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Many natural habitats are structured, which imposes certain environmental conditions
on extant populations. Which conditions are important for coexistence of diverse commu-
nities, and how social traits in such populations stabilize, have been important ecological
and evolutionary questions. We investigate a minimal ecological model of microbial
population dynamics, that exhibits crucial features to show coexistence: Populations are
repeatedly separated into compartmentalized habitats on a timescale typically longer
than growth. In this framework, we consider several scenarios for possible interactions
between different strains and their environments, which includes sharing a common
nutrient source or expression of public goods that potentially increase population size.
Examples for these public good dynamics are collective resistance against antibiotics,
and enhanced iron-availability due to pyoverdine. We show that the two features of a
long mixing timescale and spatial compartmentalization are already enough to enable
coexisting strains. In the case of public goods, stable coexistence immediately entails
cooperation.

I. INTRODUCTION

Natural environments are seldom uniform in space and
time. For its inhabitants, the spatial and temporal struc-
ture of the environment has profound effects on their
growth, their interactions and their survival. The effect of
structure in space (Nei, 1973; Rainey and Travisano, 1998;
Slatkin, 1987; Wright, 1943) and time (Letten et al., 2018;
Stewart and Levin, 1973), and the constraints they im-
pose on populations have been studied extensively in the
context of population genetics and ecology (Hanski, 1998;
Levin, 1976). From these investigations it is generally
understood that heterogeneities allow multiple species to
coexist (Amarasekare, 2003), with more complex envi-
ronments usually admitting more diverse compositions of
populations. If heterogeneities are hierarchically struc-
tured, their impact on the eco-evolutionary population
dynamics can be described by multilevel selection (Okasha,
2006; Wilson, 1975): There, fast growth is often favored
on lower levels, describing individuals or cells, but the
dynamics on all levels can depend on many other factors.

Nowadays, a large effort goes into trying to understand
such diverse communities of microbes (Cordero and Polz,
2014). These exist in biofilms, in guts of higher animals,
and many other relevant places, where they are important
for ecological, economic and medical affairs. For these
populations similar issues are of interest: How can these
communities be so diverse, how can these groups sur-
vive and thrive together, and what role does a structured
environment play? Empirical and theoretical answers

∗ l.geyrhofer@technion.ac.il
† nbrenner@technion.ac.il

point towards a few common themes. Diverse populations
can interact via coupled metabolisms, where mutualistic
cross-feeding (Goldford et al., 2018; Harcombe et al., 2014;
Müller et al., 2014) or trade-offs in allocation between
multiple resources (Posfai et al., 2017; Taillefumier et al.,
2017), both allow for coexistence. Besides these intrinsic
mechanisms, spatial structuring and compartmentaliza-
tion are also found to contribute to diverse microbial
populations and their cooperation (Cremer et al., 2011,
2012; Lampert and Tlusty, 2011; Manhart et al., 2018;
Matsumura et al., 2016; Melbinger et al., 2010, 2015;
Traulsen and Nowak, 2006; Wienand et al., 2015).

The ecological and environmental structuring of mi-
crobial communities also allows to address more funda-
mental problems in evolutionary biology: For example,
the evolution of multicellular organisms from single celled
ancestors likely required the formation of stable cell col-
lectives engaged in cooperative interactions. The fact
that multicellularity evolved multiple times (Grosberg
and Strathmann, 2007), hints that the conditions for this
are probably not too restrictive. Indeed, experimental
studies showed that in yeast multicellular aggregates read-
ily form when environmental conditions impose a selective
advantage to groups of cells (Hammerschmidt et al., 2014;
Ratcliff et al., 2012; Rose et al., 2018). Understanding
the ecological conditions required to form stable collec-
tives can shed light on their evolutionary origin. Some
researches have argued that such ecological scaffolding can
provide the necessary support the evolutionary transition
of collectives into new individuals themselves (Black et al.,
2018; Rainey et al., 2017).

One natural example of an ecological system with
strongly structured environments are tidal cycles on rocky
shores (Blaustein and Schwartz, 2001; Dayton, 1975;
Sousa, 1979) (see also Fig. 1): High tide dilutes pop-
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Figure 1 (A) A rocky shore exposed to tidal cycles can represent an example for the dynamics considered in
this article. Nutrients are replenished and contents of all small tidal pools are mixed during high tide, while allowing for
segregated growth during low tide. Such an environment allows coexistence and cooperation between multiple microbial strains.
Pictured is the coastline of Haifa (Israel) near Tel Shikmona. (B) Schematic depiction of cycles of growth, mixing and
reseeding. Our model of many microbial populations growing in compartmentalized demes can be described by multilevel
selection. Two levels are given by the growth dynamics within demes, and the cyclic dynamics of growth, mixing and reseeding
on a longer timescale.

ulations into small tidal pools and replenishes nutrients,
while at low tide remaining cells utilize these resources
to replicate. This cyclic tidal dynamics may be more
complex, but its crucial features include the spatial segre-
gation of pools, and a temporal scale determined by the
tides, which is long compared to growth. These features
can be realized in contemporary laboratory experiments,
for instance by enclosing populations in milli- and micro-
fluidic droplets (Baraban et al., 2011; Cottinet et al.,
2016), which are pooled and then seeded periodically into
new droplets with fresh medium.

In this article, we analyze a minimal model of this
environmental structuring, which combines spatial seg-
regation with limited resources and a temporal cycle of
mixing and reseeding. We develop a mathematical frame-
work, suitable for microbial populations, which can en-
compass various interactions between multiple microbial
strains. Growth-related processes within a single habitat
are described by deterministic differential equations, that
include all interactions between strains and interactions
with their shared environments. The dynamics on the
second, longer timescale of mixing cycles is modeled by
a discrete map for the distribution of inoculum composi-
tions, where the seeding of new demes is stochastic.

In this framework, we show that coexistence is a very
generic outcome with these two conditions of compart-
mentalized populations and a long mixing timescale. In
particular, we compare a simple growth model with shared
resources, to the enzymatic degradation of antibiotic haz-
ards, and to resource extraction via siderophores, where
the latter two are examples for public good dynamics.
While the specific dynamical interactions are different,
coexistence – and thus cooperation via public goods –
between strains can be mediated by this spatio-temporal
structuring of the environment.

II. POPULATION DYNAMICS IN
SPATIO-TEMPORALLY STRUCTURED HABITATS

Our model describes microbial populations growing in
a large number of compartmentalized habitats (called
demes) for a time much longer than their doubling time.
Within a deme these populations feed on a single resource,
which can deplete such that growth terminates at a time
Tdepl. Contents of all demes are mixed after time Tmix

into a common pool. Most of the time, we assume that
Tmix is slightly larger than Tdepl, such that resources are
depleted, but cell death is not yet an important aspect of
the population dynamics. After mixing, the pool is diluted
by a factor d and cells are again seeded into demes: The
cycle starts anew with another round of growth, which
is terminated again at Tmix. In Fig. 1B these cycles
are illustrated schematically. This cyclic dynamics of
growth, mixing and reseeding is qualitatively consistent
with tides on a rocky shore, and more quantitatively
with distributed millifluidic droplet experiments recently
developed for laboratory studies of microbial populations
(Baraban et al., 2011; Cottinet et al., 2016).

The two types of dynamics – growth within demes, and
the overall cycles – are largely decoupled. In order to
separate them also in notation, we always use lowercase
letters, like ni, to indicate quantities in an inoculum. In
general, the inoculum is defined as the set of all seeded
cells in a deme. An index (usually i) denotes strain i, and
we do not specify the actual number of strains further.
For representations in figures we only use two strains. The
observables in the inoculum serve as initial conditions for
the dynamics within demes, where the explicitly time-
dependent quantities are given by uppercase letters, like
Ni(t). A summary of the notation can be found in Table I.
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A. Long-term cycles of mixing and reseeding

For the dynamics of the longer timescale of cycles, only
the initial and final numbers of cells in each deme are
important. A single deme can be seeded with multiple
strains, described by the vector of inoculum sizes n =(
n1, n2, . . .

)
. The final number of cells for each strain,

N =
(
N1, N2, . . .

)
, depends on this inoculum size n, and

how strains interact during growth. All environmental
conditions are assumed to reset to identical values at the
time of seeding, which includes replenishing resources.
Then, growth can be represented by a deterministic map
from initial conditions to the vector of final population
sizes at the time Tmix,

n 7→ N(Tmix;n) . (1)

In order to analyze the dynamics over cycles, we focus of
the distribution of inoculum sizes over all demes. How
this distribution maps to a new distribution of inoculum
sizes in the next cycle is sufficient to understand the
overall dynamics. This can already be answered using
the general form of growth in Eq. (1). Details of these
growth processes are specified below, in section II.B.

If the inoculum is small compared to the size of the
total pool, we assume that n in a single deme follows an in-
dependent Poisson distribution for each strain, P

[
n
∣∣n] =∏

i P
[
ni
∣∣ni] and P

[
ni
∣∣ni] = exp(−ni)nnii /(ni!). A Pois-

son distribution is already characterized by its mean n,
such that we only need to follow the dynamics of these av-
erage values. This assumption of a Poisson distribution in
the inoculum is consistent with microfluidic experiments,
when only few cells are enclosed in a droplet (Bachmann
et al., 2013; Baraban et al., 2011; Cottinet et al., 2016).
In order to start a new cycle, the pool is diluted by a
factor d � 1, which indicates the ratio of the average
population sizes at the end of the last cycle to the new
average inoculum sizes. Then, n evolves as

n(τ+1) = d
∑
n

P
[
n
∣∣n(τ)

]
N(Tmix;n)

= d
〈
N
∣∣n(τ)

〉
, (2)

with the index τ counting the number of elapsed cycles.
The angular brackets used in Eq. (2) denote the averaging
over all demes, implied by the global mixing step. In
general, this cycle dynamics is a non-linear map from
the average inoculum size in the last cycle to the average
inoculum size in the new cycle, n(τ) 7→ n(τ+1). When we
want to emphasize this dependence we explicitly write
n(τ) after a vertical line inside the angular brackets. Most
of the time, however, we just use e.g.

〈
Ni
〉

for average
final population sizes started from the various seeding
compositions.

For the cycle dynamics, all cells are collected from every
deme, and during seeding they are diluted and distributed
into the same number of demes – so the actual number of

Inoculum size n = (n1, n2, . . . , ni, . . . )

Total inoculum size n = n1 + n2 + · · ·+ ni + . . .

Composition of inoculum xi = ni/n

x = (x1, x2, . . . , xi, . . . )

Seeding probabilities P
[
n
∣∣n,x] =

∏
i
(nxi)

ni

ni!
e−nxi

Average over seeding n ≡
〈
n
∣∣n,x〉 =

〈
n
〉

x ≡
〈
x
∣∣n,x〉 =

〈
x
〉〈

f(n,x)
〉

=
∑

n P
[
n
∣∣n,x]f(n,x)

Cycle index (τ)

Mixing time Tmix

Depletion time Tdepl

(
n, environment

)
Within-deme dynamics Ni(t) = Xi(t)N(t)

Population size N = (N1(t), N2(t), . . . )

Population composition X = (X1(t), X2(t), . . . )

Growth rate αi(t) = (1 + δαi)α(t)

Yield ϕi(t) = (1 + δϕi)ϕ(t)

Resources S(t), S(0) = S0

ϕ ∼ 1⇒ N(Tdepl) ≈ O
(
S0

)
Depletion α(t > Tdepl) = 0

Population expansion ξ(t) = exp

(
t∫
0

dt′ α(t′)

)
Public Good Dynamics

Production rates ρ = (ρ1, ρ2, . . . , ρi, . . . )

ρ1 > 0, ρi ≈ 0, i ≥ 2

Antibiotics parameters B(t);κ, γ, µ

⇒ α(t), see Section IV.A

Pyoverdine parameters P (t);σ

⇒ ϕ(t), see Section IV.B

Table I Notation used throughout the main text.

demes drops out; It is only important that enough demes
exists, that the inoculum size distribution can be sampled
sufficiently.

