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ABSTRACT

We have harnessed nanopore sequencing to study DNA replication genome-wide
at the single-molecule level. Using in vitro prepared DNA substrates, we charac-
terized the effect of bromodeoxyuridine (BrdU) substitution for thymidine on the
MinION nanopore electrical signal. Using a neural-network basecaller trained
on yeast DNA containing either BrdU or thymidine, we identified BrdU-labelled
tracts in yeast cells synchronously entering S phase in the presence of hydrox-
yurea and BrdU. As expected, the BrdU-labelled tracts coincided with previously
identified early-firing, but not late-firing, replication origins. These results open
the way to high-throughput, high-resolution, single-molecule analysis of DNA
replication in many experimental systems.
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INTRODUCTION

DNA replication is the biological process by which a genome is accurately dupli-
cated before a cell divides into two daughter cells. Eukaryotic organisms replicate
their genome from multiple, stochastically activated replication origins. Origin
activation establishes bidirectional replication forks that progress along and du-
plicate the DNA until they merge with forks emanating from adjacent origins.
Understanding the regulation of these events is essential as their perturbations
threaten genome stability.

In the last decade, DNA microarray and massive DNA sequencing techniques
have triggered an explosion of genome-wide replication mapping studies. How-
ever, these cell-population based methods provide an average profile of DNA
replication which masks cell-to-cell heterogeneity in origin activation and fork
progression. Single-molecule methods can reveal this heterogeneity. Typically,
cells are consecutively pulsed with two thymidine analogues that are incorpo-
rated into newly synthesized DNA; total genomic DNA is then extracted, spread
on microscope glass coverslips, and the labelled tracts are detected with appropri-
ate fluorescent antibodies [1, 2]. This approach allows to visualize the progression
of individual replication forks during the pulses and to infer the spacing of initi-
ation and termination events. However it does not provide DNA sequence infor-
mation unless combined with fluorescent in situ hybridization with specific DNA
probes [3]. This is technically difficult and limits the analysis to a tiny portion of
the genome. Recently, significant improvements in throughput and automation
of single-molecule analysis were achieved by (i) using fluorescent dNTPs to di-
rectly label the newly replicated DNA; (ii) barcoding total DNA by fluorescent
labeling at nicking endonuclease cutting sites and (iii) stretching labelled DNA in
nanochannel arrays originally developed for automated genome assembly (Bio-
nano Genomics, [4, 5]). Nevertheless, nanochannel image analysis and genomic
alignment of barcoded DNA requires complex bioinformatic processing and the
resolution of these methods is still limited to ~1 kb due to optical microscopy
limitations and DNA stretching inhomogeneities.

A novel sequencing technology, namely nanopore sequencing, has the potential
to bypass these limitations. In MinION nanopore sequencing (Oxford Nanopore
Technologies, ONT), a long single strand of DNA (up to 2.3 Mb [6]) is translocated
by a molecular motor through a protein nanopore inserted in a voltage-biased
membrane separating two ionic solution-filled chambers. The ionic conductivity
through the nanopore is particularly sensitive to the nucleobases located in its
narrowest region. Thus, changes in the ionic current levels during translocation
reveal changes in the DNA sequence. Several consecutive nucleobases in the nar-
rowest region can influence the ionic current. Translating a sequence of current
values into a DNA sequence is therefore a non-trivial task. Several machine learn-
ing approaches using either Hidden Markov Models (HMM) [7, 8] or Recurrent
Neural Networks (RNN) [9, 10] have been developed by ONT or by academic
groups to reach this goal. Importantly, such approaches can discriminate mi-
nor bases modifications such as cytosine methylation and hydroxymethylation
[11, 12]. These results suggest that nanopore sequencing may allow direct detec-
tion of modified nucleobases incorporated in newly replicated DNA. This would
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simultaneously provide the sequence and replicative status of long, native DNA
fragments at near-nucleotide resolution.

