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Abstract 23 

Rana temporaria occur across a large geographic and environmental gradient in 24 

Scandinavia. Several studies involving common garden experiments have 25 

established adaptive divergence across the gradient. The main objective of this study 26 

was to determine the extent of neutral and adaptive genetic divergence across the 27 

latitudinal gradient. Here we sequence genome-wide markers for 15 populations from 28 

six regions sampled from southern Sweden to Finland. Using a multivariate approach 29 

we find that 68% of the genomic variation is associated with climate or geographically 30 

structured climate. Using outlier scans and environmental association analyses we 31 

identify a set of potentially adaptive loci and examine their change in allele frequency 32 

associated with different climatic variables. Using a gradient forest analysis we 33 

identify points along three of the climate variables where allele frequencies change 34 

more rapidly than expected if it were a linear association. We identify a large 35 

threshold effect associated with BIO5 (mean temperature during the warmest month) 36 

which is seen as a rapid change in southern Sweden. By comparing the change in 37 

neutral and adaptive allele frequencies across the whole gradient, we identify 38 

southern Sweden as a region with the largest divergence between the datasets. This 39 

suggests small changes in the climate may result in a mismatch between the 40 

adaptive genotypes and the environment in these populations. Overall this study 41 

shows that genomic analyses can provide a powerful complement to common garden 42 

experiments to improve our understanding of adaptive divergence across 43 

heterogeneous landscapes.  44 

 45 

 46 

 47 
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Introduction 48 

 49 

 The geographic distribution of genetic variation across a species range is an 50 

important determinant of population persistence under changing environmental 51 

conditions (Hoffmann & Sgrò 2011). To mitigate future biodiversity loss due to 52 

climate change it is important that we identify the most important environmental 53 

drivers of adaptive divergence and determine how genetic variation contributes to 54 

adaptation. Landscape genomics methods have been employed to identify potentially 55 

adaptive loci across many study systems (reviewed in Rellstab et al. 2015). However, 56 

adaptation across environmental gradients are often characterised by divergence in 57 

multiple phenotypic traits with polygenic genetic underpinnings (Pritchard & Di 58 

Rienzo 2010; Yeaman 2015). This presents a challenge when examining non-model 59 

organisms, where the lack of genomic resources is often prohibitive in determining 60 

the genomic architecture and genetic basis of adaptation (Manel et al. 2016). 61 

However, by developing our understanding of the distribution of genetic variation 62 

(adaptive and neutral) in geographic and climate space, we can draw meaningful 63 

conclusions about the ecological determinants of species distributions and adaptive 64 

divergence without pinpointing the underlying causal variants (Jones et al. 2013; 65 

Fitzpatrick & Keller 2015; Forester et al. 2016).  66 

 67 

 Two main statistical models have been developed to identify potentially 68 

adaptive loci while accounting for population structure (reviewed in Hoban et al. 69 

2016). Population genetic methods identify loci with higher than expected 70 

differentiation (usually measured by FST) compared to neutral expectations based on 71 

population structure (Luikart et al. 2003). These methods are effective for detecting 72 

selective sweeps associated with strong selection acting on a few beneficial loci. 73 

However, the signal of divergence is difficult to detect if there is high gene flow 74 

between populations adapted to different conditions, or when the adaptive traits are 75 

polygenic with many small changes in allele frequency additively contributing to 76 

adaptation (Kawecki & Ebert 2004; Pritchard & Di Rienzo 2010). The second kind of 77 

model, termed Environmental Association Analysis (EAA; reviewed in Rellstab et al. 78 

2015), is aimed at finding associations between allele frequencies and environmental 79 
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variables, thus does not rely on strong sweeps underlying adaptation. This approach 80 

is particularly useful for comparing the importance of different environmental 81 

variables and for mapping spatial changes in allele frequencies of adaptive loci. 82 

However, EAA assumes a linear relationship between allele frequencies and 83 

environmental gradients (Thomassen et al. 2010; Fitzpatrick et al. 2015), thus 84 

confining inferences to linear responses. But non-linear patterns of genetic variation 85 

along environmental gradients are probably common, judging from laboratory studies 86 

of organismal physiology (Angilletta’s 2009 thermal adaptation book, for example), 87 

and could be important for identifying populations or geographic regions that are 88 

especially vulnerable to climate change. Thus, it is important to modify EAA such that 89 

non-linear relationships between allele frequencies and environmental gradients can 90 

be detected in nature. Here we combine a modelling approach to loci identified using 91 

FST outlier and EAA methods to identify such non-linear associations with 92 

environment in the European common frog, Rana temporaria across a latitudinal 93 

gradient. 94 

 Rana temporaria is widespread across Europe and occur throughout 95 

Scandinavia (Sillero et al. 2014). Populations occur across a wide range of habitats, 96 

which suggests adaptive divergence across the species range. Common garden 97 

experiments across 1600-km of the Scandinavian latitudinal gradient have confirmed 98 

this by establishing extensive latitudinal variation in larval and adult life history traits 99 

(Merila et al. 2000; Laugen et al. 2003b, 2005a; Palo et al. 2003a; Lindgren & Laurila 100 

2005). The geographic scale of the gradient provides an interesting system to 101 

investigate the genomics of adaptation to environment, because there is little gene 102 

flow between populations adapted to different environments.  103 

 The main objective of this study is to determine the extent of neutral and 104 

adaptive genetic divergence across the latitudinal gradient. Specifically, we aim to 1) 105 

characterise the neutral genetic structure, 2) determine the proportion of the genome 106 

associated with environmentally driven adaptive divergence, and 3) identify 107 

environmental thresholds to adaptation by examining the non-linear response of 108 

adaptive loci to climate variables. We were particularly interested in determining 109 

whether there are non-linear relationships between adaptive allele frequencies and 110 

environmental variables. Such a response would suggest that there is a threshold 111 
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along that particular environmental variable that requires a larger change in allele 112 

frequency than would be expected based on the gradual change in that 113 

environmental variable. The results have important implications for identifying 114 

populations and geographic regions that would be particularly vulnerable to changing 115 

environments.  116 

 117 

Methods 118 

 119 

Sampling & DNA extraction - To determine intra-specific population structure and 120 

adaptive variation, 163 individuals were collected from six geographic regions across 121 