To follow the long-time-evolution of the inoculum, a
transformation of variables provides additional insight:
we define the total sizes in inoculum and during growth
as n =

∑
i ni and N =

∑
iNi. In order to track how

this population is composed, we introduce the fractions
xi = ni/n and Xi = Ni/N , which we summarize again as
vectors x and X. Then, the mapping for inoculum size
dynamics can then be stated as

n(τ+1) = d
〈
N
∣∣n(τ),x(τ)

〉
, (3a)

x(τ+1) =

〈
N X

∣∣n(τ),x(τ)
〉〈

N
∣∣n(τ),x(τ)

〉 . (3b)

Due to the global pooling step we average the total num-
ber of cells for each strain

〈
NXi

〉
, and the total popu-

lation size
〈
N
〉

before taking their ratio. The dynam-
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ics of the population composition can be reformulated
using the covariance, Cov

[
X, N

]
=
〈
NX

〉
−
〈
N
〉〈
X
〉
,

solved for
〈
NX

〉
/
〈
N
〉
. Then, defining ∆X(Tmix;n,x) ≡

X(Tmix;n,x) − x as the change in composition during
growth in a single deme, we can subtract x(τ) from
Eq. (3b), rendering it equivalent to

∆x(τ+1) =
〈
∆X

〉
+ Cov

[
X, N/

〈
N
〉]
. (4)

The dynamics in Eq. (4) is analogous to the Price equa-
tion (Gardner, 2008; Price, 1970), which is one possible
framework for multilevel selection (Okasha, 2006). In
general, the Price equation describes the dynamics of a
quantitative trait (in our case the average composition
within demes) due to its inherent transmission bias and
how it covaries with fitness (here the final population
sizes). In our model two terms have a clear interpretation
on which level of selection they act: The average change
of the population composition,

〈
∆Xi

〉
, describes selec-

tion among cells within a single deme. Typically,
〈
∆Xi

〉
will be positive for strains with larger growth rates. The
second term Cov

[
Xi, N/

〈
N
〉]

indicates selection among
different demes in the pooling and reseeding step, where
larger final sizes are favorable at this level of selection
over the longer timescale of cycles.

The dynamics in Eq. (4) allows to encode effects that
have been termed Simpson’s paradox (Blyth, 1972; Simp-
son, 1951). In general, these Simpson-type effects are
counter-intuitive statistical observations that require ad-
ditional structure of the underlying data. The illustration
in Fig. 2 depicts this situation: Local competition shows
the opposite outcome from the global dynamics in the
frequency dynamics. There, the ’green’ strain always
declines in frequency within each group,

〈
∆Xgreen

〉
< 0,

as it is slower growing. However, a larger initial frac-
tion of the ’green’ strain correlates with larger final sizes,
Cov

[
Xgreen, N/

〈
N
〉]

> 0. If this correlation is strong
enough, then due to the global pooling, the ’green’ strain

can increase in frequency over cycles, ∆x
(τ+1)
green > 0. Ex-

actly this mechanism is important for coexistence (or even
fixation) of costly traits in the population.

As stated in Eq. (1), our model does not include stochas-
tic effects for the growth processes within a single deme
itself. However, the seeding process with its distribution
of inoculum sizes provides already a stochastic component
in the overall dynamics. This stochastic seeding is crucial
for Simpson-type effects to occur: If all populations are
seeded with identical initial conditions, the distinction
between different demes does not provide any additional
structure. Mathematically, the covariance term in Eq. (4)
would vanish without variation in seeding.

B. Growth dynamics within demes

Within a single deme, we consider the growth dynamics
of multiple strains Ni(t), and the time-evolution of the

Figure 2 ’Simpson’s paradox’ visualized. If a strain de-
creases in frequency in direct competition (even in each group,
as shown on the right), its overall frequency can still increase
in the total pooled population (on the left), when the compo-
sition positively correlates with final group sizes. In order to
observe this effect, two conditions are required: variation in
initial conditions, and large enough differences in final sizes.
Both of these will occur readily in our model: small inoculum
sizes will induce different composition of initial conditions,
while different population compositions result in variation in
final size from either differences in resource efficiency, or other
social traits.

resource concentration S(t):

∂tNi = αiNi , (5a)

∂tS = −
∑
i

αiNi
ϕi

, (5b)

where different strains i are characterized by their growth
rates αi and yields ϕi. In general, these two parame-
ters αi(t) and ϕi(t) can be time-dependent or influenced
by additional observables, that are not yet contained in
Eqs. (5). Such explicit time-dependence can also imply
a dependence on Ni(t) or S(t). Indeed, we assume that
αi(t) = 0, when resources are depleted within a deme,
S(t) = 0 for t > Tdepl. This process of depletion is ex-
plicitly modeled by Eq. (5b), where the initial amount of
resources S0 decreases with each newly grown cell, using
yield ϕi as conversion factor between cell numbers and
resource concentration. Thus, the decreasing resource
concentrations can be seen as a timer to stop the growth
dynamics.

Similar to the dynamics over cycles, we use total pop-
ulation size N(t) and fractions Xi(t) of different strains,
which transforms Eqs. (5) into

∂tN = αN
(
1 +

∑
i

δαiXi

)
, (6a)

∂tXi = α δαiXi

(
1−

∑
j

δαj
δαi

Xj

)
, (6b)

∂tS = −αN
ϕ

∑
i

1 + δαi
1 + δϕi

Xi . (6c)

Here, we separated the average growth rate α and aver-
age yield ϕ from deviations of individual strains, αi =
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(1 + δαi)α and ϕi = (1 + δϕi)ϕ. These averages α and ϕ
are defined as arithmetic mean over all strains, and are
independent of the individual compositions within demes.
Eq. (6b) describes the frequency changes in a multi-species
Lotka-Volterra model, also known as replicator dynam-
ics, which has been studied extensively (Hofbauer and
Sigmund, 1998; Murray, 1989; Nowak, 2006). For us,
however, the dynamics of the population size N is im-
portant as well, because interactions between microbial
strains do not only change the frequency dynamics, but
also how frequency dynamics couples to the population
size dynamics. The covariance term in Eq. (4) indicates
exactly this fact.

A simplifying assumption, that will help to solve
Eqs. (6), is to allow time-dependent averages of growth
rate α(t) and yield ϕ(t), while differences between strains,
δαi and δϕi, are constant. This separation is useful for
microbial populations, where differences are likely small.
With the average growth rate α(t), we can define the
average expansion factor of a population as

ξ(t) ≡ exp
( t∫
0

dt′ α(t′)
)
. (7)

For the special case of constant growth rate, α(t) = α,
this reduces to ξ(t) = exp(αt). Using ξ, the solutions to
total size N and population fractions Xi in Eqs. (6) can
be stated as

N(t;n,x) = nξ
(∑

j

xjξ
δαj
)
, (8a)

Xi(t;n,x) = xiξ
δαi/

(∑
j

xjξ
δαj
)
, (8b)

with n and x the initial conditions in a given deme. The
time-dependence in these solutions enters only via the inte-
gration limit in ξ(t). Besides separating time dependence
from initial conditions, another advantage of definition
(7) is that interactions between strains – such as public
good dynamics – will manifest as changes in ξ as well, as
we explain below.

In the mapping over cycles (3), we are interested in
solutions of the within-deme dynamics at the time of
mixing Tmix. One step towards obtaining these values is
computing the expansion factor at the time of depletion,
ξ(Tdepl), which can be derived by integrating resource use,
Eq. (6c), from S(0) = S0 to S(Tdepl) = 0,

S0ϕ(0)+

Tdepl∫
0

dt S(t)
(
∂tϕ
)
(t) = n

∑
i

xi
ξ(Tdepl)

1+δαi − 1

1 + δϕi
.

(9)
For time-constant yields ϕ(t) = ϕ, and a sufficiently
large amount of resources, such that ξ � 1, this relation
simplifies: The integral with its explicit time-dependence
drops, and Tdepl only enters via the final value of the

expansion factor ξ(Tdepl). Consequently, Eq. (9) reduces
to

S0ϕ

n
≈ ξ

∑
i

xiξ
δαi

1 + δϕi
,

which we can approximately solve as

ξ
(
Tdepl(n,x)

)
≈ S0ϕ

n
G(n,x) , (10)

G(n,x) = 1 +
∑
i

xi
(
δϕi − δαi log(S0ϕ/n)

)
.

For small differences between the strains, δαi, δϕi � 1,
we have G ≈ 1 and thus to leading order ξ ≈ S0ϕ/n. For
the resource consumption dynamics, ξ(Tdepl) including
the corrections G(n,x) can be interpreted as a (non-
linear, but monotonic) transformation of the depletion
time Tdepl: With that context, in demes with increased
yield,

∑
i xiδϕi > 0, strains will grow longer (larger ξ),

while in demes with fast growth,
∑
i xiδαi > 0, the time

to depletion decreases (smaller ξ).
For the cycle dynamics in Eqs. (3), we still need the

value of ξ(Tmix) instead of ξ(Tdepl). However, we assume
that strains stop growing when resources are depleted,
and α(t) = 0 for t > Tdepl. Then, ξ stays constant for
depleted resources. In the opposite case, Tmix < Tdepl, not
all resources are used up. We show in Appendix A that
depleted resources are actually a necessary condition for
the stable growth of a strain in the cycle dynamics. Each
strain that does not deplete all nutrients when grown
alone will ultimately go extinct. Thus, the relevant case
is faster depletion than mixing, Tdepl < Tmix, such that
ξ(Tmix) = ξ(Tdepl), and we will use the expression (7) as
ξ(Tmix), as long as the within-demes leads to depleted
nutrients.

III. ISOCLINES OF THE CYCLE MAPPING

Before analyzing how public goods shape interactions
within demes, we continue building the framework with
the resource consumption dynamics. With both the
stochastic seeding in Eq. (3), and the solutions for popula-
tion size trajectories, Eq. (8), we now combine these two
approaches. In particular, we will focus on the structure
of isoclines of the cycle mapping. Isoclines are curves in
phase space – spanned by the coordinates of the average
inoculum (n,x) – that indicate conditions where one of
these variables stays constant upon evaluating the cycle
map, while other variables can change. Each variable in
phase space features an isocline, which separates regions
it increases, from regions where it decreases over cycles.
As our mapping is non-linear, we sometimes find multiple
(even non-connected) branches of isoclines. Inspecting
all isoclines simultaneously allows to qualitatively map
how trajectories evolve over cycles: Fixed points of the
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mapping exists at the intersection of all isoclines, where
none of the variables changes.

To obtain these isoclines, we need to evaluate the rela-
tions

0 ≡ ∆n? = d
〈
N
〉
− n? , (11a)

for the total population size and

0 ≡ ∆x?i =
〈
NXi

〉
/
〈
N
〉
− x?i . (11b)

for each of the population fractions. In order to specify
the isocline, we use a superscript ? to mark the variable
that is constant over one cycle.

