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ABSTRACT  
 
Co-measurement of multiple omic profiles from the same single cells opens up the 

opportunity to decode molecular regulation that underlie intercellular heterogeneity in 

development and disease. Here, we present co-sequencing of microRNAs and 

mRNAs in the same single cells using a half-cell genomics approach. This method 

demonstrates good robustness (~95% success rate) and reproducibility (R2=0.93 for 

both miRNAs and mRNAs), and yields paired half-cell miRNA and mRNA profiles that 

could be independently validated. Linking the level of miRNAs to the expression of 

predicted target mRNAs across 19 single cells that are phenotypically identical, we 

observe that the predicted targets are significantly anti-correlated with the variation of 

abundantly expressed miRNAs, suggesting that miRNA expression variability alone 

may lead to non-genetic cell-to-cell heterogeneity. Genome-scale analysis of paired 

miRNA-mRNA co-profiles further allows us to derive and validate new regulatory 

relationships of cellular pathways controlling miRNA expression and variability.  
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INTRODUCTION 

 

Small RNAs have emerged as important non-coding regulators in diverse biological 

settings. The most widely studied small RNAs are miRNA that regulate protein-coding 

expression post-transcriptionally1-3. MiRNA expression profiles in tissues or cell 

populations are highly informative to reveal cellular states, such as in human cancers2, 

4, 5 and identify cellular mechanisms6, 7. The advances of single cell genomics have 

raised the prospect that single-cell miRNA profiles could add a new dimension to 

small RNA research by facilitating the molecular understanding of intercellular 

heterogeneity. Unlike single-cell RNAseq techniques, which have matured 

considerably in the past years8-17, single-cell small RNA sequencing has been 

demonstrated very recently and applied to differentiating naive versus primed human 

embryonic stem cells and examining intercellular heterogeneity of miRNA 

expression18, with the latter confirming previous findings of single-cell miRNA 

measurements by lower throughput methods such as quantitative RT-PCR or 

fluorescence in situ hybridization(FISH)19-21. However, given the roles of small RNAs 

to modulate gene expression post-transcriptionally, for example, via miRNA-

mediated degradation of target transcripts, it is important to measure both small RNAs 

and mRNAs at the genome-scale in order to decipher the mechanism underlying 

observed intercellular miRNA and mRNA heterogeneity. We thus envisioned that 

obtaining miRNA and mRNA profiles from the same single cells could empower the 

study on how miRNAs modulate non-genetic cell-to-cell variability post-

transcriptionally and how miRNA variability could be modulated via protein-coding 

genes. 

 Over the past years, technology breakthroughs in single-cell omics have 

enabled genome-wide profiling of genetic mutations22, copy number variation23, 24, 

DNA methylation24, 25, chromatin-accessibility26, and gene expression at the 

transcriptional level27. Combining two or three of these measurements on the same 

single cells has been demonstrated24, 28-34, but almost exclusively on co-analysis of 

genomic DNA and mRNAs to correlate pre-transcriptional alterations to mRNA gene 

expression. Genome-wide profiling of both mRNAs and post-transcriptional 

regulators such as miRNAs remains challenging, due in part to the incompatibility of 

current mRNA-seq and small RNA sequencing protocols35. Strategies such as 
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separation of miRNAs from mRNAs are not yet reliable for single-cell co-

measurement of both types of RNAs at the genome-scale. 

We report here the co-sequencing of single-cell small RNA and mRNA 

transcriptomes using a half-cell genomics approach, which has been built upon our 

prior success in direct capture and profiling of miRNAs in low-quantity whole cell 

lysate2 and the rigorous validation of half-cell sampling to reliably represent the whole 

cell RNA expression levels. While previous efforts have examined the relationships 

between miRNA and mRNA expression profiles in bulk samples36-40, we demonstrate 

that decoding single-cell-level small RNA and mRNA profiles is feasible to reveal 

regulatory mechanisms both upstream and downstream of intercellular miRNA 

heterogeneity. This work demonstrates the first study of single-cell miRNA and 

mRNA co-sequencing at the genome-scale and opens new opportunities to investigate 

how the changes in small RNA expression in single cells contribute to non-genetic 

cell-to-cell variability and how to perturb such relationships for controlling cellular 

function in a heterogeneous population. 

