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Abstract 

RNA sequencing experiments generate large amounts of information about expression levels of 

genes. Although they are mainly used for quantifying expression levels, they contain much more 

biologically important information such as copy number variants (CNV). Here, we propose 

CaSpER, a signal processing approach for identification, visualization, and integrative analysis 

of focal and large-scale CNV events in multiscale resolution using either bulk or single-cell RNA 

sequencing data. CaSpER performs smoothing of the genome-wide RNA sequencing signal 

profiles in different multiscale resolutions, identifying CNV events at different length scales. 

CaSpER also employs a novel methodology for generation of genome-wide B-allele frequency 

(BAF) signal profile from the reads and utilizes it in multiscale fashion for correction of CNV 

calls. The shift in allelic signal is used to quantify the loss-of-heterozygosity (LOH) which is 

valuable for CNV identification. CaSpER uses Hidden Markov Models (HMM) to assign copy 

number states to regions. The multiscale nature of CaSpER enables comprehensive analysis of 

focal and large-scale CNVs and LOH segments. CaSpER performs well in accuracy compared 
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to gold standard SNP genotyping arrays. In particular, analysis of single cell Glioblastoma 

(GBM) RNA sequencing data with CaSpER reveals novel mutually exclusive and co-occurring 

CNV sub-clones at different length scales. Moreover, CaSpER discovers gene expression 

signatures of CNV sub-clones, performs gene ontology (GO) enrichment analysis and identifies 

potential therapeutic targets for the sub-clones. CaSpER increases the utility of RNA-

sequencing datasets and complements other tools for complete characterization and 

visualization of the genomic and transcriptomic landscape of single cell and bulk RNA 

sequencing data, especially in cancer research.  

Introduction 

Tumors are complex ecosystems composed of heterogeneous cell populations1. Understanding 

the clonal cellular composition of the tumor and the interplay between the cells within the tumor 

ecosystem provides significant insights in the tumor recurrence, treatment, initiation, 

progression, and metastasis2. With the transformative advances in experimental methods, such 

as next-generation sequencing methods, we are now able to build the complex map of the 

tumor ecosystem utilizing the deeply sequenced transcriptome and the genome of the cells 

within the tissue.  

Over the past few years, the development and application of single-cell DNA and RNA 

sequencing methods have revolutionized cancer research3. Single cell RNA-sequencing 

(scRNA-Seq) is a powerful new deep molecular profiling method for detecting different cell 

types, states and functions in cancer3–10. Several previous studies characterized the 

heterogeneity and crosstalk within tumor microenvironment in various cancer types using 

scRNA-Seq data4,6,8. Single-cell DNA sequencing is another new powerful approach for 

understanding the genomic diversity of tumor clonal architecture3,11. However, it remains 

technically challenging to assay both the genome and transcriptome from the same cell.  
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RNA-sequencing experiments are predominantly performed for the purpose of estimating gene 

activity through quantification of gene and transcript. These datasets, however, contain a 

substantial amount of information about the genomic variants in the samples and are severely 

underutilized. For example, RNA-Seq data has been used to identify single nucleotide 

polymorphisms (SNP) and short indels12–14. Identification of these variants from RNA-Seq data 

increases the utility of RNA-Seq experiments significantly compared to using RNA-Seq only for 

gene expression quantification because researchers can integrate a portion of the genomic 

landscape of the tumor cells (as much as it is revealed by RNA-Seq) with the transcriptomic 

landscape rather than studying the transcriptomic landscape of the cells alone. Identification of 

other variants can enable an even more complete characterization and present higher utility for 

RNA-Seq data. Among these variants, copy number variants (CNVs) are very important for 

cancer research because they are a major class of genetic drivers of cancer. Complete losses 

and gains of genomic material can cause loss and gain of tumor-suppressor and oncogenes, 

respectively and cause transformation of healthy cells into tumor cells. Inference of copy 

number variation (CNV) in the tumor samples is essential for understanding the correlation 

between the genomic and the transcriptomic properties of different cell types and clones within 

the tumor ecosystem15. These correlations will provide significant insight into the tumor initiation, 

progression, and metastasis. Identification of CNVs from RNA-Seq data, however, is very 

challenging because the dynamic and highly non-uniform coverage of the genome by RNA-Seq 

signal makes it very hard to distinguish between deletions/amplifications and dynamic variation 

of gene expression levels. Considering the growing number of RNA-Sequencing studies, 

especially with the release of TCGA16, ENCODE17, GTEx18, Human Cell Atlas (HCA)19, Human 

Tumor Atlas Network (HTAN), and Human Biomolecular Atlas Program (HuBMAP) consortium 

datasets, there is an increasing need for developing CNV inference algorithm from RNA-Seq 

data. New algorithms can substantially increase the utility of these existing datasets. 
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In this paper, we focus on systematic identification of CNVs using bulk and single cell RNA-

sequencing datasets. We present CaSpER, a statistical framework for analysis and visualization 

of the genomewide RNA-Seq signal profiles. Many algorithms have been developed for 

detecting CNV events from DNA sequencing data using depth of coverage analysis20,21. These 

tools rely on uniform coverage of genome by DNA-sequencing reads. However, statistical 

approaches for CNV detection using RNA-sequencing data is very limited since it is very hard to 

discriminate between differential expression and an underlying copy number variation using only 