As we will see below, two main parameters emerge, that
determine the position of these isoclines in phase space,
while leaving their general shape invariant. Explicitly,
the position of the population size isocline, ∆n? = 0, is
largely determined by the dilution rate d. In contrast, the
population composition isoclines, ∆x?i = 0, are mostly
determined by growth rate differences δαi. An important
observation is that these parameters do have negligible
influence on the respective other isocline. Thus, we argue
that changing dilution rate d will often allow to find
intersecting isoclines and generate a coexistence fixed
point, where multiple strains are present and stable over
cycles.

Illustrations of our results will only use two strains
(i = 1, 2). Then, the dynamics can be specified with only
the total inoculum size, n ≥ 0, and the fraction of the first
strain, 0 ≤ x1 ≤ 1. Isoclines will be depicted using blue
lines for the total inoculum size isocline, and orange lines
for the fraction isocline. Examples are shown throughout
all Figs. 3, 5, 6, 7, 10 and 12. In all figures, we also always
assume that strain 1 is slower growing, δα1 < 0. For
the resource consumption dynamics, a trade-off for being
more efficient in resource use exists, δϕ1 > 0. Algorithms
for computing the exact values of these relations in phase
plane (as shown in figures) are presented in Appendix D.

A. Population size isocline

The isocline for the total inoculum size, Eq. (11a),
separates regions in phase space where inoculum size in-
creases over one cycle, ∆n(τ+1) > 0, from regions where
it decreases, ∆n(τ+1) < 0. It can be computed by insert-
ing N(Tmix;n,x), Eqs. (8a), into the mapping for n(τ+1),
Eq. (3a), and expanding this expression up to linear order
in δαi, which corresponds to a weak selection limit. As a
further step in its derivation, we use the approximation
of ξ for resource consumption, Eq. (10), which cancels
linear terms in δαi and introduces corrections in yield
differences δϕi. Explicitly, these two steps are given by

n(τ+1) ≈ d
〈
nξ
〉

+ d
∑
i

δαi
〈
xinξ log ξ

〉
(12a)

≈ dS0ϕ
(

1 +
∑
i

x
(τ)
i δϕi

)
. (12b)
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Figure 3 Dynamics of inoculum over multiple cycles
with resource consumption. Trajectories of average inocu-
lum size n and average inoculum composition x1 are displayed
in purple, where connected dots indicate one cycle of growth,
mixing and reseeding. Dark purple points indicate starting
points for these trajectories, which are followed for 50 cycles,
and can end in stable fixed points (full green points). Empty
red points are unstable fixed points, which also includes the
whole n = 0 axis. Isoclines for total population size, ∆n? = 0,
are shown in blue, while isoclines for the population composi-
tion, ∆x?1 = 0, are shown in orange. Hatched regions indicate
inocula where either size n or frequency x1 increases over
one cycle, while outside the respective parameter decreases.
The four panels explore the effect of changing dilution rate d
and growth rate differences δα1. Horizontally δα1 is constant,
while vertically d is constant. Parameters not stated in panels
are δϕ1 = 0.2, αTmix = 24.

This latter expression only depends on n(τ) in the ne-
glected sub-leading terms, which implies a few conse-
quences: First, without any dependence on n, Eq. (12b)
is already an approximation for the isocline n? itself, as
can be observed when comparing it to Eqs. (11a). More-
over, the average inoculum size is supposed to reach the
value determined by Eq. (12) already after a single cycle.
In Fig. 3 we show that deviations from this single step
approximation occur for small inoculum sizes, which also
appear when the linear expansion in δαi starts to break
down. For large inoculum sizes, however, a single step
is often sufficient to describe the cycle dynamics for the
total inoculum size, as shown for the extended dynamics
in Figs. 5 and 7.

From relation (12) we can recognize the main parameter
that influences the position of the dilution line is given
by the product of dilution rate d, the initial substrate
concentration S0 and yield ϕ, as n? ≈ dS0ϕ. In general,
we expect that the dilution rate d is the parameter most
easily adjusted in experiments. Substrate concentration
can also be changed, but this has other implications on
the dynamics as well: For instance, depletion time will

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 28, 2018. ; https://doi.org/10.1101/429605doi: bioRxiv preprint 

https://doi.org/10.1101/429605
http://creativecommons.org/licenses/by/4.0/


7

change, and thus the inequality Tdepl < Tmix needs to
be checked again. Furthermore, growth processes can
depend on absolute population sizes. Average yield ϕ
just determines how many cells can grow from one unit of
resources S. It can be chosen 1, such that S is measured
in the number of potentially growing cells.

Another observation in Eq. (12) is that changes in δαi
only play a minor role in determining the position of the
total size isocline. In fact, corrections are only second
order O

(
δα2, δα δϕ

)
, as seen in the computation going

from (12a) to (12b). Numerical examples corroborate
this observation, shown in Fig. 3, where the blue lines of
population size isoclines are almost identical for the two
sets of panels AC and BD.

B. Population composition isocline and Simpson-type
effects

The population composition isocline is relevant for treat-
ing Simpson-type effects (see Fig. 2): It is the boundary
line between regions where frequency of the strain i in-

creases, ∆x
(τ+1)
i > 0, from regions where it decreases,

∆x
(τ+1)
i < 0. Thus, for strain 1 with δα1 < 0, we find

these Simpson-type effects in the whole region in phase
space where the average frequency increases over a single
cycle. In addition, both boundaries, x?i = 0 and x?i = 1,
are part of the multi-branched composition isocline: We
do not consider additional processes, that would allow
for switching between strains or the generation of new
strains. Thus, if the dynamics starts on these boundaries
it will remain there.

The more interesting cases are branches not on these
boundaries: If the isocline cuts through the phase plane
for n > 0, the dynamics potentially exhibits a coexistence
fixed point, when the dilution rate d is adjusted such
that both isoclines intersect. We can derive its condition
by inserting the within-deme solutions into the cycle
mapping: Assuming again weak selection, we then expand

the expressions for frequency change ∆x
(τ+1)
i , Eq. (4), up

to first order in growth rate differences δαi,〈
∆Xi

〉
≈ δαi

〈
xi log ξ

〉
(13a)

−
∑
j

δαj
〈
xixj log ξ

〉
,

Cov
[
Xi, N/

〈
N
〉]
≈
〈
xi(ω − 1)

〉
(13b)

+δαi
〈
xi(ω − 1) log ξ

〉
−
∑
j

δαj
〈
xiω
〉〈
xjω log ξ

〉
+
∑
j

δαj
〈
xixj log ξ

〉
,

where ω = nξ/
〈
nξ
〉

is a weighting factor describing devi-
ations from the expected final population size.

Similar to before, we can insert the expansion factor ξ
for resource consumption, which also depends on differ-
ences in growth rates and yields, δαi and δϕi. Keeping
only first order terms in both these differences, we see
that two expressions above turn into〈

∆Xi

〉
≈ δαi

〈
xi log S0ϕ

n

〉
−
∑
j

δαj
〈
xixj log S0ϕ

n

〉
,(14a)

Cov
[
Xi, N/

〈
N
〉]
≈
∑
j

δϕjCov
[
xi, xj

]
. (14b)

For only two strains, we can explicitly evaluate the av-
erages over the Poissonian inoculum distribution, as we
show in Appendix A.3. There, we approximate the com-
position isocline to leading order as

∆x?1 = 0 ⇔ n ≈ |δϕ1/δα1|
log(S0ϕ)

. (15)

A dependence on the actual fractions x
(τ)
1 will only appear

in higher orders of δα1 and δϕ1, which is consistent with
the very straight (orange) lines depicted in Fig. 3. As a
general result, we see that decreasing growth rate differ-
ences, will push this isocline to larger inoculum sizes, as
can be discerned from Fig. 3 where panels B and D have
a smaller value of the difference. This strong dependence
on δαi of the composition isocline is in stark contrast
to the position of the population size isocline, where the
value of δαi only appears in higher orders. The dilution
rate d plays no role in the position of the composition
isocline, as it cancels already when calculating the ratio
in the cycle mapping, see Eq. (3b).

C. Coexistence fixed points and their stability

In the last section we worked out the main parame-
ters determining the position of the two isoclines in the
resource consumption dynamics: The position of the pop-
ulation size line depends largely on the dilution rate d.
Deviations from a vertical line in phase space, ie. con-
stant in n, appear due to linearly weighted differences
in yield δϕi, see Eq. (12b). In contrast, the position of
the composition isocline strongly depends on growth rate
differences. Its shape, however, is given by a constant
n, and we find no deviations in xi up to linear order in
the differences δαi and δϕi. We find a coexistence fixed
point, when these two lines intersect.

In order to understand the stability of a coexistence
fixed point, it is important to examine the stability of
the single strain fixed points first. Those exist at the
boundaries x1 = 1 and x1 = 0, which are both part of the
multi-branched composition isocline. Fig. 3 illustrates
this situation. The intersections of the population size
isocline, Eq. (12b), with these two boundaries determines
these two single strain fixed points at n?1 ≈ dS0ϕ(1 + δϕ1)
and n?2 ≈ dS0ϕ(1− δϕ1). These two expressions can be
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Figure 4 Coexistence regions for resource consump-
tion dynamics within demes. Two strains can coexist in
the dynamics over cycles, if they exhibit a trade-off between
fast growth and high yield: Shaded regions indicate stable
coexistence, outside this region the one of the strains will take
over. Here, strain 1 is slower growing, δα1 < 0, but more
efficient in its resource use, δϕ1 > 0. If average number of
cells in the inoculum (≈ dS0ϕ) increases, the efficient strain
is less likely to be seeded into demes alone and consequently
requires a much larger yield to generate the same number
of cells to contribute to the pool at the time of mixing. We
observe this effect for large growth rate differences (on the
right), where the value of the growth rate difference starts to
become irrelevant and final sizes of the slower growing strain
in shared demes become negligible. For the parameters δα1

and δϕ1 indicated by blue dots, we show trajectories in Fig. 3.
Depending on the dilution rate d, these parameters are either
inside or outside the coexistence region.

obtained by evaluating the approximation for the isocline
at either x1 = 1 or x1 = 0, where the isocline itself linearly
interpolates between these two point. The approximations
derived for both isoclines, size and composition, show
that to first order the population size isocline exhibits
a larger tilt, since the composition isocline is almost a
straight vertical line. Then, for positive δϕ1 > 0 we can
choose a value of the dilution rate d, that the larger n?1
appears in a region where the the fraction x1 is supposed
to decrease, while n?2 appears in a region where x1 is
increasing (Fig. 3AD): Both single strain fixed points
are unstable with respect to invasion by the other strain.
Consequently, the intersection in the center of the phase
plane, which indicates a coexistence fixed point, will be
stable. Fig. 4 depicts these coexistence regions obtained
for two strains. For a given dilution rate d, coexistence is
possible when a trade-off between growth rate differences
and yield differences exist. Parameter combinations where
where we find this outcome are illustrated in different
shades of brown for varying dilution rates. In general,
a larger inoculum size (larger d) requires a larger yield
difference for coexistence. In Appendix A.2 we extend

this result, to show coexistence between multiple strains
is also possible, when in each pair of strains both single
strain fixed points are unstable against invasion of the
other strain.

In natural populations, we also expect that dilution rate
can fluctuate, and reach values that allow for coexistence.
Fluctuations have also been identified to enable multiple
strains to coexist in a similar setting (Ernebjerg and
Kishony, 2011).