~1500 km of the Scandinavian latitudinal gradient (Fig. 1; Table 1). Each region was 122 

represented by one to three populations (where a population is a pond), for a total of 123 

15 populations in the final dataset. At each sampling site, we sampled approximately 124 

10 eggs from 20-30 freshly –laid clutches (less than two days old). The eggs were 125 

transported to the laboratory at Uppsala University where they were raised in 126 

separate containers kept in climate room at 16 °C. Tadpoles were raised to Gosner 127 

stage 25 (Gosner 1960), whereafter they were euthanized with an overdose of 128 

MS222, preserved in 96% ethanol and stored at 4 °C until DNA extraction. Total DNA 129 

was extracted from one individual per clutch (henceforth family) using the Qiagen 130 

DNeay blood and tissue kit (Qiagen, CA, USA).  131 

 132 

 133 

ddRAD sequencing, de novo assembly, and variant calling - To establish a 134 

genome-wide marker set, double digest restriction-site-associated DNA sequencing 135 

libraries were prepared with the restriction enzymes EcoRI and MseI, using a 136 

modification of the protocol by Peterson et al. (2012).  We constructed 6 libraries 137 

comprising 48 samples each for single-end sequencing (125bp) on an Illumina HiSeq 138 

2500 v4 at the Functional Genomics Center, University of Zurich. Individual samples 139 

were identified by unique 5-bp barcodes. Raw sequence reads were demultiplexed 140 

using the process_radtags package from Stacks (Catchen et al. 2011). 141 

Demultiplexing was based on a unique 9-bp sequence for each individual (5-bp 142 
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unique barcode + 4-bp restriction enzyme recognition site), with 1 mismatch allowed. 143 

Adapter and other Illumina-specific sequences were removed using Trimmomatic 144 

v0.33 (Bolger et al. 2014).  145 

 De novo assembly and variant calling was implemented using pyRAD (Eaton 146 

2014) which first finds clusters within individuals based on a clustering threshold and 147 

minimum depth, and then clusters these loci between individuals (using the same 148 

clustering threshold), and identifies loci found in a user specified number of 149 

individuals. Clustering thresholds of 90-99% sequence similarity were tested; an 150 

optimum of 94% was chosen because it maximised nucleotide diversity and 151 

minimised the estimated number of paralogs in the dataset. A maximum of 4 sites 152 

with a Phred quality score <20 were allowed per sequence. Clusters were kept if they 153 

had >5x coverage per individual and were found in at least 4 individuals.  154 

 155 

 156 

 157 

Figure 1 Sampled populations across the Fennoscandian latitudinal gradient. One to 158 

three populations were sampled within each of six regions. Symbols represent the 159 

five genetic clusters found at K=5, the most likely number of divisions found by 160 
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DAPC, PCAdapt, and SNMF analyses. Geographic regions are named R1 - R6 from 161 

south to north along the latitudinal gradient. 162 
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Table 1 Summary of the diversity statistics calculated per population. The geographic coordinates (Lat, Long) are shown for 163 

each population (Pop). The geographic region (Region) to which the populations belong is shown along with the abbreviation 164 

(R1-R6) used throughout the manuscript. The number of individuals included in the analyses (n) are shown. Gene diversities 165 

(Hs), deviation from random random mating (FIS), observed heterozygosity (Ho), and the average number of heterozygous 166 

sites across all sequenced sites (AvgHet) with standard deviation (SD) are reported per population. 167 

 168 

Region Pop Lat Long n FIS Hs Ho AvgHet SD 

All    132 0.10 0.23 0.21 0.0025  

R1: Skåne  

Sk.Ho 55.859 13.764 9 -0.01 0.29 0.29 0.0033 0.0004 

Sk.SF 55.558 13.638 10 0.12 0.27 0.23 0.0030 0.0001 

Sk.SL 55.723 13.287 17 0.14 0.27 0.23 0.0031 0.0001 

R2: Uppsala  

Upp.Gra 59.878 17.667 9 0.07 0.19 0.18 0.0023 0.0001 

Upp.K 59.891 17.242 10 0.08 0.22 0.20 0.0024 0.0001 

Upp.O 60.178 17.854 9 0.07 0.21 0.19 0.0024 0.0001 

R3: Umeå  

Um.Gr 63.792 20.367 9 0.07 0.21 0.19 0.0023 0.0001 

Um.Taf 63.830 20.486 10 0.09 0.22 0.20 0.0024 0.0001 

Um.UT3 63.658 20.298 2 0.01 0.20 0.18 0.0021 0.0003 

R4: Luleå  

LT1 65.684 22.213 9 0.06 0.21 0.20 0.0024 0.0001 

LT2 65.750 21.602 3 0.03 0.24 0.21 0.0024 0.0001 

LT3 65.583 22.319 7 0.05 0.22 0.20 0.0024 0.0001 

R5: Kiruna  
Kir.G 67.111 20.656 10 0.09 0.23 0.20 0.0025 0.0001 

Kir.L 67.052 21.224 10 0.08 0.22 0.20 0.0025 0.0001 

R6: Finland  FIN 69.044 20.805 8 0.10 0.22 0.19 0.0023 0.0002 

 169 

 170 
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SNP validation - The putative variants identified though the pyRAD pipeline were 171 

filtered for possible sequencing errors, paralogs, and uninformative SNPs. The 172 

following filters were applied: 1) SNPs that were genotyped in less than 50% of 173 

individuals were removed using the --max-missing function in VCFtools v0.1.12b 174 