RNA-Seq data. Another challenge is that RNA-Seq signal is generally concentrated on the 

exonic regions and most of the genome is not covered. Thus, the identified CNVs will reflect the 

copy number states of the genes and the copy number of intergenic regions may not be 

represented well. Regardless, the copy number of genes is extremely useful information for 

characterizing CNV architecture of, for example, the copy number of oncogenes and tumor 

suppressor genes. It is worth noting that this issue is similar to the whole exome-sequencing 

based CNV detection because the whole exome-sequencing covers only the targeted exonic 

regions in the genome. 

Although there are many tools that identify CNVs from exome sequencing data, there is much 

scarcity of methods for detecting CNVs solely from RNA sequencing data4,22. One relevant 

method is inferCNV4 which enables only visual inspection of expression profiles from scRNA-

Seq, another method is HoneyBADGER22 which enables calling CNV from scRNA-Seq data.  

One aspect that is very important and often overlooked is coherent identification, visualization, 

and integrative analysis of focal and large-scale CNV changes. To study CNV events at multiple 

scales, CaSpER utilizes a computational approach for identifying CNVs using a multiscale 

signal-processing framework. To increase the specificity of the identified CNVs, CaSpER utilizes 

a novel and efficient method to generate allelic shift signal profile. This profile quantifies the 

genome-wide loss-of-heterozygosity which has been previously shown to be extremely useful 
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for identifying CNVs. Unlike most other tools, CaSpER does not require heterozygous variant 

calls to generate the allelic shift profile. CaSpER integrates the allelic shift profile in the 

multiscale analysis and assigns CNVs using Hidden Markov Models (HMM). CaSpER identifies 

and visualizes mutually exclusive and co-occurring CNV alterations and infers CNV based 

clonal evolution of tumor using single-cell RNA-Seq data. CaSpER also identifies gene 

expression signatures of mutually exclusive CNV sub-clones and performs gene ontology (GO) 

enrichment analysis. CaSpER enables visualization and integrative analysis of a large number 

of single-cell RNA-Seq datasets for a complete characterization of RNA-Seq data in large 

studies. We evaluate the accuracy of CaSpER and present use cases of CaSpER for both 

single-cell and bulk RNA-Sequencing data. Overall CaSpER complements the existing arsenal 

of cancer genome sequencing analysis tools for a complete understanding of the tumor 

architecture.  

Results 

CaSpER identifies CNV events from bulk or single-cell RNA-Sequencing data 

The overview of CaSpER algorithm is shown in Figure 1. CaSpER uses expression values and 

B-allele frequencies (BAF) from RNA-Seq reads to estimate CNV events. The BAF is a relative 

normalized measure of the allelic intensity ratio of two alleles (A and B). The allele A is the 

reference allele whereas the allele B is the non-reference allele. The BAF value of 1 and 0 

corresponds to absence of one allele, BB and AA consecutively, and the BAF value of 0.5 

corresponds to presence of both alleles, AB. The input to CaSpER consists of aligned RNA-Seq 

reads and the window lengths to be used in multiscale analysis23. CaSpER first generates an 

expression signal by quantifying expression values of all the genes from aligned RNA-Seq 

reads. The expression values for the genes are treated as a genome-wide signal profile. In 

order to eliminate the noise in the initial expression signal profile, CaSpER performs sliding 

window based median filtering and computes the multiscale decomposition of the expression 
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signal in multiple window length scales. The window length is increased between consecutive 

scales. Next, for the smoothed signal at each scale, a 5-CNV-state Hidden Markov Models 

(HMM) is used to assign copy number states to regions and segment the signal into regions of 

similar copy number states. We observed that pooling the samples in our bulk or single-cell 

RNA-Seq data gives better initial HMM parameter estimates. 

CaSpER incorporates the allelic shift (BAF) information as a separate evidence of CNVs in 

addition to the CNVs identified from the multiscale analysis of genome-wide expression signal 

profile. BAF information is extracted directly from the mapped RNA-Seq reads using an 

optimized BAF generation algorithm (see Methods for details). Unlike other methods, BAF 

generation does not rely on an existing set of variant calls and this considerably speeds up the 

process of estimating the BAF signal. Similar to expression signal, BAF signal is also smoothed 

using multiscale decomposition. CaSpER smoothes BAF signal at multiple window length 

scales where window length is increased between consecutive scales. A CNV event with states 

2 (heterozygous deletion) and 4 (one-copy amplification) as correctly identified if the CNV state 

is accompanied by BAF shift.  BAF shifts are detected by thresholding the smoothed BAF signal 

profiles where the threshold is estimated by pooling BAF information across all samples and 

fitting a Gaussian Mixture Model on the distribution of the smoothed BAF values for the selected 

single nucleotide variations (SNVs) in segmented regions. CaSpER performs a pairwise 

comparison of all scales from BAF and expression signals to ensure a coherent set of CNV calls 

are detected from the multiscale decomposition. The final CNV event calls for all the CNV and 

BAF scale pair combinations are stored as the output from CaSpER’s CNV calling steps (Figure 

1).  