The previous reasoning, and in particular approxima-
tions for isoclines, works well for small δαi and δϕi. If
growth rate differences become large, however, we can use
a different argument that could explain the coexistence
observed in the upper right corner of Fig. 4. There, the
coexistence region starts to become independent of δα1,
and all demes shared between the two strains will typi-
cally end up with almost only the faster growing strain,
as it is outgrowing the more efficient strain with a larger
yield, δϕ1 > 0. Only if this efficient strain is seeded
alone, it can grow to the large final sizes implied by the
larger yield. These two effects need to balance for coexis-
tence: The increased final population sizes in demes with
only the efficient strain needs to make up for the lower
probability of seeding the efficient strain alone. With a
Poisson distribution for seeding, this probability is given
by P

[
only strain 1

∣∣n1, n2] = exp(−n2)
(
1 − exp(−n1)

)
.

Thus, depending on bottleneck sizes in each cycle, the
efficient strain is exponentially suppressed in the Poisson
seeding: This coexistence mechanism only works for small
inoculum sizes, otherwise it would require unrealistically
large δϕ1.

IV. PUBLIC GOOD INTERACTIONS WITHIN DEMES

Public goods are environmental compounds that pro-
mote or enhance growth, and are available to all cells
within a shared environment. Often, public goods need
to be actively produced and can generate additional eco-
logical interactions with the environment, which can lead
to more complex trajectories Ni(t). Here, we analyze
two classes of public good interactions: One is collec-
tive resistance to antibiotics, mediated by secretion of
an antibiotics-hydrolyzing enzyme. The second class of
interaction involves active extraction of a resource from
the environment, such as iron-chelation by extracellular
pyoverdine. These two extensions of the resource con-
sumption model provide examples for a time-dependent
growth rate α(t) in the case with antibiotics, and a time-
dependent yield ϕ(t) generated by the interactions with
pyoverdine. In order to couple these dynamics to our
spatio-temporal model, we add an additional dynamical
observable to the within-deme system, Eqs. (5), which
then influences either α(t) or ϕ(t).

In our formalism, changes in the growth process gen-
erate deviations on how ξ depends on the inoculum and
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other environmental conditions. Thus, after stating these
additional dynamical observables, we derive its influence
on ξ(n,x) and analyze isoclines of the ensuing cycle map-
ping.

A. Active reduction of antibiotic hazards

Antibiotic resistance, provided by extracellular en-
zymes, can be considered a prime example for a public
good: After the enzyme has been produced and excreted
by a cell, its surrounding population can benefit from
reduced antibiotic concentrations. In the following, we
consider a scenario where an antibiotic is supplemented
with a concentration B(0) = B0 in all demes at each seed-
ing step. If at least one strain is present, that is able to
significantly reduce this concentration over time, the over-
all population may be able to grow again. This reduction
of the antibiotic concentration can lead to cross-protection
of other strains in the same environment, which has been
found experimentally (Domingues et al., 2017; Nicoloff
and Andersson, 2015). We assume that resistance to the
antibiotics comes at a cost in terms of growth rate, as
has been described directly in (Melnyk et al., 2015) and
implied indirectly in the results of (Chuang et al., 2009).
Moreover, it has been reported that the effectiveness to
treat bacterial populations with antibiotics depends on
the initial number of present cells (Artemova et al., 2015;
Jepson et al., 2016; Tan et al., 2012; Udekwu et al., 2009),
especially if the inoculum is small. Exactly this inoculum
effect will provide the variation in final sizes to generate a
large covariance term in the change of composition, such
that slower growing, producing strain will coexist or even
fixate in the population.

Several observations have been made over the last few
decades, on which we base our model: First, growth rate
of microbes in the presence of antibiotics is proportional
to growth rate in absence of antibiotics (Lee et al., 2018;
Tuomanen et al., 1986). Moreover, it is reasonable to
assume that the death rate is bounded by a maximal
value. Thus, a common model for the growth rate of
microbial populations exposed to antibiotics is a sigmoidal
Hill-function (Regoes et al., 2004),

αi(B) = αi(0)
1− (B/µ)κ

1 + (B/µ)κ/γ
, (16)

where the base growth rate can vary between strains,
αi(0) = (1 + δαi)α; B/µ = 1 indicates the ’minimal in-
hibitory concentration’, where growth rate crosses zero
and becomes a death rate; γ determines the maximal
death rate for large concentrations B, αi(B → ∞) =
−αi(0)γ; and finally, κ indicates the steepness of the
transition between growth and death rate around con-
centrations B/µ ≈ 1, with large κ implying an almost
step-like switch from unhindered growth to rapid death,
and small κ a more gradual transition.

In addition to this effect of antibiotics on growth rate,
we explicitly consider the active reduction of antibiotic
concentration in a deme,

∂tB = −
∑
i

ρiNiB , (17)

where ρi characterizes the rate of resistance of strain i,
incorporating both expression rate of active enzymes and
efficiency of the degradation reaction. This antibiotic
concentration B(t) evolves simultaneously with the dy-
namics of the population sizes Ni(t) and the resource
concentration S(t) in Eqs. (5) in each deme.

Coupling these interactions – how antibiotic concentra-
tion changes the overall growth rates in a deme, Eq. (16),
and how the antibiotic concentration is reduced, Eq. (17)
– generates a race between two processes. Either the
amount of antibiotics is large enough to kill all cells within
a single deme – or microbes can reduce the concentration
below B(t)/µ < 1 before they go extinct, after which
the population starts recovering. In this setting, resis-
tance and recovery is mostly a dynamical effect. If we
furthermore assume Tmix long enough, such that recover-
ing populations deplete all nutrients, we will find either
a fully grown population or no cells at all. Then, the
expansion factor can be stated as

ξ
(
Tmix(n,x)

)
≈ S0ϕ

n
Θ

[
n
∑
i

xi
ρi
αi
− λ
(
log(B0/µ)

)2]
,

(18)
neglecting the sub-leading terms of orders δαi and δϕi, see
Eq. (10), which would give the multiplicative correction
G(n,x). The Heaviside-Theta function Θ indicates the all-
or-nothing effect on the growth of microbes, which is the
main change in ξ (since Θ(y) = 1 for y ≥ 0 and Θ(y) =
0 for y < 0). Moreover, λ = κγ/(1 + γ) summarizes
parameters of the interactions between antibiotic and
microbes. Details on the derivation of Eq. (18) can be
found in Appendix B.1.

In general, the approximation in Eq. (18) is valid for
B0/µ > 1, where cells need to reduce antibiotics, and
would die without fast enough reduction. If B0/µ < 1,
all populations can already grow at the beginning, and
antibiotic reduction only speeds up the growth process.
This speed up can generate a large enough differences
in final sizes, which in turn can lead to a large enough
covariance Cov

[
Xi, N/

〈
N
〉]

for the producing strain to
increase in frequency. Nevertheless, the opposite outcome
of the non-producing strain outgrowing the producing
strain is possible as well. Details depends on comparing
the mixing time Tmix to the slowed down growth with
only few producing cells that lead to a long Tdepl. Thus,
restrictions on mixing times Tmix that allow coexistence
are very stringent for B0/µ < 1.
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Analysis of isoclines

The dynamics of antibiotic reduction can be analyzed in
the same way as before, via isoclines of the cycle mapping,
Eqs. (11). For the following, we only consider a single
producing strain, ρ1 > 0, and one non-producing strain
ρ2 = 0. The cost of production demands δα1 < 0. Then,
we expect only populations to grow that have enough
producing cells in the inoculum, with the threshold n1 '
(λα1/ρ1)(logB0/µ)2 derived from the argument of Θ in
Eq. (18). In the cycle mapping, the Poisson distribution
in the seeding step smears out this hard cutoff for the
resulting final sizes.

At first, we check the limiting case of only a single strain,
which produces the public good. Despite the smearing
of final sizes, the cycle map of this single strain increases
sharply around the threshold of enough producers. This
steep increase exhibits either no or two (non-zero) fixed
points, depending on the dilution rate d. The critical
value for d can be derived by requiring that the inoculum
size determined by resource limitation, Eq. (12b), is larger
than than the inoculum size for successful antibiotic reduc-
tion. Explicitly, we have dS0ϕ ' (λα1/ρ1)(logB0/µ)2. If
two fixed points exist, then the larger one is stable (from
resource limitation), while the lower fixed point (from
antibiotic reduction) acts as boundary for the basin of
attraction to extinction. More details can be found in
Appendix B.

For two strains, the population size isocline will inter-
sect the x1 = 1 axis at exactly these two values for n?,
as long as d is large enough to fulfill the condition in the
last paragraph, see Fig. 5. From the stable fixed point
(on the right, with larger inoculum sizes) it extends down
to lower x1 values along the condition derived before for
resource consumption, Eq. (12). Without any differences
in yield, δϕ1 = 0, it is a straight line. The other condition,
limited by antibiotic threat, extends along n1 = const,
and thus the isocline will scale with n ∼ x−11 . Both parts
of the isocline will meet, when x1 becomes small enough
and the isoclines connects these two descriptions.

The population composition isocline, 0 = ∆x?1, is
determined by the balance of the local losses in fre-
quency and the coupling to population size changes,
0 =

〈
∆X1

〉
+ Cov

[
X1, N/

〈
N
〉]

. As we assume δα1 < 0
for the producing strain, the first term is usually negative.
Inspecting the expansion in growth rate differences, see
Eq. (13), we observe that one term does not depend on
δα1 (contrary to the resource consumption before, factors
of δαi and δϕi in ξ are negligible for antibiotic reduction).
This term,

〈
x1(ω − 1)

〉
, is responsible for large values in

the covariance, required for coexistence: Inserting ξ for
antibiotics, ∆x?1 can be written as

0 =
(〈
x1Θ

〉
/
〈
Θ
〉
−
〈
x1
〉)
−O

(
|δα1|

)
, (19)

where Θ abbreviates the full expression of the threshold

in ξ. The first bracket indicates the difference between
the average inoculum fraction of surviving populations
and the average fraction in the inoculum itself. This
term is expected positive, as surviving populations likely
have a larger fraction of the producing strain. However,
this difference decreases with increasing inoculum sizes,
as then more populations survive, and the two averages
become closer. Numerically, we find an exponential decay
in n1, until n1 reaches its threshold value in the argument
of Θ. For n1 larger than this threshold, the difference
decays algebraically with an exponent close to −1. The
dependence on the non-producer inoculum size n2 is weak.
Thus, n1 fully specifies the shape of

〈
x1(ω−1)

〉
across the

whole phase plane (n, x1). To compute the isocline, the
decay of this (positive) expression needs to be balanced
by terms of order O(δα1); due to this coefficient δα1 their
magnitude varies a lot less. Hence, for the isocline we seek
curves where the first term in Eq. (19) is almost constant,
which happens along n1 ≈ const. Balancing terms we
approximate the scaling of the isocline as

∆x? = 0 ⇔ n ∼ 1

δα1x1
, (20)

which holds as long as enough cells of both strains are in
the inoculum.

If the initial fraction of the producing population is
large x1 ∼ O(1), then during the time required to reach
B(t)/µ < 1 the non-producing strain can go extinct if
it started from too small inoculum sizes. This effect is
visible in Fig. 5, when the (orange) composition isocline
asymptotically approaches the x1 = 1 axis.

The influence of the two other parameters of initial
antibiotic concentration B0/µ and the resistance rate
ρ1 can also be discerned by analyzing the threshold in
the expansion factor, Eq. (18). Details can be found in
Appendix B.2.

