroblastic tumor 
Lung 1324 lung cancer 

Lung squamous cell 3907 lung squamous cell carcinoma 
Melanoma 8923 Skin melanoma 

Mesothelioma 1790 malignant mesothelioma 
Neuroendocrine 169 neuroendocrine tumor 

Non-small cell lung 3908 non-small cell lung carcinoma 
Ovary 2394 ovarian cancer 

Pancreas 1793 pancreatic cancer 
Renal 263 kidney cancer 

Salivary glands 8850 salivary gland cancer 
Stomach 10534 stomach cancer 
Thymic 3277 thymus cancer 
Thyroid 1781 thyroid cancer 

Well-Differentiated Liposarcoma 3382 liposarcoma 
 
In case a matching DOID was found for the disease, we annotated the disease with a DOID set 
consisting of: the disease DOID, all the children DOIDs and all the parent disease DOIDs.  
 
A treatment is defined as on-label if any of the DOIDs of the patient cancer is present in the DOID set of 
the disease. 
 
5. MSI actionability 
Samples classified as MSI in our driver catalog were also mapped as actionable at level A evidence 
based on clinical annotation in the OncoKb database 
 
6. Aggregation of evidence 
For each actionable mutation in each sample, we aggregated all the mapped evidence that was available 
supporting both on-label and off-label treatments at an A or B evidence level. Treatments that also had 
evidence supporting resistance based on other biomarkers in the sample at the same or higher level were 
excluded as non-actionable.  
 
For each sample we reported the highest level of actionability, ranked first by evidence level and then by 
on-label vs off-label. 

20. Data availability 

All data described in this study is freely available for academic use from the Hartwig Medical Foundation 
through standardized procedures and request forms which can be found at 
https://www.hartwigmedicalfoundation.nl. Briefly, a data request can be initiated by filling out the standard 
form in which intended use of the requested data is motivated. First, an advice on scientific feasibility and 
validity is obtained from experts in the field which is used as input by an independent Data Access Board 
who also evaluates if the intended use of the data is compatible with the consent given by the patients 
and if there would be any applicable legal or ethical constraints. Upon formal approval by the Data 
Access Board, a standard license agreement which does not have any restrictions regarding Intellectual 
Property resulting from the data analysis needs to be signed by an official organisation representative 
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before access to the data is granted. Raw data files will be made available through a dedicated download 
portal with two-factor authentication. As of August 2018, more than 30 national and international requests 
have already been granted through this mechanism. 

21. References 

1. Bins, S. et al. Implementation of a Multicenter Biobanking Collaboration for Next-Generation 
Sequencing-Based Biomarker Discovery Based on Fresh Frozen Pretreatment Tumor Tissue 
Biopsies. Oncologist 22, 33–40 (2017). 

2. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. 
Bioinformatics 25, 1754–1760 (2009). 

3. Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis 
Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43, 11.10.1–33 (2013). 

4. Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal 
sample pairs. Bioinformatics 28, 1811–1817 (2012). 

5. Griffith, M. et al. CIViC is a community knowledgebase for expert crowdsourcing the clinical 
interpretation of variants in cancer. Nat. Genet. 49, 170–174 (2017). 

6. Tamborero, D. et al. Cancer Genome Interpreter annotates the biological and clinical relevance of 
tumor alterations. Genome Med. 10, 25 (2018). 

7. Chakravarty, D. et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis Oncol 2017, 
(2017). 

8. Cleveland, M. H., Zook, J. M., Salit, M. & Vallone, P. M. Determining Performance Metrics for 
Targeted Next-Generation Sequencing Panels Using Reference Materials. J. Mol. Diagn. (2018). 
doi:10.1016/j.jmoldx.2018.04.005 

9. Eijkelenboom, A. et al. Reliable Next-Generation Sequencing of Formalin-Fixed, Paraffin-Embedded 
Tissue Using Single Molecule Tags. J. Mol. Diagn. 18, 851–863 (2016). 

10. Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and cancer 
sequencing applications. Bioinformatics 32, 1220–1222 (2016). 

11. Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018). 
12. Forbes, S. A. et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 45, 

D777–D783 (2017). 
13. Nilsen, G. et al. Copynumber: Efficient algorithms for single- and multi-track copy number 

segmentation. BMC Genomics 13, 591 (2012). 
14. Huang, M. N. et al. MSIseq: Software for Assessing Microsatellite Instability from Catalogs of 

Somatic Mutations. Sci. Rep. 5, 13321 (2015). 
15. Al-Kaabi, A., van Bockel, L. W., Pothen, A. J. & Willems, S. M. p16INK4A and p14ARF gene 

promoter hypermethylation as prognostic biomarker in oral and oropharyngeal squamous cell 
carcinoma: a review. Dis. Markers 2014, 260549 (2014). 

16. Martincorena, I. et al. Universal Patterns of Selection in Cancer and Somatic Tissues. Cell 171, 
1029–1041 e21 (2017). 

17. Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal 
somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011). 

18. Glover, T. W., Wilson, T. E. & Arlt, M. F. Fragile sites in cancer: more than meets the eye. Nat. Rev. 
Cancer 17, 489–501 (2017). 

19. Sabarinathan, R. et al. The whole-genome panorama of cancer drivers. BioArchive (2017). 
doi:10.1101/190330 

20. Mateo, J. et al. A framework to rank genomic alterations as targets for cancer precision medicine: the 
ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann. Oncol. (2018). 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/415133doi: bioRxiv preprint first posted online Sep. 20, 2018; 

http://dx.doi.org/10.1101/415133


 
Pan-cancer whole genome analyses of metastatic solid tumors                                 Priestley, Baber, et al. 

 

Page 24 of 24 
 

 

doi:10.1093/annonc/mdy263 

 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/415133doi: bioRxiv preprint first posted online Sep. 20, 2018; 

http://dx.doi.org/10.1101/415133