(Danecek et al. 2011). 2) Loci with a minor allele frequency less than 0.05 in the full 175 

dataset were removed as they are more likely to be sequencing error, and if they are 176 

true variants they are uninformative and likely to bias tests for selection (Roesti et al. 177 

2012). 3) Using a sliding-window of 10-bp we tested whether the number of variants 178 

increased towards the end of the sequence. No significant difference was found 179 

between bins, thus the sequences were not trimmed further. 4) We reduced linkage 180 

in the dataset we included only one variant per locus using the --thin function in 181 

VCFtools. 5) We assessed whether loci were in Hardy-Weinberg equilibrium (HWE) 182 

within each population using the --hardy function in PLINK (Purcell et al. 2007). Loci 183 

with an observed heterozygosity more than 0.5, and loci that deviated significantly 184 

from HWE based on the exact test (p<0.05; (Wigginton et al. 2005) were removed 185 

from the dataset if they occurred in more than 5 populations. 6) We then calculated 186 

linkage disequilibrium for each locus pair per population in PLINK v 1.07 (Purcell et 187 

al. 2007). Loci with r2 > 0.8 never occurred in more than 5 populations, so no loci 188 

were excluded at this step. 7) Finally we excluded individuals with more than 55% 189 

missingness.  190 

 191 

Summary statistics - Nucleotide diversity was calculated for each sample as the 192 

frequency of heterozygous bases (IUPAC codes) from the pyRAD output, and means 193 

were calculated per population. Although these calculations are based on sequences 194 

before final filters are implemented, two reasons convince us that these results are 195 

robust: 1) pyRAD calculates a binomial probability that a base is homozygous or 196 

heterozygous based on a maximum likelihood approach of jointly estimating the 197 

heterozygosity and sequencing error rate from the base frequencies within each 198 

individual's stacks. If the read depth of the stack falls below a user-set threshold, or is 199 

too low to make a statistical base call, the base remains undetermined. Thus the final 200 

base calls per individual should be fairly robust (Eaton 2014). 2) The post-pyRAD 201 

filters outlined in the previous paragraph do not address sequencing or SNP-calling 202 
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errors, but rather minimises missingness, systematic biases, and linkage between 203 

loci.  204 

 Further summary statistics were calculated in R v3.3.1 (R core team 2016) 205 

with the hierfstat v0.04-22 and adegenet v2.0.1 packages (Goudet 2005; Jombart 206 

2008; Jombart & Ahmed 2011). Gene diversities (Hs), deviation from random mating 207 

(FIS), and observed and expected heterozygosity are reported per population (Table 208 

1).  209 

 210 

Population structure - Pairwise population differentiation was estimated using Weir 211 

and Cockerham's FST (Weir & Cockerham 1984) as implemented in hierfstat (Goudet 212 

2005). We visualised the genetic distance between populations with a principal 213 

component analysis (PCA) implemented in PCAdapt v3.0.3 (Luu et al. 2016). The 214 

following analyses were conducted in adegenet. To test for isolation by distance, we 215 

calculated the correlation between log transformed pairwise geographic distances 216 

and scaled pairwise genetic distances (FST/1-FST) (Rousset 1997). We tested for 217 

significance using a Mantel test. We quantified the proportion of genetic variation that 218 

explained differentiation within and between populations with an analysis of 219 

molecular variance (AMOVA). Finally, we performed a discriminant analysis of 220 

principal components (DAPC) to determine the most likely number of clusters in the 221 

dataset and visualise broad-scale population structure.   222 

 223 

Climate Data - We obtained climate data from WorldClim v1.4 (Hijmans et al. 2005) 224 

at a resolution of 2.5 minutes of degrees using the R package raster v.2.5-8 (Hijmans 225 

et al. 2015). Many of these variables are derived from the same data and are highly 226 

correlated. To reduce the redundancy in the climate variables retained for analyses, 227 

we first calculated correlation between all variables, and then removed variables if 228 

they exceeded a correlation threshold. We calculated the absolute values of pairwise 229 

ranked correlation (Spearman's rho) between all 19 BioClim variables from 230 

WorldClim, longitude, latitude, and season length. Season length was calculated as 231 

the number of days above 6 and 8 °C at each sampling site, since 6 °C is 232 

approximately the development threshold of R. temporaria tadpoles (Laugen et al. 233 

2003a). We reduced redundancy in the environmental dataset by detecting pairs of 234 
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variables that had an absolute correlation >0.8, and then eliminating the one that had 235 

the highest mean correlation with all other variables (Kuhn et al. 2016). This 236 

procedure retained five BioClim variables, and these were used as the environmental 237 

variables in all remaining analyses (Fig. 2).   238 

 239 

Relative contribution of environment and IBD to genomic differentiation - We 240 

investigated the effects of climate and geography on neutral genetic structure using 241 

full and partial redundancy analyses (RDA) with variance partitioning. Redundancy 242 

analysis is a form of multivariate regression, which can be used when both the 243 

predictor and response variables are multivariate (Legendre & Legendre 2012). As a 244 

canonical extension of multiple linear regression, RDA identifies a set of orthogonal 245 

linear predictor variables that explains the most variation in a set of linear response 246 

variables. In this case each RDA axis represents a set of co-varying loci (response 247 

variables), which are correlated with co-varying environmental variables (predictor 248 

variables). RDA has greater power to detect multivariate genotype-environment 249 

relationships than methods based on distance matrices or Mantel tests (Legendre & 250 