Similar to the resource consumption, we again estab-
lished the dilution rate d as the main parameter for the
position of the population size isocline: For coexistence,
the relevant part of this isocline is identical to the deriva-
tion before. In contrast, the position of the composition
isocline depends strongly on small changes in δα1. Again,
changing any of these two parameters barely influences
the shape of the respective other isocline, as we show
in Fig. 6. In this figure, we sweep through 2 orders of
magnitude in δα1 and keep the dilution rate constant for
panel A, while panel B depicts the case with constant δα1

and a range of dilution rates d. The actual value of d can
be discerned from the intersection with the x1 = 1 axis
given by the single strain fixed point n ≈ dS0ϕ. Only
when the intersection of the isoclines occurs on the re-
source limited part of the population size isocline, we
find a stable coexistence fixed point. As soon as this
intersection moves (with changing parameters) through
the transition to the antibiotic limited part of the isocline,
this fixed point acquires complex eigenvalues, which be-
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Figure 5 Dynamics of inoculum over multiple cycles
with a collectively reduced antibiotic hazard. Trajec-
tories in inoculum size n and inoculum fraction x1 are shown
in purple, starting at dark purple points. In general, strain
1 grows slower, δα1 < 0, and reduces the antibiotic concen-
tration, ρ1 > 0, while strain 2 does not contribute to the
degradation, ρ2 = 0. During the initial time of within-deme
dynamics the dying population needs to reduce the antibiotic
concentration before all cells can grow again. For the dynamics
over cycles, the blue and orange lines indicate the isoclines for
total inoculum size and inoculum composition. Blue hatched
areas indicate an increase of the average inoculum size n
and orange hatched regions depict an increase in the average
population composition x, with isoclines shown as solid lines.
The four panels show two values of growth rate differences,
δα1 = −10−2 (A,B) and δα1 = −10−3 (C,D). Dilution rates
(indicated by average inoculum sizes for growing populations)
are dS0ϕ = 60 (A,C) and dS0ϕ = 30 (B,D). All panels exhibit
the same initial antibiotic concentration B0/µ = 1.25, and
ρ1/α = 5 · 10−3.

come unstable and complex at the tip of the transition.
Interestingly, at first this unstable complex fixed point be-
comes a stable limit cycle, with ever oscillating producer
and non-producer populations. This is an example for
a Neimark-Sacker bifurcation (Wiggins, 2003). However,
moving the intersection further along the population size
isocline, this limit cycle becomes unstable as well, and
later the complex eigenvalues disappear, further down the
antibiotic limited part, see Fig. 6.

In addition to these semi-analytical results, we ar-
gue that the stability of fixed point can be qualitatively
checked by considering how the isoclines cut the phase
plane, and which implications this has for the direction
of a trajectory. In Fig. 5, shaded regions indicate inocu-
lum sizes, where either the total inoculum size n, or the
fraction x1 increases over one cycle. At a fixed point in
the region of the resource limited part of the population
size isocline, trajectories point towards the fixed point,
which is thus stable. In contrast, the flow of trajectories
indicates that a fixed point in the antibiotics limited part
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Figure 6 Zoom onto relevant parts of isoclines for
antibiotic dynamics when changing the two main pa-
rameters. (A) Variation of growth rate difference, δα1 =
10−1 . . . 10−3, changes the composition isocline (orange lines).
In contrast, this change in δα1 leaves the population size iso-
cline (blue lines) almost unaffected: Isoclines for all choices
of growth rate differences drawn on top of each other just
appear with a larger stroke width, leaving individual curves
indiscernible. As the composition isocline moves to larger
inoculum sizes for decreasing δα1, it intersects the population
size isocline at different positions. Intersections close to the
transition between the two descriptions of the population size
isocline (at minimal x1, see text) have complex eigenvalues,
where an unstable, complex fixed point close to the minimum
could actually hide a stable limit cycle. For panel (A), dilution
rate is constant at dS0ϕ = 35. (B) Increasing the dilution rate
shifts the resource limited part of the population size isocline.
Populations start collapsing, when the inoculum size of the pro-
ducing strain drops below the threshold value. For panel (B),
growth rate difference is constant at δα = 6.31 · 10−3. Other
parameters in both panels are B0/µ = 1.25 and ρ1/α = 5·10−3.
Fig. 11 shows the stability of coexistence fixed points for a
larger range of parameters.

is unstable, as inoculum sizes will increase over cycles and
move away from it.

B. Iron extraction via siderophores

Another example of a public good is pyoverdine, which
is an iron-chelating siderophore produced by several
Pseudomonas species. Pyoverdine is a fluorescent ex-
tracellular molecule, which strongly binds otherwise (al-
most) unavailable iron and allows microbes to uptake the
iron-pyoverdine complex via special transport proteins.
Siderophores have often been considered to be a public
good (Cordero et al., 2012; Kümmerli and Brown, 2010;
Lee et al., 2016), but more recent experiments showed
that this classification is highly dependent on details of
environmental conditions (Julou et al., 2013; Zhang and
Rainey, 2013). Physiologically, enhanced iron-availability
seems to increase the yield of cells (Clegg and Garland,
1971; Neilands, 1974), as populations grow to larger size
with the same nutrients.

While the exact relation between yield and siderophore
concentration is hard to specify, a few principles can guide
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our modeling. First, since cells require only minuscule
quantities of iron and almost all experimental system will
likely contain small traces of it, we assume that cells can
maintain a minimal level of growth even without pyover-
dine. Second, the effect of pyoverdine on yield saturates,
with a maximum increase by a factor σ. In addition, py-
overdine is considered to be shared among all cells within
a single deme, which corresponds to all strains expressing
the appropriate transport proteins (Zhang and Rainey,
2013). Then, yield of all strains is affected simultaneously.
Taking these considerations together, we propose

ϕi(P ) = ϕi(0)
(
σ − (σ − 1)e−P

)
, (21)

which is a simple exponential convergence towards a
maximal value for increasing pyoverdine concentrations
P . With this relation, yield is bounded by ϕi(0) ≤
ϕi(P ) ≤ σϕi(0). Differences between strains are assumed
as ϕi(0) = (1 + δϕi)ϕ0, with ϕ0 a strain-independent con-
stant. For the dynamics of pyoverdine, P (t), we assume,

∂tP =
∑
i

ρiNi . (22)

The rates ρi are assumed to have all of the expression rate,
excretion rate and the magnitude of their effect scaled in,
such that P itself is a dimensionless quantity, that we can
use in the exponential function of Eq. (21).

With these two additional relations, Eqs. (21) and (22),
we can derive the expansion factor ξ. In these calculations
we need to incorporate the effects of a time-dependent
yield, as shown in the integrated resource use, Eq. (9).
While details of the derivation are relegated to appendix
C.1, our approximation is given by

ξ
(
Tmix(n,x)

)
≈ S0ϕ0

n

(
σ − (σ − 1) exp

(
−A(x)

))
,(23a)

A(x) = S0ϕ0σ
∑
i

xiρi/αi , (23b)

which is again ignoring the multiplicative corrections
G(n,x) due to δαi and δϕi reported in Eq. (10). Correc-
tions in δαi in addition to G(n,x) will likely occur from
the pyoverdine dynamics itself, as Eq. (23) is essentially
a zeroth order expansions in these differences. As in the
case with antibiotics, the largest impact on final popu-
lation sizes is given by the public good, as long as the
increase in yield σ is large enough. Only when σ is small,
σ − 1� 1, we need to consider these inherent differences
between strains.

Analysis of isoclines

Having computed an approximation for the expansion
factor ξ in Eq. (23), we can use this solution in the
expressions derived for the isoclines. At first, we re-
mark that saturation of the public goods dynamics occurs
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Figure 7 Dynamics over multiple cycles with pro-
duction of pyoverdine that enhances iron-availability.
Blue hatched areas indicate an increase of the average inocu-
lum size n over one cycle, while orange hatched areas indicate
an increase in the population composition x1. Strain 1 (x1 = 1)
differs from Strain 2 (x1 = 0) by a slower growth rate δα1 < 0
and a non-zero production of pyoverdine ρ1 > 0, ρ2 = 0.
Purple dots connected by lines show exemplaric trajectories,
that lead to coexistence fixed points for the chosen parame-
ters. Only the first 50 cycles from each trajectory are shown.
Adjustment of the average inoculum size n is fast, while the
population composition x1 changes slow. Growth rate differ-
ences are chosen to be δα1 = −10−2 (A,B) and δα1 = −10−3

(C,D). Dilution rates (indicated by average inoculum sizes for
growing populations) are dS0ϕ = 60 (A,C) and dS0ϕ = 30
(B,D). Other parameters are σ = 2 and ρ1/α = 10−3 for all
panels.

as long as A(x) � 1. Then, the exponential term in
Eq. (23) is negligible and we have ξ ≈ S0ϕ0σ/n. Accord-
ingly, the single strain fixed point of a producer strain
is n?1 ≈ dS0ϕ0σ. Since we assume that pyoverdine is
not essential for growth, we also find a non-producer
single strain fixed point at the already known position
n?2 ≈ dS0ϕ0. For two strains, the population size isocline
then connects these two single strain fixed points: From
the producer fixed point it extends down to lower pro-
ducer fractions along a line given by Eq. (12b), with the
replacement ϕ 7→ ϕ0σ to indicate saturated public good
effects. At a fraction given by A(x1) ≈ 1, this saturation
ends and final population sizes drop to their base level in
absence of pyoverdine. Illustrations in Fig. 7 clearly show
this behavior, where the (blue) population size isocline
exhibits a sharp bend at small producer fractions. Similar
to before, we can identify the dilution rate d as the main
parameter influencing the position of this isocline.

For the composition isocline, we insert the expression
for ξ into Eq. (13). Similar to the case with antibiotics,
the main term contributing to a large positive covariance
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term is
〈
x1(ω − 1)

〉
, which evaluates to

〈
x1(ω − 1)

〉
≈ −

Cov
[
x1, exp(−A(x1)

]
σ
σ−1 −

〈
exp(−A(x1))

〉 . (24)

Interestingly, when numerically computing these averages
over the Poisson distribution, we find that this expression
decays exponentially close to exp(−n1), when A(1)� 1.
The factor σ only plays a role in the coefficient of this
scaling. If A(1)� 1, the dynamics effectively describes
the original resource consumption, treated before, while
for intermediate values, A(1) ≈ O(1), this expression
starts to decay much slower. When focusing on the case
with a significant effect of the public good, we can use
the same reasoning that Eq. (24) needs to be balanced
by terms of order O(δα1): The shape of the isocline is
approximately given by curves where expression (24) has a
constant value, and thus follows along lines of n1 = const.
The position is again strongly determined by the growth
rate difference δα1: For smaller δα1 the condition 0 = ∆x1
is met further out the tail of the exponential decay. Taking
these considerations together, we find the scaling of the
composition isocline as

∆x?1 = 0 ⇔ n ∼ log |δα1|
x1

, (25)

with a logarithmic dependence of δα1 on its position.
Coexistence can occur when isoclines intersect, which

can again be achieved by changing the dilution rate. From
checking the direction of trajectories around such fixed
points, we find that coexistence is stable.

V. DISCUSSION

In this article, we investigated the dynamics of grow-
ing microbial populations that are repeatedly separated
into compartmentalized demes on a long timescale Tmix.
Our main contribution is to provide a modelling frame-
work that can encompass several different interaction
types within microbial population and their environment.
These interactions include growth on a shared resource,
on top of which we treat explicit social traits like antibi-
otic degradation to allow all cells to grow, or pyoverdine
expression, that enhances iron-availability for all of the
population. We found that the spatio-temporal structure,
together with the variance of initial conditions for the
growth processes, allows costly traits that are helpful to
the entire population to coexist stably over multiple cycles
of seeding, growth and mixing.