 

 

RESULTS 

 
Strategy to co-profiling of single-cell miRNAs and mRNAs  

To achieve the goal of profiling small RNAs and mRNAs from the same single 

cells, we utilized a half-cell genomics approach in which a single cell was lysed and the 

lysate was split evenly into two half-cell fractions, with each fraction subjected to either 

miRNA or mRNA transcriptome sequencing (Figure 1a, b & c). For profiling miRNA 

expression in half cells, we modified our previous method2 to develop a protocol for 

generating small RNA sequencing library from single cells or half-cell-level materials. 

In this protocol, single cell lysate was heated to release miRNAs for sequential ligation 

reactions with 3’- and 5’- molecular adaptors and then the ligated products were reverse 

transcribed, and amplified with polymerase chain reaction (PCR) for library preparation 

and next-generation sequencing (Figure 1b). For profiling mRNAs, we used SMART-

Seq (v.4), a commercialized kit for manual processing of low-input or single-cell poly-

adenylated mRNAs to generate full-length libraries for RNA sequencing (Figure 1c). 

As detailed below, we successfully developed, combined, and validated these methods 
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to generate sequencing libraries from half-cell materials and the half-cell miRNA and 

mRNA profiles faithfully capture single-cell transcriptomes.  

 
Evaluating the profiling of half-cell miRNA expression 

Although single-cell omics technologies have been developed to quantify 

intercellular heterogeneity via comparing measured molecular profiles between 

individual cells and the bulk data, it remains challenging to determine how much 

variability is true biological heterogeneity and how much is attributable to technical 

noise associated with the processing of single cells. The best experiment to address this 

question is to measure variability between two half-cell materials split evenly from the 

same single cell. We first evaluated this approach to profiling miRNAs. A single K562 

human acute myeloid leukemia cell was transferred to and lysed in a PCR tube. The 

lysate (total volume ~ 10µL) was eventually split into two halves into two PCR tubes 

to independently perform small RNA capture, amplification, and preparation of 

sequencing libraries as described in Figure 1b. The sequencing data from each of these 

two halves were compared against each other for miRNA expression, which gave rise 

to an R2 value of 0.930 (Figure 2a), indicating low technical noise and high 

consistency.  

Of note, initial tests with even splitting (1:1 in vol) of single-cell lysate prepared 

with standard cell lysis protocol did not yield even splitting of miRNAs in two half-cell 

samples. Interestingly, we observed selective enrichment or depletion of a group of 

miRNAs in one half-cell sample presumably due to the binding to intracellular proteins. 

This remains to be further investigated. In this work, we modified the lysis protocol in 

several steps (see Methods) including introducing freeze/thaw and heat treatment, 

which eventually led to a robust procedure to evenly split miRNAs in two half-cell 

samples (Supplementary Figure 1). We further examined the validity of this half-cell 

approach using different cell types and another measurement technique. Small RNA 

libraries were generated from two halves of a single murine hematopoietic progenitor 

BaF3 cell, or single K562 and 293T cells, and measured with a Luminex bead array 

assay. The results again exhibited a high degree of concordance between these two half 

cells (Supplementary Figure 2a). While two half-cell samples gave rise to high 

concordance in miRNA profile, single cells obtained from the same cell population 

exhibited a higher degree of variability by both qRT-PCR analysis and expression 
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profiling (Supplementary Figures 3, 4), 

Upon validating the consistency of the half-cell approach to capture single-cell 

miRNA profiles, we turned to measure intercellular variability by sequencing 20 half-

cell K562 miRNA samples. The other halves of the same cells were processed for 

RNAseq (to be described in next section).  The sequencing data from 19 single cells 

passed the quality check for both miRNAs and mRNAs. The one that failed the quality 

assessment had very low levels of mappable reads in both miRNA and mRNA data 

presumably due to the poor quality of this cell itself (e.g., cell damaged in the capture 

and transfer process). Principal component analysis (PCA) of these 19 samples and 2 

half-cell samples derived from the same cell further confirmed high concordance in two 

half-cell splits and the variability among single cells is higher, suggesting the existence 

of intercellular heterogeneity of miRNA expression (Supplementary Figure 5).  

Overall, the success rate (95%) to obtain quality sequencing libraries for both miRNA 

and mRNA using the half-cell genomics approach was excellent.  