Fortin 2010).  251 

 We created two matrices as response variables: 1) the 5 climate variables 252 

identified above, centered and standardised, and 2) geographic coordinates of each 253 

sampling site. The response matrix was the minor allele frequencies of 2081 loci for 254 

each individual. We ran a sequence of nested models to partition variation in climate 255 

and geography as explanatory variables of allele frequencies: (1) the full model 256 

including both climate and geography; (2) climate only, with the influence of 257 

geography partialled out (climate | geography); and (3) geography only, with climate 258 

partialled out (geography | climate). The difference in the variance explained by 259 

model (1) minus the sum of models (2) and (3) was interpreted as the contribution of 260 

climate and geography acting together. Overall and residual variance was calculated 261 

for each model, and the model significance was tested with 999 permutations. The 262 

RDA was conducted using the R package vegan v2.4-1 (Oksanen et al. 2015).263 
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 264 

 265 

Figure 2 Latitudinal distribution of the five BioClim variables used in this study. Each point represents a sampled population. 266 

 267 

 268 
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Signatures of adaptation: Outlier detection and genotype-environment 269 

associations - We created two datasets containing loci potentially under selection 270 

using two common approaches: 1) Outlier analyses to identify loci that are more 271 

differentiated between populations than expected under a neutral model, and 2) 272 

Environmental Association Analyses (EAA) to identify loci strongly associated with an 273 

environmental variable (reviewed in Rellstab et al. 2015). These approaches are 274 

likely to identify different loci, since their underlying assumptions are different. The 275 

Outlier dataset comprised loci identified with PCAdapt (Luu et al. 2016), and from the 276 

XTX statistic calculated in bayenv2 (Günther & Coop 2013). The EAA dataset 277 

comprised loci identified using bayenv2 and LFMM (Frichot et al. 2013).  278 

 PCAdapt identifies outlier loci as those that are more associated with 279 

population structure than expected. We used the R package pcadapt 3.0.4 (Luu et al. 280 

2016), which calculates a vector of z-scores of the how related each SNP is to the 281 

first K principal components, where K is the user-specified number of population 282 

clusters. A Mahalanobis distance is then calculated for each SNP to determine 283 

whether it deviates from the main distribution of z-scores. These scores are scaled 284 

by a constant, the genomic inflation factor, which produces a chi-squared distribution 285 

of values with K degrees of freedom. K was calculated as the most likely number of 286 

genetic clusters after testing K 1-20 and inspecting the scree plot of the proportion of 287 

explained variance for each K (Fig. S1). Based on these results, we chose K=5 for 288 

further analyses. We used a false discovery rate of 10% to identify outlier loci.  289 

 Bayenv2 estimates genotype-environment associations and an FST-like 290 

statistic (XTX) while correcting for covariance of allele frequency between populations 291 

due to neutral processes. We used bayenv2 to identify loci for both datasets. First we 292 

estimated the neutral covariance matrix based on 500 randomly selected loci. Two 293 

independent runs with 100000 MCMC iterations were run. We tested for 294 

convergence within each run by calculating Pearson's product-moment correlation 295 

(cor.test in R) between the final matrix and nine matrices printed out at 10000 step 296 

intervals (9 correlations). We constructed distance-based trees to determine whether 297 

relationships among populations remained constant within and between runs. 298 

Convergence between runs was calculated as the correlation between the final 299 

matrix in each run. Since these were highly correlated, we arbitrarily chose the final 300 
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matrix from the first run as our final covariance matrix. The full model was run using 301 

this covariance matrix, a file containing standardised measures of each 302 

environmental variable, and a genotype file containing SNP counts across all 303 

populations. We ran a non-parametric test that calculates the Bayes factor, 304 

Spearman's p, and Pearson's correlation coefficient for each genotype-environment 305 

association (-t -c -r). In addition we calculated the XTX population differentiation 306 

statistic (-X). For this test, Gunther et al. (2013) suggest ranking loci by their XTX 307 

statistic rather than selecting those above a specific threshold.  308 

 We conducted three independent runs with bayenv2 of 100,000 MCMC 309 

iterations each for each of the five genotype-environment associations, and tested 310 

convergence by calculating the correlation between runs for each statistic (BF, p, 311 

XTX). We also compared the overlap in loci identified in the top 5%, 6-10%, and 11-312 

15% ranked loci based on the XTX statistic for each environmental variable to ensure 313 

the repeatability of the results. We then ran an additional 7 independent bayenv2 314 

runs, and calculated the median result across all 10 runs as our final output. We 315 

selected the top 100 ranked loci based on the XTX statistic for the outlier dataset. For 316 

the EAA dataset we selected loci with a log10 Bayes Factor (BF) >0.5 (Kass & 317 

Raftery 1995), and absolute Spearman's rho (p) >0.3.  318 

 Finally, we screened the dataset for additional EAA loci using the Latent 319 

Factor Mixed-effect Model (LFMM; Frichot et al. 2013; Frichot & François 2015). 320 

LFMM calculates the correlation between genotype and environment while 321 

simultaneously accounting for population structure with latent factors incorporated in 322 

the model. The number of latent factors is user specified, and should represent the 323 

number of genetic clusters (K) that best describes the population structure in the 324 

dataset. As suggested by Frichot & François (2015), we estimated the most likely K 325 

by evaluating the cross-entropy criterion for K1-10 using the function snmf in the R 326 

package LEA. The most likely K was 5, which is consistent with the population 327 

structure analyses described above, and therefore LFMM was run with K=5 for each 328 

of the five environmental variables. The Gibbs sampler algorithm was run five times 329 

for each environmental variable, with 10000 cycles and a burn-in of 5000 cycles. The 330 

median of the resulting correlation scores (z-scores) was calculated across all five 331 

runs. The authors suggest a recalibration of the mean z-scores by lambda; that is the 332 
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square of the mean z-scores divided by the median of a chi-squared distribution with 333 

one degree of freedom (; ~0.455). Lambda should be close to one − but more 334 

importantly, this should produce the correct adjusted p-value frequency distribution. 335 