The evolution of population composition is particularly
insightful to derive the conditions of such coexistence. In
repeated cycles of seeding, growth and mixing, we have
shown that the change per cycle in the average inoculum
composition is ∆x(τ+1) =

〈
∆X

〉
+ Cov

[
X, N/

〈
N
〉]

(see
Eq. (4)). This describes two levels of selection whose

origin lies in the ecological life cycle of populations:
〈
∆X

〉
is the expected change of within-deme dynamics, usually
dominated by fast growth.

The second term, Cov
[
X, N/

〈
N
〉]

, indicates correla-
tions of the population composition with (relative) total
size, and thus describes effects on a population level. If
the population can generate a larger final size – due to
reduction of antibiotics, enhanced iron-availability, or just
more efficient resource conversion – this term can be large
and positive, and thus can offset frequency losses from
direct competition between strains. This frequency dy-
namics is also reminiscent of the Price equation (Okasha,
2006; Price, 1970). In our model, this connection to the
Price equation arises naturally from the global mixing
of the spatially distributed populations. Furthermore,
Simpson-type effects are a special case for values of the
terms in this frequency dynamics: The first term describ-
ing the expected within-deme change is negative and the
average fraction inside demes decreases; but the covari-
ance term is large enough to increase the average fraction
in the entire system.

Similar models with spatial segregation have been con-
sidered, which also build on simple growth processes in-
cluding public goods or other population level benefits.
The work in (Cremer et al., 2011, 2012; Melbinger et al.,
2010, 2015) is very related, where the authors deal with
similar phenomena to those we considered: These include
finite population sizes in segregated demes, fluctuations
during the initial time of growth, and the second, long
timescale on which all populations are mixed repeatedly.
However, implementation details differ. Finiteness of
populations is ensured by a (size-dependent) death rate,
instead of explicit resource depletion. They identify fluctu-
ations in cell numbers during initial stages of growth that
amplify benefits to the whole population to be important
for coexistence. Such fluctuations can leave traces in the
population composition long after this initial time (Eggen-
berger and Pólya, 1923; Elhanati and Brenner, 2012). Our
approach differs here in that such variability arises only
from seeding; their implementation includes both stochas-
tic seeding and stochastic growth dynamics. In another
similar model (Ernebjerg and Kishony, 2011), the effects
of fluctuations in the dilution rate d are examined: This
can stabilize coexistence of similar strains over multiple
cycles. Adding a lag-time before cells start to grow as
third cellular parameter, next to growth rate and yield,
also allows coexisting populations (Manhart et al., 2018;
Manhart and Shakhnovich, 2018), although restrictions
on valid mixing times for coexistence of multiple strains
exist.

One of the underlying assumptions going throughout
most of our work, is that differences between different
strains are small. This weak selection limit allowed to
employ series expansions in both, δαi and δϕi, simplifying
the dynamics. Such approximations are rather suited for
organisms that are inherently similar, like microbes, while
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for communities of higher (more complex) organisms this
might break down. For the resource consumption dy-
namics, however, the coexistence region in the differences
δαi and δϕi extends to larger values compared to the
two more elaborate models. In Fig. 4, these values even
approach O(1). However, the required smallness of these
parameters for antibiotics and pyoverdine dynamics can
be used to our advantage: We reported that the popula-
tion composition isocline shifts to larger inoculum sizes for
decreasing δα (see Figs. 5 and 7, and Eqs. (20) and (25)).
In turn, this shifts the (potentially stable) coexistence
fixed point of the cycle dynamics to large inocula. We
could also use this to our advantage: In experiments one
could potentially deduce the growth differences between
strains from this position of the fixed point – possibly
with a resolution that is beyond contemporary fitness
measurements. However, such measurements rely on be-
ing able to qualitatively predict the dynamical behavior
within demes.

If growth rate differences are not too large, the popula-
tion composition isocline exists off the boundaries, and
thus the system is amenable to have a coexistence fixed
points. Even with all other parameters constant, the
dilution rate d can then provide an experimental knob to
adjust the position of the population size isocline. Thus,
diluting populations with different rates before they are
seeded into demes is the easiest to generate an intersec-
tion of isoclines. For the simple resource consumption
dynamics, we only find a restricted range of dilution rate
that admit a coexistence fixed point, but for the two pub-
lic good dynamics the shape of the composition isocline
allows a much larger range of d that leads to coexistence.
We argue, that also in natural populations, dilution rate
will not be constant, and these fluctuations could at least
temporarily allow coexistence of different populations.

Another relevant aspect to discuss is the importance of
bottleneck sizes at the time of seeding. The magnitude
of Cov

[
X, N/

〈
N
〉]

depends on how much both the final
population sizes and population compositions vary, due to

the inequality Cov
[
X, N/

〈
N
〉]2 ≤ Var

[
X
]
Var

[
N/
〈
N
〉]

.
The averaging implicit in these expressions is computed
over seeded inocula, whose spread scales as

√
n. Conse-

quently, a small inoculum size will have a twofold effect on
the the overall covariance term, by affecting both factors
in this bound: First, small n implies a larger spread over
possible values, and thus can lead to a larger Var

[
X
]
.

In addition, the enhanced granularity can generate more
diverse initial conditions from which the growth process
starts. Depending on the actual dynamics, this might
lead to large differences in the final sizes, which are then
related to the second factor in the bound, Var

[
N/
〈
N
〉]

.
If inoculum sizes are large, the initial variability will
play a smaller role in the deterministic within-deme dy-
namics: Final sizes do not have a large variation, and
the covariance term plays only a minor role in the long
term dynamics. These considerations can also be used

for reasoning on ’natural’ systems: In many contempo-
rary experiments with microbes bottleneck sizes are large,
and thus fast growth is often selected. In contrast, a
majority of multicellular organisms go through a single
cell bottleneck in their reproduction process (Grosberg
and Strathmann, 1998). Limiting this bottleneck to only
single cells clearly has disadvantages, but these could be
offset by the gains due to the ’population level’ effects
(here essentially effects on the organism level) that can be
encoded in large covariance due to cooperative processes
during growth.

In addition, we may ask how strict the conditions need
to be, which are required for our results to hold? We
model a perfect separation of demes during growth, which
are then instantly and globally mixed after a constant
mixing time Tmix. What would happen, if any of our
modelling assumptions is subject to uncertainties? One
way to weaken the assumption of separated demes is to
investigate populations in continuous space with limited
dispersal. In such a setting, it has been found that co-
existence emerges on intermediary diffusion rates (Behar
et al., 2014; Oliveira et al., 2014): Very fast diffusion
makes the spatial dependence disappear altogether, while
too slow diffusion leads to extinction of non-producers.
Other mixing schemes than just a global pooling might
alter the averaging, and thus also the eco-evolutionary dy-
namics of different strains. Recently, multiple groups tried
to model the effects of specific interactions as a (directed)
graph (Broom and Rychtář, 2008; Lieberman et al., 2005;
Taylor et al., 2007), where – depending on topology of
interactions – fixation of alleles could either be enhanced
or hindered. While most of these analyses treat each of
the interacting nodes as individuals, we expect that if
each of them encompasses its own population dynamics
on a multilevel approach like ours, the dynamics could be
again skewed in either direction. Finding answers to this
issues would be one possible avenue for future work.

In summary, we analyzed models of social interactions
of spatially distributed microbial populations. Our results
showed that coexistence – also of costly social traits – can
be traced back to the simple ecological mechanisms of a
second timescale and spatially distributed populations.
The dynamics of these traits can be described by an
expression akin to the Price equation, which allowed
reasoning within a framework that generalizes several
previously published modeling approaches. Moreover,
we also expect other collective dynamics to show similar
behavior (Payne et al., 2018), when they are subject to
similar spatio-temporal structuring of the environment.
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Appendix A: Growth dynamics of resource consumption

In the following, we present more technical details for
the resource consumption dynamics to justify some of the
expressions stated in the main text. The extensions to
the interactions including either antibiotic reduction or
enhanced iron-availability from pyoverdine are treated in
their own sections B and C below.

1. Growth and stability of a single strain

At first, we treat a simplification of the overall dynamics:
A single strain, with constant growth rate α and constant
yield ϕ, feeding on a finite resource, and without any other
environmental interactions. This is most likely the most
basic model that still fits our framework, which allows to
gain insight via analytic solutions.

The within-deme dynamics in this case is

∂tN = αN , (A1a)

∂tS = −αN/ϕ . (A1b)

Clearly, we find N(t;n) = n exp
(
αt
)

as long as cells
are growing. This expression can be inserted into the
resource dynamics, which in turn can be integrated an-
alytically from S(0) = S0 to S(Tdepl) = 0: we obtain
S0 = n

ϕ

(
exp(αTdepl)− 1

)
, which can be inverted to find

the explicit depletion time Tdepl as a function of n and
the other parameters. Assuming that growth ceases upon
resource depletion, α(t > Tdepl) = 0, we find the full
solution for population size to be

N(t;n) =

{
n exp

(
αt
)
, 0 < t < Tdepl(n) ,

S0ϕ+ n , Tdepl(n) < t .
(A2)

For the dynamics over multiple cycles, the time is constant
at Tmix, and Eq. (A3) is assumed to be an function only
of inoculum size n. Then, depending on the number of
cells present at the beginning, resources are either used up
and the second expression is relevant, or the population
is still in its growth phase and we need to use the first
expression. These situations are depicted in Fig. 8 as
dashed lines. Over multiple cycles the mapping takes the
form

n(τ+1) = d
∞∑
n=0

(n(τ))n

n!
exp
(
−n(τ)

)
N(Tmix;n) , (A3)

where the average number of grown cells is multiplied with
the dilution rate d to account for the seeding into new
demes. The Poisson distribution for seeding probabilities
used here smoothly interpolates the two branches of the
population size in Eq. (A2).

One of the features observable from the mapping of
Eq. (A3) (and Fig. 8) is that resources need to be depleted
for the mapping to have a stable fixed point. A stable
fixed point of this mapping can only exist in the upper,
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Figure 8 Dynamics of a single strain with only re-
source consumption. (A) Trajectories over time for two
different inoculum sizes n and growth rates α1. The popula-
tion grows exponentially and then stays at constant numbers.
(B) The inoculum size for a single is averaged with a Poisson
distribution over all possible inoculum sizes. This smears the
sharp transition from starting with enough cells that deplete
all nutrients to inoculum sizes that are still in the exponential
growth phase at Tmix (dashed lines). As explained in the text,
existence of a fixed point depends on dN(Tmix; 1) > 1, and
thus how many cells in the inoculum If this condition is not
met, the population will be washed out over multiple cycles.

stationary branch of the solution. If cells would still be
growing at the time of mixing Tmix, the lower branch
of the solution is used for the mapping, which does not
support a fixed point. However, this is just a necessary
condition, not yet sufficient. If the dilution rate d is too
small we do not expect a fixed point either.