Here, we demonstrate that this approach is feasible. We can directly detect bro-
modeoxyuridine (BrdU), a thymidine analogue widely used in DNA replication
studies, both in synthetic test templates and following in vivo replicative incor-
poration in the yeast Saccharomyces cerevisiae. Replicative stretches synthesized at
the onset of S phase and detected in this manner map to origins known to be
active in early S phase but not to later-activated origins. This provides, to the
best of our knowledge, the first proof-of-principle that nanopore sequencing can
be used to map replication genome-wide at the single-molecule level, surpassing
the throughput of alternative optical methods and promising DNA replication
analysis with unprecedented resolution.

RESULTS

In vitro templates

In order to measure the effect of BrdU incorporation on the nanopore electric
signal, we first generated control or BrdU-hemisubstituted DNA duplexes us-
ing a single primer extension of linearised plasmid DNA in the presence of ei-
ther dTTP or BrdUTP, followed by exonuclease degradation of the non-template
strand (Fig. 1a). Bioanalyzer electrophoretic analysis and Qubit quantification of
the purified reaction products (Fig. 1b) revealed a high yield of primer extension
and an electrophoretic shift with respect to the starting duplex plasmid associ-
ated with BrdUTP but not dTTP incorporation. The small amount of duplex
DNA observed in the absence of dTTP and BrdUTP likely resulted from partial
renaturation of the template before exonuclease degradation. The primer exten-
sion products were sequenced using the ONT MinION (Rg chemistry) and the
"2D" protocol where the two strands of a DNA duplex are consecutively read
thanks to a hairpin adapter. We obtained 115K and 77K reads for the dTTP and
the BrdUTP sample, respectively (sequencing information is summarized in Ta-
ble S1).

The raw data were basecalled using Metrichor (ONT) and the resulting se-
quences were aligned to the plasmid sequence using BWA MEM [13] with param-
eters adapted to the error rate (see Materials and Methods, Supp. Fig. S1) and
considering the two complementary DNA strands independently. As Metrichor
was devised to detect canonical bases, the presence of BrdU could potentially
affect basecalling and subsequent mapping. Indeed, the percentage of mapped
reads for the BrdUTP sample was lower (49%) than for the dTTP sample (60%;
Table S2). Metrichor classifies the reads into "pass" and "fail" categories based
on the presence of a second strand read and its similarity to the first strand (2D
protocol). The fraction of 2D reads was similar for both samples (57% vs. 59%)
but the percentage of "pass" reads was lower for BrdUTP (13%) than for dTTP
(18%), indicating lower complementarity of the two strand reads. Importantly,
99% of the "pass" reads were mapped for both samples (Supp. Fig. Sib and Ta-
ble S2). However, looking at strand-oriented miscalls within the "pass" mapped

Hennion et al. Mapping DNA replication with nanopore sequencing


https://doi.org/10.1101/426858

bioRxiv preprint doi: https://doi.org/10.1101/426858; this version posted September 26, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

linearized plasmid PA d-|-rp
120
Denaturation 100 . -_ -
Primer annealing 20 250
80
— —— - - 200
—— BrdUTP, dCTP, dATP, dGTP g —_— -
150
'zndstl’and TGGTTTATTGCTGATAAAT(‘:TGGAGCC(‘SGT
synthesis 100
Brdu F BrdUTP
[N [ [N 120 50
R 110 o
4, ssDNA digestion 1oo (e -
9 %0 -
80
- -
MinION Sequencing
Basecalling (Metrichor) T G6GG6GTTTATTGC CTGATAAATT CTGGATGTCTCGGT
Mapping (BWA MEM)
b d GATAA e:
5P agder pTYB21 water  dTTP  BrduTP 015 dTTP drTp
10380 — st 2z N R
20.10 . ;
5000 — s— g : :
3000 — ==—— 0.05 AA A °
1500 — =— 18% 85% 74% 0.00 - - ~
1000 = = BrdUTP : BrdUTP : 4
2O F : R :
700 = =— 20.10 . .
@ . - g
80.05 . b <o dTTP
0-00—3 80 100 120 60 80 100 120 o _BrduTP
PA PA -0.028 -0.024 pc1 -0.02 -0.016