Adjustment of  can correct for liberal or conservative p-value distributions. We 336 

evaluated the effect of  = 0.45-1.00 on the p-value distribution for each of the 5 337 

environment-genotype associations. The shape of the distribution did not change 338 

much, but the frequency of p-values >0.1 increased as  increased (i.e. the 339 

correction was more conservative). Thus, for a lambda close to one and the correct 340 

adjusted p-value distribution, we chose  = 0.85 for BIO2, BIO5, BIO15, and BIO18, 341 

and  = 0.45 for BIO13. To control for false discoveries, we applied a Benjamin-342 

Hochberg adjustment with a false discovery rate of 5%.  343 

 344 

Genomic Turnover across ecological gradients - We assessed how genomic 345 

variation changes across Scandinavia and whether important climatic thresholds 346 

occur by fitting a Gradient Forest model (Ellis et al. 2012) to each of the SNP 347 

datasets. We compare the change in allele frequency between the adaptive loci 348 

(Outlier and EAA dataset) and a Reference dataset composed of all the remaining 349 

loci. The Gradient forest model was developed as an extension of the random forest 350 

model to assess community level responses to ecological gradients, and has recently 351 

been applied to genomic data to detect non-linear change in allele frequencies along 352 

ecological gradients (Fitzpatrick & Keller 2015). It is a machine-learning ensemble 353 

approach that fits multiple regression trees between allele frequency and 354 

environmental variables. A set of decision trees is built to describe change in allele 355 

frequency across the predictor variable range. Each split is determined by minimising 356 

the "impurity" in the data, i.e. minimising the sums of squares of the allele frequency 357 

and thus maximising the tree fit. This means the split will always describe the biggest 358 

change in allele frequency at the current point in the tree, and a relative split 359 

importance can be calculated.  360 

 The response variable was the minor allele frequencies (MAF) for each SNP 361 

dataset. We included only loci variable in more than 4 populations to ensure robust 362 

regressions. The predictor variables were the 5 BioClim variables described above. 363 

To account for unsampled geographic structure in the dataset, we also included 364 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/427872doi: bioRxiv preprint 

https://doi.org/10.1101/427872
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Moran's Eigenvector Map variables (MEM; Dray et al. 2006), which are orthogonal 365 

vectors maximising spatial autocorrelation between sampled locations. Broad-scale 366 

spatial structure is most likely explained by the most positive eigenvectors (Manel et 367 

al. 2010b, 2012; Sork et al. 2013), so we included the first half of the positive MEMs 368 

here; in total three MEM vectors.  369 

 The gradient forest model was fit to each SNP dataset using the R package 370 

gradientForest (Ellis et al. 2012). We constructed 2000 regression trees per SNP, 371 

with default values for the variable correlation threshold (0.5), the number of 372 

candidate predictor variables sampled at each split (2), and the proportion of samples 373 

used for training (~66%) and testing (~33%) each tree. The relative importance (R2) 374 

of each predictor variable was calculated as the weighted mean of the proportion of 375 

variance explained by the validation data. The cumulative importance for the change 376 

in allele frequency for each locus was calculated as the sum of the split importance 377 

across climatic variables, and the mean allelic turnover per climatic variable was 378 

calculated for each of the three SNP datasets.  379 

 Changes in allele frequency across the landscape were visualised by 380 

transforming each climatic variable by the genomic importance calculated for each 381 

SNP dataset; i.e. we produced a transformed dataset for the Reference, EAA, and 382 

Outlier datasets. The three transformed datasets were produced for climate data 383 

extracted from a raster stack covering eastern Sweden and northernmost Finland. 384 

For each dataset, the transformed variables were reduced by PCA, and a colour from 385 

the RGB colour palette in R was assigned to each of the first three principal 386 

components. Thus, for each geographic point along the latitudinal gradient, a single 387 

colour was used to represent the genomic composition in three-dimensional principal 388 

component space. To compare the genomic turnover between the neutral and two 389 

candidate SNP datasets, we calculated the distance in genomic space at each 390 

geographic point as the Procrustes residuals between the pairs of transformed 391 

matrices calculated above. The genomic difference between datasets was 392 

normalised and mapped in geographic space as before.  393 

 394 

 395 

Results 396 
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  397 

ddRAD data generation and variant filtering - The final dataset consisted of 132 398 

individuals from 15 populations (2-17 individuals per population; Table 1). There were 399 

2081 SNP loci, with a mean depth of 17.9 - 25.5x and genotyping rate of 72-97% per 400 

population. A summary of the number of raw reads, the output from pyRAD, and the 401 

final dataset can be found in Table S1.  402 

 403 

Genetic variation and Population structure - The highest genetic diversity was 404 

found in the southernmost region, R1, while the rest of the gradient was 405 

characterised by lower genetic diversity that was similar across all regions (Table 1). 406 

Specifically, the mean gene diversity (HS) and heterozygosity (HE) in Skåne were 407 

0.28 and 0.25, respectively, while they were only 0.22 and 0.19 across the rest of the 408 

gradient. Similarly, the frequency of heterozygous sites across all sequenced sites 409 

averaged ~1/300 (0.0031) in R1, and ~1/400 (0.0024) across the rest of the gradient.  410 

 411 

Measures of genetic differentiation showed evidence of population structure within 412 

and between regions. AMOVA indicated that most genetic variation (68.72%) was 413 

found within populations, while significant variation was found among populations 414 

within regions (6.05%) and among (25.23%) regions (Table S2). The mean global FST 415 

was 0.21 (Fig. 3, Table S3), suggesting strong population structure on average 416 

between populations. However, pairwise genetic distance was much lower within (FST 417 

= 0.06) than between (FST = 0.16) regions, and there was significant isolation by 418 

distance (R=0.434, p=0.001) across the sampled area.  419 

 To determine the broad-scale population structure, we first visualised the 420 

genetic distance between populations using PCA, and then estimated the most likely 421 

number of genetic clusters using DAPC. The first two axes of the PCA explained 422 

approximately 24% of the variance. PC1 (~15%) partitioned the two southern regions 423 