In order to compute the stability of a fixed point, we
introduce an auxiliary calculation that will help in this
respect. Specifically, taking a derivative with respect to
the parameter of a Poisson distribution, we have

∂nP
[
n
∣∣n] =

nn−1

(n− 1)!
e−n − nn

n!
e−n ,

which leads to a shift in this summation index,

∂n
〈
f(n)

∣∣n〉 =
∞∑
n=0

P
[
n
∣∣n](f(n+ 1)− f(n)

)
, (A4)

because we are only concerned with functions that ex-
hibit the property f(0) = 0. This property indicates
the obvious fact that if the inoculum is empty, nothing
will grow. This expression generalizes straightforward to
multidimensional variables, ∂niP

[
n
∣∣n], where the shift

happens only for strain i.
With this calculation in place, we can compute the

slope of the cycle mapping for a single strain at the origin.
This allows to check if extinction is a stable or unstable
fixed point, where the latter implies that another stable
non-zero fixed point exists. Formally, we obtain

∂n(τ)d
〈
N
∣∣n(τ)〉|n(τ)=0 = dN(Tmix; 1) , (A5)

as for n(τ) = 0 the Poisson distribution collapses and
only the first term in the auxiliary derivation above sur-
vives with an inoculum of 1. The extinction fixed point
is unstable if it is larger than 1, and stable otherwise.
When nutrients are not yet depleted at this time, the
condition (A5) evaluates to d exp

(
αTmix

)
, which needs

to be increased above 1 to find a fixed point. Assuming
that the growth rate α is not changed as easily, increasing
the mixing time Tmix has the larger impact, which clearly
makes sense: if the population has more time it can de-
plete nutrients. If nutrients are already depleted, but the
slope is still below 1, we find that 1 > dS0ϕ. Thus, an
average inoculum size of less than a single cell is also not
stable. In these cases, the population will be washed out
over consecutive cycles.

To proceed, we assume that mixing time is large enough
that even a single cell uses up all nutrients. In this case,
we can write the final number of cells as N(Tdepl;n) = (1−
δn0)(S0ϕ+ n), where δn0 is a Kronecker-delta to indicate
the fact that nothing can grow from an inoculum size n =
0. Then, the sum in Eq. (A3) can be evaluated, and we
find the dynamics n(τ+1) = d

[
(1−exp(−n(τ)))S0ϕ+n(τ)

]
.

From this expression, we can compute the fixed point n?,

n? =
dS0ϕ

1− d
−W

(
−dS0ϕ

1− d
exp
(
−dS0ϕ

1− d

))
≈ dS0ϕ , (A6)

where W was the Lambert-W function. The correction
indicated by W becomes only large when dS0ϕ is close to
1, at which it is approximated by W (.) ≈ exp(−dS0ϕ+1).
As we argued above, this full expression for fixed point
also demonstrates that an average inoculum size below a
single cell will not be stable, as the expression evaluates
to zero for dS0ϕ < 1. For a large parameter combination
of dS0ϕ, the Lambert-W function is almost linear in its
argument, such that W (−y exp(−y)) ≈ y exp(−y), and
we obtain an exponential correction for the single strain
fixed point, n? ≈ dS0ϕ(1− exp(−dS0ϕ). This correction
can explain for instance, why the population size isocline
in Fig. 3 is shifted slightly off the value of the linear
approximation in Eq. (A6).

Stability of this non-zero fixed point can be checked by

∂nn
(τ+1)|n? = d+ dS0ϕe

−n?

≈ d+ n?e−n
?

, (A7)

which is smaller than 1 for any realistic value of d, since
the term involving the exponential is bounded, ≤ 1/e.
Thus, the fixed point given by Eq. (A6) will be stable, if
it exists.

2. Coexistence of multiple strains

After establishing the value of the single strain fixed
point in Eq. (A6), we turn to the case with multiple
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strains. In the main text, existence and stability has
been explained using isoclines in total population size
and the population composition. Essentially, this allowed
to find similarities and differences when comparing with
the two examples for public good interactions. Here,
however, we derive a few additional results on the resource
consumption dynamics. These calculations benefit from a
description in absolute numbers n = (n1, n2, . . . ) for each
of the strains, and not use the non-linear transformation
of computing fractions xi = n1/(n1 + n2 + . . . ).

One way to define coexistence in this system of multiple
strains, is when all single strain fixed points are unstable
with respect to invasion by other strains. Formally, this
happens when the Jacobian evaluated at these single
strain fixed points features eigenvalues larger than 1. We
already derived that a strain that does not use up all
resources will be washed out over cycles, which also holds
for multiple strains: For the simple resource consumption
for the within-deme dynamics, each strain needs also
to be stable alone, if it should be part of a coexisting
collective. Then, if all of these fixed points are unstable
with respect to invasion by other strains, the system will
have an additional fixed point that indicates coexistence,
see Fig. 3. Entries of the Jacobian J at these single strain
fixed points n?i ≡ (0, . . . , n?i , . . . , 0) can be computed by(

Jij
)
n?i

= d ∂ni
〈
Nj(Tmix;n)

∣∣n〉∣∣
n=n?i

. (A8)

For the following, we assume that the resi-
dent strain has index 1. We already computed
∂n1

〈
N1(n1, n2 . . . )

∣∣ (n?1, 0 . . . )〉 < 1 in Eq. (A7), which
just indicates that the resident strain is stable on its
own. In addition, other relevant computation include
how average final sizes change when changing any of the
inocula nj (j ≥ 2). Clearly, as no strain other than 1 is
present, final sizes of strain i stay at zero upon changing
the inoculum of other strains j, ∂nj

〈
Ni
〉

= 0, as long as
both i and j are different, and neither is the resident
strain. Thus, the Jacobian is in general a very sparse
matrix, which only has entries on the diagonal and in the
first line. This structure of the Jacobian implies that all
entries on the diagonal are already the eigenvalues, as
it is a upper triangular matrix. For the entries on the
diagonal itself, we compute

d ∂ni
〈
Ni
∣∣ (n?1, 0 . . . )〉 = d

〈
Ni(n1, . . . , 1, . . . )

∣∣ (n?1, 0 . . . )〉 ,
(A9)

for i ≥ 2, where we used the auxiliary calculation in
Eq. (A4) from above. The average is taken at the single
strain fixed point of strain 1, and the inoculum includes
exactly a single cell of strain i. Thus, if this single cell
of strain i grows to more than one cell (on average) in
the inoculum of the next cycle (eigenvalue larger than 1),
the single strain fixed point of strain 1 is unstable with
respect to invasion of strain i. As all single strain fixed
points need to be unstable with respect to each other
strain – this leads to k(k − 1) pairwise conditions for k

strains. However, any subset of strains that fulfills these
pairwise conditions can exhibit coexistence.

The coexistence regions depicted in Fig. 4 are obtained
by evaluating these conditions for two strains numerically.
Then, only the two conditions

〈
N2(n1, 1)

∣∣ (n?1, 0)
〉
> 1

and
〈
N1(1, n2)

∣∣ (0, n?2)
〉
> 1 need to be fulfilled.

Note, however, that these set of conditions (A9) is not
yet constructive: when one set of strains with their growth
parameters αi and ϕi is given, one can check if they would
be able to coexist. However, it does not show how to
choose these parameters to get coexistence between an
arbitrary number of strains. Numerical estimates indicate
the the possible range of values for these two parameters
decreases more and more with each additional strain. In
particular, in (Ernebjerg and Kishony, 2011) the authors
chose values on a one-dimensional curve in δα and δϕ to
find coexistence between multiple strains.

3. Evaluating relations for the composition isocline

In the main text, we reported an expansion of
〈
∆Xi

〉
and Cov

[
Xi, N/

〈
N
〉]

in small growth rate differences and
yield differences, see Eq. (14). Here, we present the steps
to obtain the scaling announced in Eq. (15) via evaluating
these expressions. For two strains, we have〈

∆X1

〉
≈ 2δα1

〈
x1(1− x1) log S0ϕ

n

〉
,

Cov
[
X1, N/

〈
N
〉]
≈ 2δϕ1

(〈
x21
〉
−
〈
x1
〉2)

.

The two independent Poisson distributions for the inocu-
lum sizes n1 and n2 transform into a Poisson distribution
for the total size n = n1 + n2 and a binomial distribution
for n1. This transformation has the effect, that the sum
over n is started at 1, as without any inoculum the popu-
lation will not grow. As a next step, we need to evaluate
the following terms occurring in the expressions above,

〈
x21
〉

=
∞∑
n=1

e−n
nn

n!

n∑
n1=0

(
n

n1

)
xn1
1 (1− x1)n−n1

(n1
n

)2
= x21 + x1(1− x1)

〈
1/n

〉
,〈

x1
〉

= x1 ,〈
x21 log n

〉
= x21

〈
log n

〉
+ x1(1− x1)

〈
(log n)/n

〉
,〈

x1 log n
〉

= x1
〈
log n

〉
.

Using these, the balance for all terms in the expansion of
the composition isocline is given by

0 ≈ δϕ1

〈
1/n

〉
+ δα1

〈(
1− 1/n

)
log S0ϕ

n

〉
, (A10)

from which we extract the approximation reported in the
main text,

n ≈ |δϕ1/δα1|
logS0ϕ

. (A11)
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Numerical observations suggest that this scaling also con-
tains a coefficient that is slightly smaller than 2. However,
we are mostly interested in how this position of the com-
position isocline scales with different parameters in the
model.

Appendix B: Growth dynamics with antibiotics

Originally, we stated the coupling to environmental
processes as an ODE in addition to Eqs. (5). However,
our formalism uses expansion factors ξ(Tmix(n,x)) to
represent this interaction of strains with their environment.
This section presents the derivation of how to obtain this
expansion factor ξ and a few additional results on the
dynamics of antibiotic reduction.

1. From dynamical effects of interactions within demes to
expansion factors

The effect of an antibiotic concentration B on growth
rate is defined via Eq. (16), which describes a sigmoidal,
decreasing curve for increasing concentrations B. In this
expression, the antibiotic concentration is measured in
multiples of the ’MIC’ µ, which is the concentration where
the population switches from overall death to overall
growth. The set of relevant coupled differential equations
to analyze is given by

∂tNi = αi(B)Ni , (B1)

∂tB = −
∑
i

ρiNiB . (B2)

In the following, we present an approximation scheme
that captures the essence of the dynamics. Somewhere
else we show that our approximation is actually very
robust against changes of molecular details, and can de-
scribe several classes of antibiotic resistance (manuscript
in preparation).

The first step in solving the dynamics is defining a log-
arithmic antibiotic concentration K = log(B/µ). Often,
only the magnitude of this concentration is important,
and not its exact value. Using this logarithmic concen-
tration, we can approximate the effect of antibiotic con-
centration on the growth-/death-rate of populations as
αi(B) ≈ αiκγ

1+γ log(B/µ) = αiλK. This allows to write
the second equation for the reduction of antibiotics as
∂tK = −

∑
i ρiNi. Furthermore, we assume that cells die

with a rate given by the initial antibiotic concentration,
Ni(t) = ni exp

(
− αiλK0t

)
. Then, we can integrate the

dynamics for antibiotic decay, which gives

K(t) = K0 +
∑
i

ρini
αiλK0

(
exp
(
− αiλK0t

)
− 1
)
.

We define a time T1 implicitly via N(T1) = 1, ie. when the
exponential decay of the population reaches a single cell,

1 = ni exp(−αiλK0T1). This time T1 can be inserted into
the dynamics of the logarithmic antibiotic concentration
K(T1), to check if this concentration decayed already be-
low 0 (population survived), or still exceeds 0 (population
will go extinct):

0 < K(T1) = K0 +
∑
i

ρini
αiλK0

(
1

ni
− 1

)
.