Figure 1: Effect of BrdU incorporation into DNA on nanopore sequencing current sig-
nal. a. Scheme of sample preparation. F, forward strand; R, reverse strand. b.
Bioanalyzer size control of the samples, with Qubit yield indicated. pTYBz21,
linearised plasmid; water, primer extension in the absence of dTTP and Br-
dUTP; dTTP, primer extension using canonical dNTPs; BrdUTP, primer ex-
tension using BrdUTP instead of dTTP. c. Example of a 30 bp sequence of
the forward (F) strand (positions 1000-1029) with current distribution of 500
reads at each position. Upper panel: sample obtained using canonical dNTPs.
Lower panel : dTTP was replaced by BrdUTP. Blue rectangles highlight some
current shifts due to the presence of BrdU. BrdU did not induce a current shift
at all thymidine sites. d. Current distribution for the 'GATAA’” pentamer for
the dTTP (top) and the BrdUTP (bottom) sample on the forward (F, modified
strand, left) and the reverse (R, native strand, right) strands. e. Principal com-
ponent analysis using current sequences from 1 kb read fragments from the
dTTP (black) and BrdUTP (brown) samples (F strand). The first two compo-
nents are represented. Only "pass" reads were used in c,d,e.
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reads, the parental (R) and newly replicated (F) strand miscall rates were similar
for the dTTP sample (7% vs. 7%) but different for the BrdU sample (7% vs. 11%,
respectively, Supp. Fig. Sic), confirming that BrdU affects the current in the pore.
Together, these results suggest that current alterations due to BrdU reduce Metri-
chor basecalling accuracy but to an extent that does not strongly affect alignment
of BrdU-substituted reads to the reference sequence. Python scripts were then de-
veloped to realign the measured current intensity to the plasmid DNA sequence.
To allow quantitative comparisons between multiple experiments, we first nor-
malized each profile by subtracting its mean current intensity. As exemplified on
Fig. 1 (c and d), the presence of BrdU increased the current intensity at many,
though not all, T positions. Since T was generally associated with the strongest
current values in native DNA, this may explain why the current perturbation as-
sociated with BrdU did not result in systematic base calling errors at T sites (Supp.
Fig. S1c). Notably, the incorporated BrdU did not visibly perturb the current at
other bases. We extracted for each pentamer the difference in median current
value between BrdUTP and dTTP samples (Supp. Fig. Sid). Almost all forward-
strand pentamers with a T in their middle displayed a positive current shift in
the presence of BrdU, with 60% showing a shift > +3 pA. On the contrary, most
pentamers lacking T exhibited a small negative shift in the BrdU sample, because
a higher mean current than in the dTTP sample was subtracted during normal-
isation. Importantly, only the signal from the BrdU-substituted (F) strand was
perturbed, while the complementary native (R) strand gave an identical signal to
the thymidine control sample (Fig. 1d, Supp. Fig. S1d). A principal component
analysis of current sequences corresponding to 1 kb showed a clear separation of
BrdU-substituted and control fragments (Fig. 1e). This indicates that the absence
of a strong BrdU-induced current shift at some positions does not preclude the
detection of BrdU-labelled replicative tracts of hundreds of bases or more. The
small number of reads from the BrdUTP sample that clustered with control reads
were most likely true thymidine reads coming from a residual amount of native
plasmid in the sample. Indeed, our parental strand degradation protocol did not
seem to completely remove the native plasmid, with as much as 18% preserved in
the absence of primer extension, most likely owing to strand reannealing (Fig. 1b).
Overall, these results demonstrate that the presence of BrdU detectably alters the
nanopore electric signal, with a signature that should become identifiable using
appropriate machine learning.