(R1 and R2) from the rest, and PC2 (~9%) partitioned populations latitudinally, with a 424 

graded differentiation from R2 to R6 (Fig. 4). 425 

 Discriminant analysis of principal components (DAPC) predicted five genetic 426 

clusters, corresponding to R1, R2, R3, R4, and the three northern populations (Fig. 427 

1). When separating the dataset into increasing numbers of clusters, populations 428 
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grouped out sequentially from south to north, except that R5 and R6 always grouped 429 

together.  430 

 431 

Redundancy Analysis - The full RDA model included climate and geographic 432 

coordinates and explained 76.6% of the total genetic variation (p=0.001). Based on 433 

the partial RDA, climate was significantly associated with genetic variation (climate | 434 

geography; p=0.002), and explained 49.5% of the total variation. The variation 435 

explained by geography alone (geography | climate) was much less (11.4%) and was 436 

non-significant. The proportion of genetic variation explained by spatially structured 437 

climate (climate ∩ geography) was 39.1%.  438 

 439 

Signature of adaptation: Outlier detection and genotype-environment 440 

associations - PCAdapt identified 50 outlier SNP loci and the XTX statistic from 441 

bayenv2 returned the top 100 outlier loci. A total of 28 loci were identified by both 442 

methods, so that the Outlier dataset comprised 122 unique loci (Fig. S2). 443 

 The EAA dataset comprised loci identified using Bayenv2 and LFMM as 444 

associated with the five chosen BioClim variables. Bayenv2 identified 123 unique loci 445 

(6% of the total loci tested), with 13% of these loci associated with multiple 446 

environmental variables (Fig. S3). LFMM identified 398 unique loci (~19% of the total 447 

loci), with ~30% associated with multiple environmental variables (Fig. S4). Only 22 448 

loci were identified by both LFMM and Bayenv2; thus, the final EAA dataset 449 

comprised 499 unique loci (Fig. S5).  450 

 There were 56 loci present in both the Outlier and EAA datasets (Fig. S6). 451 

This represents 45.9% of the Outlier dataset, and 11.2% of the EAA dataset. 452 
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 453 

Figure 3 Heatmap of the pairwise genetic divergence (FST) between all sampled 454 

populations. Darker squares indicates higher FST, with colour scaled as shown in the 455 

key. Geographic regions are differentiated with shapes corresponding to populations 456 

in Fig. 1. Colours correspond to the PCA shown in Fig. 4. The dendrogram shows the 457 

population structure between southern (R1-R2) and northern (R3-R6) Scandinavian 458 

populations. 459 

 460 

 461 
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 462 

Figure 4 Graph of the first two axes of a Principal Component Analysis of all 463 

populations. The proportion variation explained by each axis is shown in brackets. 464 

Regions are shown in different colours.   465 

 466 

 467 

 468 

Genomic Turnover - We used the mean R2 averaged over loci in each dataset as a 469 

measure of the fit importance and thus how informative each dataset was (Table 2). 470 

The Reference and EAA datasets performed similarly, with mean R2 values of 37.6% 471 

and 38.9%, respectively. The Outlier dataset showed a better fit on average, with a 472 

mean R2 of 56.5%. The frequency distributions of R2 values differed among datasets. 473 

The Reference and EAA datasets both had fairly flat distributions, with 30.5% and 474 

34% of loci with R2>0.5. The R2 of the Outlier dataset was right skewed, with 67% of 475 

loci identified with R2>0.5.  476 

 477 

 478 

 479 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/427872doi: bioRxiv preprint 

https://doi.org/10.1101/427872
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 480 

Table 2 Summary of the three SNP datasets and their results from the Gradient 481 

Forest analysis. The model was fit only to SNPs that were variable in more than five 482 

populations.  483 

 484 

SNPs nr of SNPs 
polymorphic in 
>5 populations 

SNPs with  
R2 >0.5 (%) mean % (range) 

Reference 1427 1034 292 (30.5%) 37.6 (0.2, 90.0) 

Outlier 122 115 77 (67.0%) 56.5 (0.8,91.5) 

EAA 499 339 115 (33.9%) 38.9 (0.0,79.0) 

SNPs, Single Nucleotide polymorphism 485 

 486 

 487 

 The most important variables for all three datasets were distance and either 488 

MEM1 or MEM2 (Fig. 5). This suggests that geographic distance is an important 489 

determinant of the genomic differences between populations, and that the MEM 490 

variables captured important environmental variation that had not been included in 491 

the model. When considering only the BioClim variables, BIO5 and BIO2 were the 492 

most important variables for the Outlier dataset, and BIO5 for the EAA dataset. 493 

Notably, the Outlier dataset had a higher fit importance (R2) to the BIO2 and BIO5 494 

variables than the EAA or Reference dataset. This suggests that these variables 495 

explain the change in allele frequency in the Outlier dataset better than the change in 496 

allele frequency in the Reference our EAA datasets.  497 

 We found that three BioClim variables explained a more rapid change in allele 498 

frequencies in the adaptive SNP datasets than in the reference datasets. The 499 

cumulative importance of allele frequency changes in the Outlier and EAA datasets 500 

differed in shape and magnitude for BIO5 (maximum temperature during the warmest 501 

month), BIO18 (precipitation during the warmest quarter), and MEM2 (Fig. 6 panels 502 