CaSpER outputs detailed focal CNV calls for all CNV and BAF scale pairs. Moreover, it outputs 

the large-scale CNV calls that are commonly seen in all scale pairs. For single-cell RNA 

sequencing studies, CaSpER infers CNV based clonal evolution depicted as a phylogenetic tree 
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and summarizes mutually exclusive and co-occurring CNV events using graph-based 

visualization (Figure 2).  

Evaluation of the accuracy of CNV events detected from bulk RNA-Sequencing using 

genotyping array 

We validated CaSpER algorithm on publicly available TCGA-GBM (n=171) and another 

separate meningioma cancer study (n=17), where both bulk RNA sequencing and genotyping 

data is available24,25. We explain below the outputs and accuracy of CaSpER on these datasets. 

For TCGA-GBM dataset, expression values of all the genes are quantified across all TCGA-

GBM samples. The recursive median filtering effectively removes the fluctuations in the 

genome-wide expression introduced by noise and fluctuations in expression (Figure 3A). For the 

smoothed signal at each scale, we applied HMM to assign CNV states to segmented regions 

(Figure 3B). Simultaneously, BAF signal is extracted from RNA-Seq bam files using our fast 

BAF generation method and smoothed using recursive median filtering. BAF shift threshold is 

estimated by fitting Gaussian mixture model (GMM). GMM identified three classes of BAF shift 

groups where the first group corresponds to no shift regions whereas the second and the third 

group corresponds to BAF shift regions with loss or amplification events. (Figure 3C).  

 We also investigated the correlation of expression values and BAF values in recurrently 

amplified chromosome 7q arm and deleted chromosome 10q arm. We observed a significant 

correlation between BAF and expression values (chr7p, r2=0.12, P=0.007; chr10q, r2=-0.66, 

P<2.2E-16) (Figure 3D). Regions with CNV states 2 (heterozygous deletion) and 4 (one-copy 

gain) that are below the BAF shift threshold are corrected to be neutral (Figure 3D).  

 We next used the CNV calls identified from genotyping arrays to measure the accuracy 

of CaSpER. For each sample, we identified the large-scale deletions and amplifications from 

genotyping array, where the large-scale event is defined as more than 1/3 of the chromosome 

arm. We next calculated the false positive and true positive rates (See Methods Section) of 
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different CNV and BAF scale pairs. Summarizing the large-scale CNV events that are 

commonly seen in all scale pairs lowers our false positive rate (FPR) to 5%. This points out the 

importance of studying the CNV events at multiple scales. By using a genotyping array (n=160)  

as a gold standard, after summarizing CNV events using all scale pairs, CaSpER achieves 62% 

true positive rate (TPR) and 1% FPR for detecting amplification events and 84% TPR  and 3% 

FPR for detecting deletion events (Figure 3E-F).  

We also validated CaSpER on a publicly available meningioma dataset24. We first 

quantified the expression values of all the genes across all meningioma samples. After 

quantifying expression values, recursive median filtering is applied to eliminate noise from the 

signal. Heatmap of smoothed data clearly shows chromosome arm size deletion events (Figure 

4A). HMM is applied to the smoothed signal at each scale to assign CNV states to segmented 

regions (Figure 4B). The smoothed signal distribution shows that data does not contain many 

amplification events (Figure 4B). Concurrently, BAF signal is calculated from aligned RNA-Seq 

reads using our fast BAF generation method. Similar to expression signal, BAF signal is also 

smoothed using recursive median filtering with iterative scale lengths (Figure 4C). Smoothed 

BAF signal shows shifts in chromosomes with deletion events (Figure 4C). For each scale, 

GMM is fitted to the BAF values and identified two sets of events. First set of copy number 

events contains BAF values without shift whereas the second set contains BAF values with the 

shift. (Figure 4D). We observed negative correlation between BAF and expression values at 

chromosomes that are recurrently deleted (chr1p, r2=-0.43 P =0.0008; chr6q r2=-0.54 P 

=0.0003; chr22q r2=-0.14 P =0.43) (Figure 4E). We validated the accuracy of CaSpER using an 

existing genotyping array for the same dataset as the gold standard. After summarizing CNV 

events using all scale pairs, CaSpER achieves 95% TPR and 0.3% FPR for detecting deletion 

events (Figure 4F).  
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We observed a slight difference in deletion TPR rates, between meningioma and TCGA-GBM 

datasets (95% TPR meningioma vs 84% TPR GBM). This stems from the fact that meningioma 

tumors exhibit less intratumor heterogeneity and have lower clonality rates compared to GBM 

tumors. Thus, lower clonality rates in meningiomas lead to better deletion CNV event 

identification.  Similarly, high clonality rates in GBM tumors lower the detection accuracy of low-

level amplification events, which then lead to low amplification TPR rate.  