In vivo BrdU incorporation

Metrichor was designed to call the 4 canonical DNA bases. Having shown that
BrdU modified the nanopore signal on test templates prepared in vitro, we moved
to an in vivo model to develop our own basecaller to detect BrdU as a fifth DNA
base. A limiting step in machine learning is the quality of the training dataset.
To distinguish thymidine from BrdU, one needs to train a model with a large
diversity of DNA sequences containing only thymidine or only BrdU. To do so,
we took advantage of the MCMS869 yeast strain, which has been genetically modi-
tied to depend on exogenous thymidine (or a thymidine analogue) to replicate its
genome [14]. We first verified that adding BrdU to the culture medium restored
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cell growth like thymidine (Supp. Fig. Sza), albeit at a slower rate (see Discus-
sion). The cells stopped proliferating after 2-3 cycles, therefore we expected ~75%
of genomic DNA strands to be totally substituted by BrdU, the remaining ~25%
corresponding to the starting parental strands (Fig. 2a). We sequenced this BrdU-
rich sample twice on the MinlION (Rg.4, 2D protocol), together with a control
sample obtained from yeasts grown in the presence of thymidine. We obtained
20K-40K reads per sample (Table S3). The average read size was similar for all
samples (Supp. Fig. Ssa), indicating that BrdU incorporation did not substantially
fragilize the DNA nor interfere with the sequencing. After basecalling by Metri-
chor the reads were aligned on the 5288C genome by BWA MEM considering the
two complementary strands separately. 79% and 82% of the thymidine and BrdU
sample reads, respectively, were mapped. The improved mapping with respect
to the plasmid experiment is likely attributable to the improved Rg.4 chemistry.
Current intensities were then realigned on the reference genome and, as seen for
the in vitro template, the current was again positively shifted by the presence of
BrdU (Fig. 2b).

We implemented RepNano, a recurrent neural network with an architecture
similar to DeepNano [9], to convert the raw current from nanopore experiments
into a DNA sequence (Supp. Fig. S3). RepNano allows the calling of 5 bases
(A, T, G, C, B for BrdU) instead of the 4 canonical ones. To train the network,
we used the Metrichor basecalls corrected for mistakes after alignment on the
reference genome. RepNano learning was performed using a connectionist tem-
poral classification objective function [15] that uses probabilistic rules insensitive
to local misalignments between current plateaus and bases in the training sets.
We trained a first RepNano model using 660 reads from the thymidine sample
and 340 reads from the BrdU sample, assuming that all Ts were replaced by Bs
(Model 1, Fig. 2c). This model was then used to basecall all the reads from the
two samples in the 5 bases alphabet (Supp. Fig. Sga, Table S4). A false positive
rate of 3.4% of B on T sites was observed in the thymidine reads while 69% of T
sites were called B in the BrdU-enriched sample reads, in good agreement with
our 75% expectation (Fig. 2a, Table S4). Looking at the percentage of B per read,
we obtained a clear bimodal distribution allowing to classify most of the reads
from the BrdU sample as either not substituted or fully substituted (Fig. 2d, Supp.
Fig. Sgb, Model 1). The RepNano-called reads were then mapped on the yeast
genome after conversion of the Bs into Ts. The mappability of such called reads
was slightly lower than with Metrichor (Supp. Fig. Ssb, Table S5). To improve
the model, we repeated the training with the same training dataset where the
unsubstituted reads from the BrdU sample (BrdU content < 33%) were attributed
to the thymidine sample (Fig. 2c, Supp. Fig. S4b, Model 2). False positive rate
of the resulting RepNano Model 2 was reduced by a factor of 8 (0.4% of Bs in
the thymidine sample) while B content slightly increased in the BrdU-rich sam-
ple (71%), compared to Model 1 (Table S4). Moreover we obtained fewer reads
with intermediate B amount (Fig. 2d, Supp. Fig. S4b) and the mappability in-
creased (Supp. Fig. S5b). We then represented all reads from a 250 kb genomic
locus using a blue/red color map to show T/B density (Fig. 2e,f). The reads from
the thymidine sample were completely blue, whereas most reads from the BrdU-
rich sample were either fully blue (parental DNA) or fully red (BrdU-substituted
DNA), as expected.
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Figure 2: Detection of BrdU in yeast DNA. a. Scheme of the experiment: MCM869
yeasts were grown in BrdU medium for 2.5 cycles (according to OD measure-
ments) resulting in a sample enriched in BrdU-DNA (red) but still containing
native DNA (blue). b. Example of a 30 bp sequence (chri2:458000-458029,
in rDNA repeats) with the current distribution at each position (about 400
reads). Blue rectangles highlight some current shifts due to the presence of
BrdU. c. RepNano training and analysis pipeline. d. Comparison between
the two models. The proportion of the reads with different amounts of B is
represented for the thymidine and the BrdU enriched samples. e. Exemplary
reads from the BrdU-enriched sample. Reads are represented as a heatmap of
T vs. B density computed in 10 B/T sliding windows. f. Example of a 250 kb
chromosomal segment with reads from the thymidine (top) and the BrdU rich
(bottom) samples. Reads were vertically ordered according to their B density.
Only "pass" reads were used in b,d,f.
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Early S phase labelling