A, D, H). Most notably, the cumulative importance of the Outlier dataset showed big 503 

changes in allele frequencies at two points (19°C and 20.5°C) along BIO5 (maximum 504 

temperature during the warmest month). A similar, but slightly weaker response was 505 

seen in the EAA dataset (arrows in Fig. 6A). To examine this more closely we plotted 506 

the change in minor allele frequencies of five of the Outlier loci with the highest 507 

relative importance (R2) associated with BIO5 (Fig. 7A). We find that allele 508 

frequencies in R2 and R3 differ dramatically from the rest of the gradient, while 509 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/427872doi: bioRxiv preprint 

https://doi.org/10.1101/427872
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

frequencies in R1 are similar to R4-R6. This suggests a threshold response to the the 510 

higher temperatures experienced by R2 and R3 populations (Fig. 7B), where the 511 

adaptive genotype requires a big change in allele frequencies compared to the rest of 512 

the gradient. The rate of genomic turnover was less dramatic in response to BIO18 513 

(precipitation in the warmest quarter, mm), but Outlier and EAA datasets both 514 

showed a higher cumulative importance than the Reference data (arrow in Fig. 6D). 515 

Finally, the Outlier dataset showed a higher cumulative importance associated with 516 

BIO2 (mean diurnal range in temperature) that was not recovered by the EAA 517 

dataset.  518 

 Spatial mapping of the model for all three datasets showed that genomic 519 

turnover was maximal between R1 and R2, followed by the change between R2 and 520 

the rest of the populations. The three precipitation variables explained most of the 521 

variation in the Reference data allele frequencies (biplots in Fig. 8A, C, and E), while 522 

BIO5 (maximum temperature during the warmest month) was important for both the 523 

EAA and Outlier datasets. The biggest difference in genomic turnover between the 524 

adaptive loci and the Reference dataset was found in southern Sweden (Fig. 9), 525 

which suggests that the biggest change in adaptive allele frequencies is required 526 

between populations from R1 to R2.  527 

 528 

 529 
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 530 

 531 

Figure 5 The relative importance (R2) of the predictor variables used in the Gradient 532 

Forest analysis, calculated as the weighted mean proportion of variance in allele 533 

frequency explained by a given environmental variable. Results are shown for the 534 

five BioClim variables, geographic distance, and three Moran's Eigenvectors (MEM1-535 

3) explaining geographic structure in the dataset. The columns show results for the 536 

SNP datasets. EAA: Adaptive loci from environmental association analyses; Outlier: 537 

Adaptive loci identified using PCAdapt and XTX statistic in BayEnv2; Reference: the 538 

remaining loci. Lighter colours indicating higher importance; e.g. BIO2 and BIO5 539 

explain a large proportion of variance in the Outlier dataset. The relative importance 540 

of variables associated with the Reference dataset provides the null model. Here 541 

BIO5 and BIO2 explain more variance in the Outlier SNP dataset than in the 542 

Reference dataset, which suggests that these environmental variables are important 543 

drivers of adaptive divergence. 544 
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 545 

 546 
Figure 6 A comparison of the cumulative importance of each predictor variable for the three SNP datasets (see Key). We 547 

include the five BioClim variables (A-E) along with geographic distance (F) and three Moran Eigenvector Map variables (G-I) 548 

that explain geographic structure in the data. The maximum height of a line indicates the total allelic turnover associated with 549 

that variable. The relative importance of a particular point along the predictor variable is seen by the change in line height. The 550 

position of all populations along each variable is shown with coloured symbols along the bottom of each graph, with the 551 

populations from the same region following the same colour and shape codes as before (see Key). The Reference dataset 552 

shows the cumulative importance of each variable in explaining the change in allele frequency of neutral loci.  553 
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 554 

 555 

Figure 7 Standardised change in the minor allele frequency in five loci from the 556 

Outlier dataset that were associated with BIO5 is shown across the latitudinal 557 

gradient (A). Allele frequencies were all standardised to range between 0 and 1. 558 

Allele frequency was found to be dramatically different in R2 and R3 compared to the 559 

rest of the gradient. The change in allele frequency between R1 and R2 explains the 560 

dramatic difference between the predicted allele frequencies in the Reference and 561 

Outlier datasets (Fig. 9). The geographic distribution of BIO5 (B) is shown to illustrate 562 

the small change in temperature between R1 and R2. The dashed line indicates the 563 

temperature associated with this threshold-like response in the change in allele 564 

frequency.  565 

 566 

 567 

 568 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/427872doi: bioRxiv preprint 

https://doi.org/10.1101/427872
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 569 

Figure 8 Predicted spatial distribution of genomic composition as determined for the 570 

EAA (A), Outlier (B), and Reference (C) datasets. The five BioClim variables are 571 

transformed by their relative importance in predicting genomic turnover in each 572 

dataset, and visualised as a PCA with a colour assigned to the first three principal 573 

components. Population genomic composition is expected to be similar on the same 574 

colours. The inset in each panel shows a PCA of the transformed BioClim variables, 575 

with the most important variables (see Fig. 5) shown with arrows. Sampled 576 

populations are shown on the PCA and map using the same white symbols as in Fig. 577 

1.  578 

 579 

 580 
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 581 

Figure 9 Difference in genomic turnover between the reference and adaptive 582 

datasets (a & b), and the two adaptive datasets (c). Distances were calculated as the 583 

difference between Procrustes residuals in the matrix comparisons and scaled by the 584 

maximum distance found for each comparison. Large differences between datasets 585 

are indicated with warmer colours. Sampled populations are shown using white 586 

symbols (see Fig. 1).  587 

 588 

 589 
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Discussion 590 

 591 

 By combining landscape genetics and genomic turnover analyses we describe 592 

how climate and geography structure R. temporaria genomic variation across the 593 

Scandinavian latitudinal gradient. Genomic variation in this system is strongly related 594 

to geography, but also shows evidence of adaptation to climate. A surprisingly large 595 

portion of the total genomic variation is attributable to climate variables (38%) or 596 

geographically structured climate (30%). We also find a threshold response in to 597 