Inference of subclonal CNV architecture in single-cell RNA-Sequencing data 

We next used CaSpER to infer subclonal CNV architecture from single-cell Glioblastoma 

Multiforme (GBM) RNA sequencing data8. Single-cell GBM RNA-Seq data contains 430 single 

cells extracted from five patient samples. The smoothed expression signal in Figure 5A shows 

that chromosome 7 amplification and chromosome 10 deletion is recurrent across GBM 

samples. We observed that the BAF signal is much more stable and accurate when the data 

from all the cells are pooled. Therefore, for BAF signal generation step, we pooled the single 

cell reads from the same patient together. We extracted the BAF signal from the pooled patient 

specific reads instead of single cell reads since the BAF signal extracted from one single cell is 

very sparse and is not informative. The smoothed patient specific BAF signal shows shifts in 

chromosome 7 and 10 (Figure 5B). We can also detect a subclonal shift in chromosome 14 for 

patient MGH31 (Figure 5B). We next used the large-scale CNV events summarization to identify 

the common events in all scale pairs (Figure 5C). Interestingly, MGH31 consists of two mutually 

exclusive subclones where one subclone contains chromosome 5q amplification whereas the 

other subclone contains chromosome 14q deletion (Figure 5C). Additionally, one subclone 

contains 1p amplification and the other subclone contains 13q deletion, which has not been 

reported previously. We then evaluated the phylogenetic tree based visualization of the inferred 

subclonal CNV architecture as reported by CaSpER for all the five patients using large-scale 

CNV events. For MGH31, tree separated cells harboring 1p and 5q amplification from cells 
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harboring 13q and 14q deletion (Figure 5D). CaSpER also reports the mutually exclusive and 

co-occurring CNV events and plots the significant events as a graph. This is useful for visually 

inspecting the co-occurring and mutually exclusive events that may be otherwise hard to 

visualize. Similarly, from the graph, we can clearly see the mutually exclusive 1p:13q and 

5q:13q, 5q:14q event pairs for patient MGH31 (Figure 5E). Moreover, we detected novel 

mutually exclusive 8q:20p, 5q:19p event pairs for patient MGH28, 6p:7p event pair for patient 

MGH30 and 4p:10p event pair for patient MGH29 that was not reported in previous publications 

(Figure 5F, Supplementary Figure S1). We next identified the gene expression signatures of 

each of the mutually exclusive clones and performed GO enrichment analysis (Supplementary 

Data 1). For 5q:14q event pair in patient MGH31, we discovered GFPT2 gene to be highly 

expressed in 5q amplified clone. Previous study has discovered that higher expression of 

GFPT2 is linked with poor survival and identified GFPT2 gene to be a potential target for 

therapeutic inhibition26. For 5q:19q event pair in patient MGH28, we discovered NOS2 gene to 

be highly expressed in 19q deletion clone. It has been previously  demonstrated that NOS2 

gene is expressed in glioma stem cells and high expression of NOS2 is correlated with 

decreased survival27. Gene expression signatures of each of the mutually exclusive clones and 

GO  enrichment analysis are reported in Supplementary Data 1. These findings demonstrate 

that the diverse set of visualizations and results that CaSpER generates enables studying the 

single cell RNA-sequencing data comprehensively over many different length scales. In 

addition, these results show that RNA-seq datasets contain much information about CNV and 

transcriptional architecture of the samples, which may otherwise be left out when standard 

analysis pipelines are used. 

Identification of scale-specific CNV regions (SSCNVs) in bulk RNA and single-cell RNA-

Sequencing data  
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CaSpER identifies CNV regions at each scale, which yields scale-specific CNV regions 

(SSCNVs). In general, SSCNVs at lower scale correspond to more focal CNV events compared 

to SSCNVs at higher scale, which represents broader CNV events. Figure 6 shows the scale 

length characteristics of different CNV events of TCGA bulk RNA-Sequencing data. Focal 

amplification of the PDGFRA gene is identified using small-scale lengths whereas broad 

chromosome arm level deletion in chromosome 22 is identified using a higher scale length 

(Figure 6A-B).  

We next investigated scale specific sub-clonal events in single-cell RNA sequencing data 

(Figure 6C). We observed that different scale pairs are capable of identifying different mutual-

exclusive or co-occurring CNV events. One challenge in the multiscale analysis is a 

summarization of a large number of data from multiple scales. To get around this, CaSpER 

analyzes and automatically generates a visualization of the significant mutual exclusive or co-

occurring CNV events as heatmaps and graphs. These visualizations are especially useful for 

visually confirming the significance of the results. Figure 6C shows that mutually exclusive 7p:6p 

event pair is detected after summarizing CNV events using all scale pairs (Figure 6C).   

Identification of BAF shifts in bulk and single-cell RNA sequencing data 

We expect that regions with amplification or deletion to be mostly accompanied with loss of 

heterozygosity (LOH) and harbor BAF shift except for homozygous deletion or amplification 

regions. In most of the cases, we do not have matched normal RNA-Seq samples, therefore; we 

predict this BAF shift (LOH) regions only from tumor RNA-Seq samples.  