S. cerevisiae replication origins are precisely positioned at sequences called ARSs
(Autonomously Replicative Sequences) [16] and have been extensively studied.
To validate our BrdU tract detection and mapping procedure we labelled early-
tiring origins by synchronizing cells in G1 and releasing them into S phase in the
presence of BrdU and hydroxyurea (HU) (Fig. 3a). HU slows down replication
forks and triggers a checkpoint that prevents late origin firing [17, 18, 19]. After
30 or 60 min, when cells were still in early S phase as seen by flow cytometry
(Fig. 3b), a thymidine chase in the absence of HU was performed to allow the
conversion of replication intermediates into dsDNA (Fig. 3a and Supp. Fig. 56).
Similar protocols have been previously used to label early origins prior to mi-
croarray or sequencing analysis [20, 21, 22, 23, 24]. Genomic DNA was then
extracted and sequenced on the MinION (Rg.4), giving 416K and 44K reads for
the 30 min and 60 min sample, respectively (Table S3). The reads were basecalled
(A,T,G,C,B) using RepNano Model 2. As anticipated since the cells were only
labelled for a small fraction of S phase, the percentage of B was < 0.2% in most
reads, with more B incorporated after 60 min than 30 min (Fig. 3c). The reads
were mapped on the yeast genome after conversion of the Bs into Ts, and B/T
density was represented as a color map as described previously (Fig. 3d). Using
all the "pass" and "fail" reads, we obtained a similar genomic coverage for the two
samples (21.7X and 19.7X), but a higher replicative coverage after 60 min (1.7X)
than 30 min (0.56X), as expected. Although these low coverages did not allow to
detect enrichment of B dense fragments at single ARSs, aggregate analysis of all
early ARSs (as defined by [25]) revealed a clear enrichment of BrdU-dense tracts
(called as described in Methods) 30 min after the release in S phase (Fig. 3e). In
contrast no enrichment was observed at aggregate late ARSs. More BrdU-dense
fragments were detected 60 min after release (Fig. 3d), and those fragments were
more extensively spread around early ARSs (Fig. 3e), consistent with replication
fork progression during S phase.

Taken together, our results show that it is possible to precisely map replicative
incorporation of BrdU using nanopore sequencing and neural networks trained
on appropriate datasets.

DISCUSSION

BrdU is broadly used to label replicating DNA in yeast and mammalian cells
[26, 27]. We observed that growth of MCMS869 yeast cells was much slower in the
presence of BrdU than thymidine. However, when synchronised cells in G1 were
released into S phase in the presence of thymidine or BrdU, their progression
through the first S phase was similar, whereas cells released in the absence of
thymidine or BrdU were stalled in S phase (Supp. Fig. S2b). Similar results were
previously obtained in a comparable strain [28]. We conclude that the presence
of BrdU does not initially perturb S phase progression and that short pulses of
this analogue are suitable for replication studies. The long-term effect of BrdU
on yeast growth may arise from problems in mitosis and/or replication of BrdU-
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Figure 3: Mapping of early origins in yeast. a. Scheme of the experiment. E, early
replication origin; L, late replication origin. b. Cellular DNA was stained
with propidium iodide (PI) and cells analysed by flow cytometry to monitor
G1 arrest and S phase progression in the indicated samples. c. Proportion of
reads with different amounts of B for samples labelled for 30 or 60 min. d.
An exemplary 250 kb chromosomal segment with reads from the 30 min (left)
or 60 min (right) samples. ARS positions are indicated as dashed lines (green,
early; magenta, late; black, unknown timing [25]). e. Coverage of BrdU dense
tracts (red) averaged on rescaled inter-ARS regions using either 109 early ARSs
(top pannels) or 127 late ARSs (bottom pannels) [25]. ARSs were aligned on
the left side of each panel. The coverage of 20 sets of random tracts with the
same size distribution is plotted in blue. All "pass" and "fail" reads were used
for this figure.
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containing parental strands in subsequent S phases, which is not a concern if
BrdU incorporation is limited to short pulses as it is the case for classical single-
molecule analysis. Moreover, BrdU can enter mammalian or MCM869 yeast cells
without any permeabilisation, which makes experiments far easier and more pre-
cise than incorporation of fluorescent dNTPs as for nanochannel imaging [4, 5].