As long as the inoculum sizes are large enough, 1/ni � 1,
we find the inequality

0 <
(
log(B0/µ)

)2 − n∑
i

xi
ρi
αiλ

. (B3)

This condition, Eq. (B3), indicates that the microbial pop-
ulation reduces the antibiotic concentration fast enough
that the overall population again exhibits a positive
growth rate before going extinct. From there on, the
surviving – and growing – population will degrade the re-
maining antibiotic fast. We assume that the mixing time
Tmix is long enough, that the population will use up all
remaining nutrients. As the dying cells during this initial
phase are likely few compared to the final size, these final
sizes are close to the population sizes obtained from the
simple resource consumption model. Consequently, the
expansion factor can be written as

ξ(Tmix;n,x) ≈ S0ϕ

n
Θ

[
n
∑
i

xiρi
αiλ
−
(

log
B0

µ

)2]
. (B4)

The Heaviside-Theta function Θ indicates exactly the con-
dition (B3) above, where the expansion factor evaluates
to zero, if all cells die, and is approximated by the first
order term S0ϕ/n of Eq. (10) when they survive.

For a single strain, we illustrate how this resulting
expansion factor generates the mapping of inoculum sizes
over cycles in Fig. 9. The sigmoidal curve emerges from
smearing out the sharp cutoff between surviving and
extinct populations. Exactly this sigmoidal shape implies
that either two or no (coexistence) fixed point occurs in
the mapping.

2. Additional parameter dependence of the cycle mapping

In the main text, we mostly focused on how isoclines
change upon varying the two main parameters δα1 and
d. As we explained, each of them changes one of the
two isoclines (population size or population composition,
respectively), while leaving the other isocline almost un-
affected. However, the models for antibiotic reduction
also features additional parameters, whose effects we only
report here.

The dynamics of antibiotic reduction clearly depends
on how much antibiotic B0 is present at the beginning
of the growth phase and how fast antibiotics is reduced.
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Figure 9 Dynamics of antibiotic reduction for only
a single producer strain. (A) Within demes, the initial
population n1 either manages to reduce antibiotics in time
(purple trajectory), or fails and goes extinct (red trajectory).
(B) In the mapping of average inoculum sizes over cycles, this
threshold in inoculum size between survival and extinction
generates a step-like increase of the cycle map. Dashed lines
indicate the expected inoculum size if the dynamics within
demes would start with an inoculum of n1, while solid lines
indicate the mapping for the average population size n1. The
latter includes a range of possible inoculum sizes sampled
from a Poisson distribution, which smears out the hard cutoff
between survival and extinction. Depending on dilution rate
d, either two or no (non-zero) fixed points exist. Parameters
are S0ϕ = 105, ρ1/α = 5 · 10−3, B0/µ = 1.25.

From the threshold for growth/no-growth, as stated in
Eq. (B3),

n
∑
i

xiρi
αi

> λ
(

log
B0

µ

)2
, (B5)

we see that both ρi/αiλ and B0/µ give additional im-
portant parameter combinations. Fig. 10 explores the
effects of changing either of those. In general, as long as
B0/µ > 1, the effect of changing either production rate or
initial antibiotic concentration only changes the threshold
inoculum size for producing strains that would survive.
However, when B0/µ < 1 the non-producing strain will
be able to survive on its own, although it might grow
significantly slower in demes where antibiotic concentra-
tion is not reduced. Due to this survival, the part of the
composition isocline that indicated the extinction of the
non-producing strain (asymptotic approach towards the
x1 = 1 axis) disappears, and the composition isocline
directly intersects with the producer axis of the phase
plane, see Fig. 10AB.

3. Stability of the coexistence fixed point

We can check existence and stability of the coexistence
fixed point numerically. In the main text, we reported
that this coexistence fixed point transitions from stable
to complex stable to complex unstable (briefly with a
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Figure 10 Influence of other parameters on the shape
of isoclines in the dynamics with antibiotics. Panels
show the isoclines for (A) average inoculum size n and (B)
average inoculum composition x1, when varying the initial
antibiotic concentration B0/µ. In (A), from top to bottom
these initial values are B0/µ = 1.25, 1.00, 0.75. In (B), the
innermost curve indicates the highest antibiotic concentration,
while the outermost curve the lowest concentration. Panels
(C) and (D) show the effect of changing the production rate
ρ1 of the enzyme. Parameters dS0ϕ = 60 and δα1 = −10−2

are constant in all panels.

stable limit cycle) and finally to unstable, when shifting
the intersection of the isoclines along the population size
isocline by altering the growth rate difference. Fig. 11
shows these results for a range of the two main param-
eters dilution rate d and growth rate difference δα1 of
two strains. There, we specifically focus only on the (po-
tentially stable) coexistence fixed point, and not on any
other of the fixed points of the cycle mapping. Thus,
this stability analysis does not specify the exact position
of this fixed point, but its stability can give already an
qualitative indication on which branch of the population
size isocline it occurs.

Appendix C: Growth dynamics with pyoverdine

In the main section, we only reported the result of
our approximation for the expansion factor ξ. Here, we
provide the steps in the derivation of this approxima-
tion, which is effectively zeroth order in the growth rate
differences δαi.
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Figure 11 Stability of fixed points within-deme dy-
namics involving antibiotic hazards. Displayed are color-
coded stability properties of the coexistence fixed point, as long
as it exists (gray symbols indicate it does not). Specifically,
the colors indicate stable (•), stable with complex eigenvalues
(•), unstable with complex eigenvalues (◦) and unstable (◦)
fixed points. In the complex unstable regime, close to the
boundary to stability, we also find stable limit cycles, which
are not captured in the linear stability analysis of computing
eigenvalues of the Jacobian. These limit cycles appear through
a Neimark-Sacker bifurcation (Wiggins, 2003). The change
in shape and position for the two isoclines of inoculum size
and inoculum composition are shown in more detail in Fig. 6,
where purple and brown boxes in panel (C) correspond to the
similar colored borders.

1. From dynamical effects of interactions within demes to
expansion factors

Pyoverdine changes yield ϕ on a population level due
to enhanced availability of iron (see Eq. (21)),

ϕ(P ) = ϕ0

(
σ − (σ − 1)e−P

)
,

where the production of pyoverdine P is given by ∂tP =∑
i ρiNi. In order to compute its effects on the expansion

factor ξ, we need to evaluate the full, time-dependent
resource-use equation (9). This equation requires to eval-
uate an integral that contains a term how yield changes
over time, ∂tϕ. Consequently, the dynamics has to be
combined with the production dynamics of pyoverdine,
Eq. (22).

To this end, note that both time-evolutions of S(t) and
P (t) are linear in N(t), which allows to combine their two
dynamics as

∂tS = −

α∑j
1+δαj
1+δϕj

Xj∑
k ρkXk


︸ ︷︷ ︸

≡R

∂tP

ϕ(P )
, (C1)

where in anticipation of the results we wrote the dynamics
of the pyoverdine concentration P together with yield
ϕ(P ), which is influenced by this concentration. The
population composition Xi(t) changes only slowly in time,
thus we assume that Xi(t) ≈ xi for the purpose of the
ensuing approximations, and collect all these dependencies
in a constant R. Then, we can integrate this equation
from initial conditions S(0) = S0 and P (0) = 0 up to a
time t to get the relation between S(t) and P (t),

S(t) = S0 −
R

ϕ0σ
log
(

1 + σ
(
eP (t) − 1

))
, (C2)

which is an almost linear expression of the form S(P ) ≈
S0 − R

ϕ0σ
P . As a next step, we take a derivative with

respect to time on ϕ(P ), Eq. (21), to obtain

∂tϕ(P (t)) = ϕ0(σ − 1)(∂tP ) exp
(
−P (t)

)
. (C3)

With these two expressions, we can evaluate left hand
side in Eq. (9),

S0ϕ(0) +

Tdepl∫
0

dt (∂tϕ)S

≈ S0ϕ0 + ϕ0(σ − 1)

P (Tdepl)∫
0

dP
(
S0 −

R

ϕ0σ
P
)
e−P

= S0ϕ0

(
σ − (σ − 1)e−P (Tdepl)

)
+R

σ − 1

σ

(
1− e−P (Tdepl)

(
1 + P (Tdepl)

))
.

The first line in this solution indicates the expected yield
at the end of the growth phase. The expression in the
second line denotes the correction due to the fact that
the concentration of P is increasing during this growth
phase, and did not yet start at the final value.

Having this expression, we can simplify further, and
neglect the second line to obtain the main scaling of the
expansion factor. To this end, we define the abbreviations

ξ0 = S0ϕ0σ/n, and furthermore A =
∑
i
xiξ

δαi

1+δϕi
. With

these, the full resource use equation can be written as

ξ0

(
1− σ − 1

σ
exp

(
− n
R
ξA
))

= ξA ,

which we need to solve for ξ. Note that R also contains
a logarithmic dependency on ξ, which does not influence
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Figure 12 Influence of other parameters on the iso-
clines in the dynamics with pyoverdine. Panels show
the isoclines for (A) average inoculum size n and (B) average
inoculum composition x1, upon variation of the factor σ that
increases yield due to presence of pyoverdine. In panel (A) we
additionally illustrate the influence of the production rate ρ1
as different shades of blue. This production rate does not sig-
nificantly change the isoclines in (B). Parameters dS0ϕ = 10,
δα1 = −10−2 are constant for all plots.

the overall scaling. The term A generates the corrections
in δαi and δϕi reported in Eq. (10): Here we see that
they are multiplicative factors, which is the reason that
we can solve for ξA first. We find that

ξA = ξ0 +
R

n
W

(
−σ − 1

σ
(nξ0/R)e−nξ0/R

)
.

For small enough arguments the negative branch of the
Lambert-W function is linear in this argument, which in
this expression is usually sufficiently suppressed by the
exponential term. Thus, we can simply leave out W of
this expression to obtain the final scaling of the expansion
factor for pyoverdine production,

ξ(Tdepl;n,x) ≈ S0ϕ0

n

(
σ − (σ − 1) exp

(
−S0ϕ0σ

R

))
,

(C4)
which assumes A ≈ 1. Deviations from unity generate
the corrections G, as shown in Eq. (10).

2. Other parameter dependence

The main text only explored the effects of changing
growth rate differences. Similarly, the dynamics of py-
overdine expression to increase iron-availability exhibits
also a production rate dependence, ρ. Moreover, here
the factor σ by which yield is increased plays another
important role. Fig. 12 explores the effects on isoclines if
either of these are changed.

Appendix D: Numerical methods

Several results in our manuscript have only been ob-
tained numerically, although we tried to explain these
results with scaling arguments. Here, we briefly present
numerical methods used throughout our work.

In general, the two levels of selection of growth within
demes and the mixing cycles are also reflected in our
code. We first solve the within-deme dynamics, on a grid
of all possible initial conditions (n1, n2). These initial
conditions are chosen up to values ni,max, such that the
probability of finding this combination in the Poisson
distribution are tiny and negligible. Often, we use the
condition P

[
ni,max

∣∣ni]/P[ni∣∣ni] . 10−5 to determine
these maximal inoculum sizes. For most of the results
shown in Figs. 5 and 7 this maximal inoculum size is
roughly ni,max = 200, which is the value we use in our
figures. Solutions to within-deme dynamics are obtained
by a standard Runge-Kutta 4th order integration scheme
up to the time Tmix.

After final population sizes Ni(Tmix;n1, n2) are com-
puted, they are stored as lookup-table. Cycles of growth,
mixing and reseeding are realized by computing the sums

ni,max∑
n1,n2=0

P
[
n1
∣∣n1]P[n2∣∣n2]Ni(Tmix;n1, n2) .

Fixed points of the mapping (e.g. Fig. 11) are obtained via
iteration of a multi-dimensional Newton-Raphson scheme,
which requires usually only a few steps.

Code is available at https://github.com/

lukasgeyrhofer/mixingcycles under the CC0 li-
cense.
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