We compared our BAF signal with the BAF signal generated from GATK best practices 

workflow for RNA-Seq variant calling.  We did not observe difference between our BAF signal 

and the BAF signal generated using GATK tool (Supplementary Figure S2A-B)14.  

In bulk tumor RNA Sequencing, the presence of a normal population in the tumor, also known 

as impurity or admixture of normal cells in a tumor sample, and sub-clonal events may add 
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complex noise into the BAF signal.  The SNP sites that are around the band of 1 are not 

considered since these sites are most likely to be homozygous in normal samples. Because of 

admixture rate, it is unlikely to see heterozygous sites in normal to have BAF value around 1. If 

we also consider the BAF values more than 0.8, not only the original BAF signal but also the 

smoothed BAF signal is very noisy (Supplementary Figure S2B-C). Another important factor in 

generating reliable smooth BAF signal is to filter out reads with low mapping quality 

(Supplementary Figure S2B, 2D).  

In single-cell RNA Sequencing, we pool single cells belonging to the same patient since the 

BAF signal for one single cell is not informative (Supplementary Figure S3). In single cell RNA-

Sequencing, we can pool only the tumor single cells of the patient and eliminate all other cell 

types such as immune cells. Since we do not have the admixture rate issue in single cell RNA-

Sequencing data, the SNPs with BAF value more than 0.2 are considered (Supplementary 

Figure S4).   

Discussion 

We presented a novel algorithm, CaSpER, for identification, visualization, and integrative 

analysis of focal and large-scale CNV events in multiscale resolution using either bulk or single-

cell RNA sequencing data. We demonstrated that CaSpER performs well in identifying CNV 

events using both single-cell and bulk RNA-Sequencing data.  We presented several examples 

where CaSpER can effectively complement the existing set of RNA-Seq analysis tools and can 

also identify new insight into the analysis of the clonal architecture of cancer genomics datasets. 

CaSpER can be used to efficiently do a comprehensive characterization of RNA-Sequencing 

datasets to increase their utility beyond transcriptional profiling. 

There are several aspects of CaSpER that we would like to point out. First, CaSpER combines 

genomewide allelic shift signal, which measures the loss-of-heterozygosity at a nucleotide 
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resolution, and expression signal to accurately estimate CNV events. While doing this, CaSpER 

utilizes a novel method to generate allelic shift signal profile directly from mapped reads, without 

the need for variant calls. This is very useful for two reasons: First, the variant calling (SNVs and 

indels) from mapped reads requires high computational resources and long compute times. This 

means that before calling CNVs, it is necessary to complete the arduous process of variant 

calling. CaSpER lifts this restriction by computing the allele shift profile directly from the mapped 

reads. Second, the power of variant detection can be affected by the CNV events. This is 

especially important in cancer sequencing experiments where CNVs can span very long 

genomic regions and may affect the accuracy of variant calling. Therefore, identifying CNVs 

before calling SNVs can give very useful information for correct identification of SNVs. Although 

we did not explore this thoroughly in this paper, several previous studies have demonstrated 

this28. 

Another novel aspect of CaSpER is the analysis of CNV events in multiscale resolution. With 

the diverse length characteristics of CNV events, we believe that it is very important to be able 

to analyze CNV events in multiple length scales. CaSpER makes available the multiscale 

smoothed genomewide expression signal and allelic shift signal profiles and the CNV calls that 

can be used for downstream analysis and visualization. For smoothing, CaSpER utilizes a non-

linear median based filtering of RNA-Sequencing expression and allele-frequency signal. It is 

worth noting that median filtering preserves the edges of the signal much better compared to 

kernel-based linear filters23. We also demonstrated that the signal profiles that are smoothed at 

multiple scales are useful for visualization of the copy number events that are detectable from 

RNA-seq datasets. In addition to identifying CNV events, CaSpER also visualizes and performs 

integrative analysis of CNV events such as inferring clonal evolution, discovering mutual-

exclusive and co-occurring CNV events and identifying gene expression signatures of the 

identified clones.  
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In this paper, we have focused on detection of CNV events from RNA-Seq datasets. This is 

because RNA-sequencing is becoming an everyday tool in research and clinical settings. Also, 

the number of RNA-sequencing datasets is increasing comparably with the whole genome and 

whole exome sequencing datasets. Although we have focused only on RNA-sequencing data, 

the analysis framework that CaSpER utilizes can be extended to other functional genomics 

datasets such as ChIP-Sequencing, which are currently not performed as often as RNA-

sequencing. We hypothesize that the CNV architecture can be reliably detected using these 

functional genomics datasets jointly. As more cancer epigenomics datasets are generated, 

CaSpER can be tuned to analyze data from these assays for detection of copy number and 

LOH events. 