We demonstrate here that the presence of BrdU in the DNA influences the
nanopore sequencing signal. The width of current value distribution at specific
positions is 5-10 pA. The current shift induced by BrdU substitution for thymi-
dine is within the same range, meaning that B and T current distributions at a
single position overlap. As a consequence, Bs or Ts cannot be called with certainty
at all positions. This is not problematic inasmuch as our goal is to identify replica-
tive tracts of hundreds of bases but this will limit the resolution of tract ends to
~20-100 bases. This achievement already constitutes a significant improvement
compared to optical methods where reliable length measurement of replicative
tracts < 3 kb is not feasible.

Good training datasets are critical for successful machine learning. Using
a yeast strain dependent on exogenous thymidine or thymidine analogues to
replicate its genome, we obtained a broad variety of either native or fully BrdU-
substituted DNA fragments. The calling by Metrichor was good enough to map
the BrdU-substituted DNA fragments so that pairs of current and reference DNA
sequences could be given as training inputs. We implemented RepNano, a neural
network basecaller following the architecture proposed in DeepNano [9] to gener-
ate a model that was initially trained assuming that every T site had incorporated
a B in the MCM869 sample grown in BrdU medium. This first model was good
enough to reclassify the reads as substituted or not and to generate a second and
more accurate model after reallocating the unsubstituted reads from the BrdU
sample to the correct training dataset.

We then tested this model on DNA from cells synchronously released into
S phase in the presence of BrdU and HU to selectively label early ARSs. We
obtained BrdU tracts that were localised at the expected loci. This result demon-
strates the efficient identification of the canonical bases as well as of BrdU by our
basecaller.

Human replication origin identification has been controversial due to inconsis-
tencies between techniques and laboratories [29]. In principle, our neural net-
work model trained on MCM869 should be directly applicable to human DNA
and allow mapping of early replication origins from synchronized human cells,
with nanopore sequencing throughput as the only remaining limitation. With
a single MinION run, we covered ~20 times the genome of S. cerevisize and ob-
tained a replicative coverage between 0.5X and 1.7X. This is already an enormous
improvement compared to traditional single-molecules techniques such as DNA
combing, where months of work are required to collect and analyse a few hun-
dreds of replication events covering a 1Mb locus. Since the experiments presented
in this paper were performed, the throughput of a MinION run has increased ~10
fold, and new devices such as the GridION (5 chips in parallel) and the Prome-
thION (48 chips) have been released by ONT. Obtaining a new map of human
early origins by nanopore sequencing is therefore within reach.

When mapping replication in non-synchronized cells, it becomes necessary to
determine replication direction along labelled tracts so as to discriminate between
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initiation, termination and elongation signals. To do so, cells are typically consec-
utively pulsed with 2 different nucleoside analogues. Importantly, in addition to
BrdU, several thymidine analogues are available, among which iodo-, chloro- or
ethynyl-deoxyuridine have been widely used in DNA replication studies. Future
experiments will reveal which analogues alter the nanopore electric signal in a
way that allows to discriminate them from thymidine and from each other.

CONCLUSIONS

This work demonstrates for the first time the power of nanopore sequencing to
study DNA replication at the single-molecule level following replicative incorpo-
ration of BrdU. This represents an important step forward compared to current
single-molecule methods. This paves the way to genome-wide, single molecule
replication mapping studies at unprecedented high resolution, which will likely
transform this research field.