BIO5 (maximum temperature in the warmest month), implying that a thermal 598 

threshold occurs in southern Sweden. Finally, our results show that the biggest 599 

mismatch between neutral and adaptive allele frequencies occurs in southern 600 

Sweden, largely driven by the threhold response to BIO5. Our results show that an 601 

analysis of the geographic distribution of genomic variation in R. temporaria provide 602 

important insights into the climatic drivers and potential adaptive thresholds across a 603 

well-studies system.  604 

 605 

Population Structure 606 

 We found strong population structure across the latitudinal gradient, with the 607 

biggest divergence in allele frequencies between R1 and the rest of Sweden. 608 

Sequential pairing off of the rest of the populations and strong signals of IBD are 609 

indicative of an expansion from a southern colonisation. These results support 610 

previous work based on mtDNA that has suggested a single colonisation route and 611 

northward expansion in Scandinavia by R. temporaria (Palo et al. 2004). Previous 612 

phylogenetic work from the same study indicated that all populations in Scandinavia 613 

and northwards assign to the eastern mitochondrial haplogroup (Palo et al. 2004), 614 

and the contact zone between the eastern and western lineages has been described 615 

in Northern Germany (Schmeller et al. 2008). However, population assignment 616 

analysis based on microsatellite data found that some southern Scandinavian 617 

populations (including from R1) assigned up to 100% to the Western lineage based 618 

on multilocus genotypes (Palo et al. 2004). This explains the divergence of the 619 

southern populations, perhaps even up to R2, from the rest of the gradient. Overall 620 

our results support previous work that asserted that two mitochondrial lineages 621 
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colonised Scandinavia from the south; via Denmark and Sweden. A contact zone 622 

between these lineages in southern Sweden resulted in the divergent allele 623 

frequencies in this region compared to the rest of the gradient. The eastern 624 

mitochondrial haplotype occur throughout extant Scandinavian populations, which 625 

suggests that gene flow from the populations with the eastern haplogroup have since 626 

swamped and replaced the western haplogroup (Palo et al. 2004).  627 

 628 

Geography and Climate determine genotype 629 

 We found that climate and geographically structured climate explained a large 630 

proportion (76.6%) of the total genomic variation. Climate independent of geography 631 

and geographically structured climate explained similar amounts of variation (38% 632 

and 30%, respectively). Strong clinal genetic structure across the Scandinavian 633 

latitudinal gradient which has been attributed to consistent selection gradients co-634 

varying with geography (Palo et al. 2003b, 2004; Cano et al. 2004). However, our 635 

results suggest that a significant proportion of the adaptive divergence across the 636 

gradient could be associated with climate variables that are not latitudinally ordered. 637 

Season length (number of days above 6 °C, the developmental threshold for R. 638 

temporaria tadpoles; Laurila et al. 2001; Laugen et al. 2003b; Muir et al. 2014a) and 639 

temperature during larval development (30 days after spawning) are two 640 

environmental variables that are commonly attributed to the latitudinal adaptive 641 

divergence (e.g. Laugen et al. 2003b, 2005a). While season length is latitudinally 642 

ordered, water temperatures during the larval phase peak at mid-latitudes (Laugen et 643 

al. 2003b). Common garden experiments have found that several larval traits - egg 644 

development time, size at hatching, larval growth rate, size at metamorphosis, and 645 

resting metabolic rate - follow this curvilinear distribution across latitude (Pahkala et 646 

al. 2002; Laugen et al. 2003b, 2005b; Palo et al. 2003b; Lindgren & Laurila 2005, 647 

2009). Adult body size, skeletal growth, and lifetime activity follow the same 648 

curvilinear distribution, and are maximised at mid-latitudes (Laugen et al. 2005b; 649 

Hjernquist et al. 2012).  650 

Together with our results show support for latitudinally ordered adaptive divergence, 651 

but also present evidence that climatic drivers that are not latitudinally ordered are 652 

important for adaptation. 653 
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 654 

Non-linear changes in allele frequencies and threshold effects 655 

 We find a strong threshold effect in a subset of Outlier loci associated with 656 

BIO5 (maximum temperature during the warmest month). This suggests that there is 657 

a physiological threshold in response to BIO5 (or something related to BIO5). 658 

Thesholds in polygenic traits are likely to be common in heterogenous environments 659 

(Roff 1996). Indeed, we find that four of the five BioClim variables showed an 660 

elevated cumulative importance for the adaptive loci compared with the Reference 661 

datasets. Of these, BIO2 (mean diurnal range in temperature) and BIO18 662 

(precipitation during the warmest quarter) show evidence of thresholds at which allele 663 

frequencies change more rapidly than in the Reference dataset. Geographically the 664 

BIO5 threshold separates R2 and R3 from the rest of the gradient. We found 665 

dramatically different allele frequencies in a set of Outlier loci associated with BIO5 in 666 

this region. Comparison in genomic turnover between the datasets identified the 667 

transition between R1 and R2 to diverge the most between the Reference and 668 

adaptive datasets. This is indicative of strong adaptive divergence in this region.  669 

 Adaptive divergence across the latitudinal gradient in Europe has been 670 

extensively documented in plants and animals (e.g. Laugen et al. 2003b; Debieu et 671 

al. 2013; Vergeer & Kunin 2013). Much of this work is based on common garden and 672 

reciprocal transplant experiments have established divergence in various phenotypes 673 

across the environmental gradient. Landscape and population genomic methods 674 

provide a powerful approach to complement and extend these results in several 675 

ways. These include determining the proportion of genomic variation associated with 676 

adaptation, identifying the genomic underpinnings and architecture of adaptation, 677 

identifying important climatic drivers of adaptive divergence, and identifying adaptive 678 

thresholds in response to a specific variable. More generally, this approach can have 679 

valuable conservation implications, particularly for mitigating the loss of biodiversity 680 

due to climate change. One of the most valuable outcomes lies in identifying 681 

populations where a small change in environment will result in a large mismatch 682 

between genotype and environment. These populations are particularly vulnerable to 683 

extinction, and conservation management action would have to be carefully 684 

considered. 685 
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