In our analyses, CaSpER discovered scale-specific CNV regions in TCGA bulk RNA-

sequencing data, which represent both focal and broad CNV events and we showed the utility of 

these events in the analysis of scale-specific co-occurrence and mutual exclusivity of the CNV 

events. Analyzing single-cell GBM RNA Sequencing data using CaSpER, unraveled novel 

mutual exclusive and co-occurring CNV subclones. Gene expression signatures of the identified 

novel clones gave us insight about the phenotype of the clones such as invasiveness and 

survival. Moreover, we identified novel potential therapeutic targets for the clones. In conclusion, 

our study demonstrates the significance and feasibility of CNV calling using either single or bulk 

RNA sequencing data.  

Methods 

Bulk and Single-Cell RNA-Sequencing expression quantification  

Yale meningioma bulk RNA-Sequencing data reads were aligned using STAR29. Expression 

level quantification was performed using DESeq2 R package30.  TCGA-GBM bulk RNA-
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Sequencing normalized expression matrix were downloaded using TCGABiolinks R 

package31. The corresponding bam files were downloaded from GDC data portal32.   

Single-cell RNA Sequencing data reads were aligned with Hisat2 using ENCODE V28 

transcriptome annotation33. We pooled single cells from the same patient into a single bam file 

using bamtools merge function34. The aligned bam files were later used for allele-based 

frequency signal calculation. We used the normalized expression matrix provided in the 

paper.   

Generation of the allele-based frequency signal from RNA-Seq BAM files 

We generate allele-based frequency signal from RNA-Seq bam files using our in-house written 

C++ code. Our method takes a bam file as an input and outputs allelic content estimation 

through fast SNP calling. We first perform pileup where we summarize the base calls of aligned 

reads to a reference sequence. For each SNP, we report the total count of reads supporting 

non-reference and reference nucleotide after applying the following filters: (1) reads should have 

mapping quality of at least 50, (2) minimum number of total reads per each SNP position should 

be 20  (3) minimum number of total reads supporting SNP should be 4. In bulk tumor RNA-Seq, 

we considered SNPs that are most likely to be heterozygous with a BAF value more than 0.2 

and less than 0.8 whereas in single-cell RNA-Seq BAF value more than 0.2 are considered. Our 

fast BAF generation method speeds up the process of estimating BAF shift regions compared to 

using GATK for calling variants from RNA-Seq data. After generating the allelic content for each 

SNP, we next apply recursive median filtering to remove noise from the signal.  As explained 

previously in the Results section, filtering the reads according to mapping quality is very critical 

for correctly estimating BAF shift regions. In addition to estimating BAF shift regions, our 

method is also very useful in identifying allele-specific expression. 

Multiscale resolution of expression by median filtering 
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Unlike linear filtering methods, median filtering preserves the edges while removing noise in 

smooth regions of signal23. CaSpER uses recursive median filtering for removing noise from 

expression and allele-based frequency signal. 

Let  X� � � x�� , x�� , … , x�� , … , x��� be the expression signal vector, where x�� is original signal value 

at iteration 0 in position i. Given the window length l, at scale s median filtering can be 

formulated as: 

x�� � med��x������ 
������ ,   ����� �� 

where  x��  is the ith value of the median filtered expression signal at scale s. In  x����, a is defined 

as smoothing region of each i formulated as  �� i � ��
� , … , i, … , i � ��

�  �} and the input expression 

signal x��� is the smoothed expression signal in the previous iteration, s � 1.  

Similar to expression signal we also apply recursive median filtering to an allele-based 

frequency signal. Let  Y� � � y�� , y�� , … , y�� , … , y��� be the expression signal vector, where y is the 

original allele-based frequency signal value at iteration 0 in position i. Given the window length l, 
at scale s median filtering can be formulated as: 

y�� � med��y������ 
������ ,   ����� �� 

where  y��  is the ith value of the median filtered allele-based frequency signal at scale s. In  y����, 

a is defined as smoothing region of each i formulated as  �� i � ��
� , … , i, … , i � ��

�  �} and the input 

allele-based frequency signal y��� is the smoothed allele-based frequency signal in the previous 

iteration, s � 1.  

CaSpER uses filter function in signal R package for median filtering implementation.  

Gaussian mixture models  
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CaSpER models the allele-based frequencies as a mixture of Gaussian distributions for 

identification and classification of genotype clusters. For example, in a normal chromosomal 

region with 2 copies, we expect to observe three BAF genotype clusters represented as AA, AB, 

and BB whereas, in heterozygous deletions, we expect to observe two clusters which can be 

represented as A and B.  

Let   X � � x�, x� , … , x� , … , x�� be the allele-based frequency signal vector, where x� is the signal 

value at position i. The distribution of every value is specified by a probability density function 

through a finite mixture model of G classes:  

f�x�; z� �  � π�f� �x�;  θ���

���
 

where z � �π�,….,π���, θ�, … θ� �   is the parameters of the mixture model and f� �x�;  θ�� is the kth 

component density, which assumes to follow Gaussian distribution f� �x�;  θ�� ~ N�µ�, σ��. 
�π�,….,π����  is the vector of probabilities, non-negative values which sum to 1, known as the 

mixing proportions. Mixing proportions, π, follows a multinomial distribution.  