MATERIALS AND METHODS

Primer extension

pTYB21 plasmid (New England Biolabs, NEB) was linearised with EcoRV (NEB)
and purified using home-made SPRI (Solid Phase Reversible Immobilization)
beads. After initial denaturation for 5 min at 94°C, primer extension was per-
formed on 200 ng of linear plasmid, using 0.5 U/uL LongAmp Taq DNA poly-
merase (NEB) with 300 uM of each ANTP (with either dTTP or BrdUTP (Thermo
Fisher Scientific, TFS)) and 400 nM of NanoP-pTYB-F primer (5"-ATCGTCGACGG
ATCCGAATTCCCTGCAGGTAATTAAATAACTAGTTGATCCGGCTGCTAACA
AAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCT-3"; Eurofins) for 20
min at 65°C. A control (‘water” lane in Fig. 1b) with only dATP, dGTP and dCTP
was also included. The ssDNA was then digested by ExoSAP iT (TFS) for 30 min
at 37°C and the DNA was purified using SPRI beads. The size of the product was
assessed using an Agilent DNA 12000 chip on a Bioanalyzer and its amount was
quantified using Qubit dsDNA HS Assay (TFS).

Yeast

MCMS869 genotype is MATn adez2-1 trpi-1 cani-100 leu2-3 his3-11,15 URA3::GPD-
TK7x AuR1c::ADH-hENT1 bar1::LEU2 cdc21:kanMX. MCM869 was grown in min-
imum medium (Synthetic Dropout Base, DOB, with Complete Supplement Mix-
ture, CSM; MP Biomedicals) with 100 uM thymidine (Sigma-Aldrich).

To synchronise MCM869 cells in the G1 phase of the cell cycle, cells from an
overnight culture were grown for 1h3o in fresh minimum medium with thymi-
dine and synchronised in G1 by incubation for 3h in the presence of 0.2 uM
a-factor (Sigma-Aldrich). Synchronisation was confirmed by visual inspection of
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the cells with a microscope, as MATa yeasts respond to a-factor by growing a pro-
jection with a distinctive shape known as a shmoo. To check the impact of BrdU
on the first S phase, Gi-synchronised cells were washed and incubated in mini-
mum media with «-factor supplemented or not with 100 uM thymidine or BrdU
for 30 min before release into S phase by addition of Pronase (5opng/ml, EMD Mil-
lipore). Timed aliquots were fixed in 70% ethanol for flow cytometry analyses (see
below). For early S phase labelling, the synchronized cells were washed and kept
in minimum medium with 0.2 pM «-factor and 0.2M HU supplemented with 100
uM BrdU for 30 min before release into S phase by Pronase digestion. After 30 or
60 min, the cells were washed twice and resuspended in minimum medium with
100 uM thymidine for 1h to convert replication intermediates into dsDNA. The
cells were then pelleted and frozen. DNA was purified by Zymolyase, RNAse
A and proteinase K digestion followed by phenol-chloroform extraction (samples
from Fig. 2) or using Qiagen Genomic-tips according to the manufacturer instruc-
tions (samples from Fig. 3). This second method gave longer read sizes (Supp.
Fig. S5a). The size of the DNA was checked by agarose gel electrophoresis and
on an Agilent TapeStation.

Flow cytometry analysis

Cells in 70% ethanol were washed with PBS, treated with 0.25 pg/puL RNAse A
for 1h at 50°C, and with 1.8 ug/uL proteinase K for an extra hour at 50°C. Cells
were stained with 100 pg/ml propidium iodide (PI) in PBS for 15 min in the
dark, resuspended in 5 pg/ml PI, sonicated and analysed using a Cytoflex flow
cytometer (Beckman). 20,000 events were recorded for each sample, the doublets
and the debris were filtered out for cell cycle analyses.