The model z parameters are estimated by maximizing log-likelihood function via the EM 

algorithm. The log-likelihood function is formulated as:  

l�z; x� �  � log f� �x�;  z��

���
 

The number of classes, G, are estimated using the Bayesian Information Criteria (BIC). The 

class with the lowest mean value corresponds to alleles without any BAF shift. We choose 

the class with second lowest mean value, called as ‘class 2’ to identify the BAF shift 

threshold. In bulk sequencing data, we set the BAF shift threshold to mean allele-based 

frequency signal in ‘class 2’. In single-cell RNA sequencing data, we set the BAF shift 
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threshold to minimum allele-based frequency signal in ‘class 2’. CaSpER uses mclust R 

package for Gaussian mixture model (GMM) implementation35. 

Hidden Markov model (HMM) 

CaSpER uses a modified version of HMMCopy R package for HMM implementation to 1) 

segment the copy number profile in regions predicted to be generated by the same copy 

number event and 2) predict the copy number variation event for each segment. In HMM, we 

use a hierarchical Bayesian model where the posterior estimates are calculated using an exact 

likelihood function.     

Our HMM model contains 5 CNV states, where the states represent homozygous 

deletion, heterozygous deletion, neutral, one-copy gain and multiple-copy gain. The initial 

transition matrix is defined as:  

%
&'

1 � (((((

 (1 � ((((

 ( (1 � (((

(((1 � ((

 ((((1 � ()
*+ 

where t is equal to 1e-07. We estimated the mean parameter of the emission probabilities by 

pooling all the chromosomes across all the samples. We believe that using more data by 

pooling all the samples would give better initial HMM parameter estimates.  

Calculating mutual-exclusive and co-occurring CNV events and inference of clonal 

phylogenetic CNV tree 

We calculated the distance between cells using the Jaccard distance metric. We next used this 

distance matrix to build the phylogenetic tree of the CNV events. A phylogenetic tree is 

constructed using Fitch–Margoliash method implemented in the Rfitch R package. We finally 

plotted the tree using phydataplot function in ape R package. The co-occurrence and mutual 

exclusivity of CNV events were assessed using one-sided Fisher's exact test.  
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Identifying gene expression signatures and enrichment analysis  

Differentially expressed genes were identified using an empirical Bayesian method ebayes 

implemented in limma R package36. Genes were considered differentially expressed with 

adjusted P-value<0.05. GO term enrichment analysis was performed using the GOStats R 

package37.  

Genotyping data  

TCGA-GBM genotyping data was downloaded using TCGABiolinks R package31. CNV 

segments with mean log ratio value more than 0.3 were defined as amplification whereas 

segments with mean log ratio value less than 0.3 were defined as deletion. Large-scale 

chromosomal deletion or amplification was defined as affecting more than one-third of the 

chromosomal arm, whereas focal event deletion or amplification was defined as affecting 

less than one-third and more than one-tenth of the chromosomal arm with accompanying log 

ratio of signal intensities <−0.1 or >0.1 and B-allele frequencies (BAF) at heterozygous sites 

deviating from 0.5 by at least 0.05 units.  

We analyzed meningioma genotyping data as previously described24. CNVs were 

detected by comparing the normalized signal intensity between a tumor and matched blood 

or a tumor and the average of all blood samples. Segmentation was performed on log 

intensity (R) ratios using DNACopy algorithm38.  

Validating Bulk RNA-Sequencing results using genotyping data 

We assessed the performance of CaSpER by comparing the CNV calls identified from RNA-Seq 

with genotyping data. Thus, the true positive rate is the percentage of large-scale CNV events 

who are correctly identified by CaSpER while the false positive rate is the percentage of falsely 

rejected true CNV events. 
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Figures 

Figure 1. Flowchart of CaSpER algorithm. The CaSpER algorithm uses expression values 

and B-allele frequencies (BAF) from RNA-Seq reads to estimate CNV events.  Normalized gene 

expression matrix is generated (Step1). Expression signal is smoothed by applying recursive 

iterative median filtering. Three scale resolution of the expression signal is computed. (Step2).  

For the smoothed signal at each scale, HMM is used to assign CNV states to regions and 

segment the signal into regions of similar copy number states (Step 3). Five CNV states are 

used in HMM model; 1: homozygous deletion, 2: heterozygous deletion, 3: neutral, 4: one-copy 

amplification, 5: multi-copy amplification. BAF information incorporated to the segmented CNV 

events. BAF information is extracted from mapped RNA-Seq reads using an optimized BAF 

generation algorithm (Step 4). BAF signal is smoothed by applying recursive iterative median 

filtering. Three scale resolution of the allele-based frequency signal is computed (Step 5). BAF 

shift threshold is estimated using a Gaussian mixture (Step 6). CNV events are corrected using 

BAF shifts and final CNV correction is applied to all the CNV and BAF scale pair combinations 

(Step 7).  

Figure 2. CaSpER algorithm outputs detailed CNV event calls for all CNV and BAF scale pairs 

(Step8). Large-scale CNV events that are commonly seen in all scale pairs are reported (Step 

9). For single-cell RNA sequencing studies, CaSpER infers CNV based clonal evolution 
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depicted as a phylogenetic tree (Step10). Mutually exclusive and co-occurring CNV events are 

summarized using graph-based visualization (Step11).   

Figure 3. CaSpER algorithm applied to bulk TCGA-GBM RNA-Seq dataset. A. Heatmap of 

normalized expression values of all the genes across all TCGA-GBM samples (~170 samples) 

is shown in top panel. The smoothed expression signal by recursive iterative median filtering is 

shown on the bottom panel. B. For the smoothed signal at each scale, HMM is applied to assign 

CNV states to segmented regions. C. BAF shift threshold is estimated by fitting Gaussian 

mixture model (GMM). GMM identified three classes of BAF shift groups where the first group 

corresponds to no shift regions whereas the second and the third group corresponds to BAF 

shift regions with loss or amplification events. BAF shift threshold is the median of the BAF 

values in the second group, which is calculated to be 0.15. D. The correlation of expression 

values and BAF values in recurrently amplified chromosome 7q arm and deleted chromosome 

10q arm is plotted (chr7p, r2=0.12, P=0.007; chr10q, r2=-0.66, P<2.2E-16). Regions with CNV 

states 2 and 4 that are below the BAF shift threshold (0.15) are corrected to be neutral. The 

color codes are explained on the bottom. E. The false positive and true positive rates of different 

CNV and BAF scale pairs is plotted. Summarized large-scale event calls have a lower false 

positive rate. F. Heatmap of large-scale CNV events identified from RNA-Seq is shown in the 

top panel whereas the heatmap of large-scale CNV events identified from genotyping is shown 

in bottom panel. The color codes are explained on the bottom. 

Figure 4. CaSpER algorithm applied to bulk meningioma RNA-Seq dataset. A. Heatmap of 

normalized expression values of all the genes across all samples (n=8 samples) is shown in top 

panel. The smoothed expression signal by recursive iterative median filtering is shown on the 

bottom panel. B. For the smoothed expression signal at each scale, HMM is applied to assign 

CNV states to segmented regions. C. Smoothed BAF signal is plotted and shows shifts in 

chromosomes with deletion events.  D. BAF shift threshold is estimated by fitting Gaussian 
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mixture model (GMM). GMM identified two classes of BAF shift groups where the first group 

corresponds to no shift regions whereas the second group corresponds to BAF shift regions 

with loss or amplification events. BAF shift threshold is the median of the BAF values in the 

second group, which is calculated to be 0.14 E. The correlation of expression values and BAF 

values in recurrently deleted chromosomes are plotted (chr1p, r2=-0.43 P =0.0008; chr6q r2=-

0.54 P =0.0003; chr22q r2=-0.14 P =0.43). F. Heatmap of large-scale CNV events identified 

from RNA-Seq and genotyping is shown in the plot. The color codes are explained on the right.  

Figure 5. CaSpER algorithm applied to single-cell GBM RNA-Seq dataset. A. Heatmap of 

smoothed expression signal of all the genes across all samples is shown in top panel. The color 

codes are explained on the right. B. Smoothed BAF signal from the pooled patient specific 

reads is shown in the plot. The smoothed patient specific BAF signal shows shifts in deleted and 

amplified chromosomes. C. The heatmap of summarized large-scale CNV events using the 

common events in all scale pairs is plotted. MGH31 consists of two mutually exclusive sub-

clones where one sub-clone contains chromosome 5q amplification whereas the other sub-

clone contains chromosome 14q deletion. Additionally, one sub-clone contains 1p amplification 

and the other sub-clone contains 13q deletion. D. Inferred sub-clonal CNV architecture is shown 

as a phylogenetic tree for all the five patients using large-scale CNV events. For MGH31, tree 

separated cells harboring 1p and 5q amplification from cells harboring 13q and 14q deletion. E. 

Mutually exclusive and co-occurring CNV events are plotted as a graph.  Red colored events 

are amplified whereas blue colored events are deleted. The solid lines represent co-occurring 

events, whereas dashed lines represent mutually exclusive events. Edge width increases with 

event significance. The mutually exclusive 1p:13q and 5q:13q, 5q:14q event pairs for patient 

MGH31 is significant. F. Novel mutually exclusive 8q amplification and 20p deletion CNV event 

in patient MGH28 is plotted.  
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Figure 6. CaSpER identifies scale-specific CNV regions (SSCNVs). A. PGFRA focal 

amplification is identified using lower scale length. B. Broad chromosome arm level deletion in 

chromosome 22 is identified using a higher scale length. C. Scale-specific sub-clonal events for 

patient MGH30  in single-cell RNA sequencing data is plotted. Mutually exclusive 7p:6p event 

pair is detected after summarizing large-scale CNV events in all scales.  
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INPUT: Aligned Reads (BAM files)
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OUTPUT: Event summary, CNV clonal evolution
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