Nanopore sequencing and data processing

MinION sequencing libraries were prepared according to the manufacturer pro-
tocols. For the plasmid, the 2D low input kit with Rg chemistry was used. For
the yeast DNA, the 2D kit with Rg.4 chemistry was used. Details about ONT
protocol and software versions used for the different samples can be found in
Table S1 and S3. Raw reads were basecalled using Metrichor (ONT) with default
parameters and aligned on the reference (plasmid or S288C genome) using BWA
MEM [13] with the -x ont2d option (-k14 -W20 -r10 -A1 -B1 -O1 -E1 -Lo). In
order to visualise current values at a specific genomic loci, the event sequences
were extracted using poretools [30] and aligned on the reference using the sam
file information and custom Python scripts. Current values were normalized sub-
tracting the whole read average current. The PCA plot was generated using R
pcaMethods library.

RepNano

We implemented RepNano, a neural network approach with the same archi-
tecture as the one proposed in DeepNano [9] to convert the raw current from
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nanopore experiments in a sequence of bases. As in DeepNano, the input of
RepNano neural network is the output from Metrichor, which segments the raw
nanopore current in plateaus of different lengths (typically from 5 to 10 current
values). Each plateau P; is characterised by its mean value m;, its standard de-
viation s; and its length ;. In fact, m; and s; are rescaled and the input of
the neural network is a 4-vector containing the rescaled mean, the square of the
rescaled mean, the rescaled standard deviation and the length of the plateau
(M;, M%,Si, li). The rescaling is performed on the whole sequence input as fol-

lows:
scale = (me75 — me25)/(m75 — m25) (1)
M; = (my — m25) x scale + me25 (2)
Si = s;*se50/s50 (3)

with m25 = percentile(m;, 25) and m75 = percentile(m;, 75), s50 = median(s;),
me25 = 0.07499809, me75 = 0.26622871 and se50 = 0.6103758.

The neural network is composed of three bidirectional Recurrent Neural Net-
work (RNN) and one time-distributed softmax layer (Supp. Fig. S3a). Each bidi-
rectionnal layer is composed of two long short-term memory (LSTM) [31] layers
with n = 20 hidden units (100 units in DeepNano), that respectively process the
input in forward (F™) and backward (B™)) directions, and then concatenate both
outputs (O?™) (Supp. Fig. S3b). The number of parameters for each layer is de-
tailed in Supp. Fig. S3c. The final softmax layer outputs a vector of length 6,
normalised to 1, that represents the probability to have A, T,C,G,BrdU(B) or no
base. Here the architecture is simplified with respect to DeepNano that outputs
two vectors, allowing a plateau to be eventually associated to two bases. Rep-
Nano was implemented in Python with the Keras library [32] and is available at
https:/ /github.com /***.

RepNano training

In DeepNano, the loss function used for the training requires a one-to-one align-
ment between the sequence of current plateaus and the DNA sequence in the
training sets. To reduce the impact of imperfect mapping, RepNano uses a con-
nectionist temporal classification loss function [33] that does not require this one-
to-one alignment. This loss function was developed in the context of speech
recognition and was designed to map a spectrogram sequence to a word sequence,
even with a non-perfect alignment between them. The DNA sequence used for
the training is the sequence predicted by Metrichor, corrected after alignment to
the yeast reference genome. We used two datasets for the training: a thymidine
dataset with normal DNA where all the sequences have only A, T,C,G bases, and
a BrdU dataset where all Ts are replaced by Bs in the target sequence. The train-
ing was done on sequences of 4-vectors of length 40 (series of 40 plateaus) and
the error between the prediction and the correct sequence was minimised using a
stochastic gradient descent optimizer implemented in Keras [32]. 1000 iterations
were used for each model.
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BrdU tract calling and coverage plots

After basecalling with the different models, the reads were mapped as above
after conversion of Bs into Ts. Files containing all the reads with the B and T
positions on the genome were generated using sam file information and a custom
Python script and were used to calculate and plot B density along the reads as
a colormap for visualisation. BrdU dense regions were called using a running
mean smoothing (w = 50 B/T) and two thresholds : (i) the maximum density of
a called tract should be > 0.8 (80% of B), (ii) the borders of the called tract should
be > 0.6. The coverage of these called tracts relative to the ARSs was calculated
by summing up all the inter ARS regions using either early or late ARSs [25].
Control sets of random regions with the same size distribution were also plotted.
The rDNA region (chriz : 440000-480000) was excluded from this analysis as
these repeats strongly affected the averaged signal.
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