The intercellular variability of miRNA expression could be directly observed in 

our data either by a correlation matrix (Supplementary Figure 6) or by quantifying 

the standard deviation of log2-transformed miRNA expression versus the mean 

expression across 19 half cells (Figure 2b). As expected, low-expression-level 

miRNAs showed inherently large standard deviations in log2 data. The variation of 

high abundance miRNAs gradually decreased as the expression level increased. MiR-

92a-3p was detected as the most abundant miRNA in our K562 cell sample, in 

agreement with previous literature40. Comparing intercellular variability across 

miRNAs, both miR-146b-5p and let-7i-5p showed higher variability than miRNAs with 

comparable mean expression levels (for miR-146b-5p, std=0.377; for let-7i-5p, 

std=0.939). For example, let-7a-5p, a miRNA in the same family as let-7i-5p, had 

comparable mean expression to let-7i-5p, but with much lower variability (for let-7a-

5p, std=0.351). These results showed the direct evidence of intercellular miRNA 

expression heterogeneity, which differed substantially for individual miRNAs.   

To validate the observed intercellular heterogeneity, we performed single-cell 

qRT-PCR to measure four selected miRNAs, let-7a-5p, let-7i-5p, miR-146b-5p, and 

miR-92a-3p, in a separate batch of cells (Figure 2c). Indeed, the variations from single-

cell qRT-PCR paralleled those observed in half-cell small RNA sequencing data: miR-

92a-3p and let-7a-5p show relatively lower levels of variation (standard deviation 

std=0.83 and std=1.51 respectively), miR-146b-5p an intermediate level of variation 
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(std =2.57), and let-7i-5p a high level of variation (std =5.64). (Figure 2c). We further 

determined that these variations could not be fully attributed to genetic differences but 

instead associated with non-genetic cellular heterogeneity. We generated 17 K562 

single-cell clones and measured the same miRNAs using qRT-PCR for each clone 

(~40,000 cells per clone). One would expect that if the miRNA expression 

heterogeneity in single cells was driven by genetic differences between cells, large 

variation would be manifested similarly between single-cell clonal populations because 

each clone was derived from a single cell and cells within a clone share the genetic 

variations present in the initial single cell. In contrast, we observed low levels of 

variability cross these single-cell clones (for miR-92a-3p, std=0.48; for let-7i-5p, 

std=0.68; for miR-146b-5p, std=0.60) (Figure 2d). Collectively, these data support that 

the half-cell small RNA profiles could faithfully capture single-cell miRNA variability, 

which allowed us to use half-cell small RNA sequencing to interrogate non-genetic 

intercellular miRNA heterogeneity. 

 

Evaluating the profiling of half-cell mRNA expression 
As described above, the 20 single K562 cells processed for half-cell small RNA 

sequencing were also analysed for mRNA transcriptomes using the remaining half-cell 

lysates. SMART-seq was reported to be of high coverage, low bias, and good 

reproducibility compared to other methods when single-cell data were compared to 

population, spike-in controls or theoretical predictions41. However, the true technical 

variability cannot be accessed unless the same cell can be analysed multiple times for 

RNAseq, which has not been practical. Herein, we conducted SMART-seq with two 

halves of a single K562 cell and the gene expression profiles were compared (Figure 

3a), which yielded a Pearson correlation R2 value of 0.930, which provided a direct 

evidence about the level of technical noise. Similar results were observed with human 

293T and murine NIH3T3 cells (Supplementary Figure 2b). These data supported the 

validity to use half-cell sequencing data to represent single-cell mRNA transcriptome.  

We next examined the variation of mRNA expression across 19 half K562 cells 

(Supplementary Figure 7). The plot (Figure 3b) showing mRNA variation across 19 

half cells as a function of the mean gene expression level followed the anticipated trend 

that the log2 variation became lower as the levels of gene expression increased. 

Unsupervised consensus clustering was conducted to detect transcriptional states with 

similar profiles and resulted in three major clusters (Figure 3c). The first cluster of cells 
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was enriched for genes associated with translational processes but depleted for genes 

associated with processes such as acetylation. The second cluster of cells were opposite, 

depleted for translation-related genes but enriched for the acetylation process 

(Supplementary Table 1). The third cluster of cells contain both signatures of the first 

and second clusters and are likely more differentiated cells with the increased 

expression of erythroid lineage genes.   

In order to further validate the observed clusters, we used high-throughput 

single-cell 3’-end mRNA-seq technology42-44 to generate the mRNA transcriptome data 

from hundreds of single K562 cells. Quality check was performed and compared 

against published single-cell RNA-seq data for the same cell line (Supplementary 

Figures 8 and 9). Unsupervised consensus clustering analysis again yielded three 

major clusters with the proportions (40.55% : 42.83% : 16.62%) similar as the 19 

single-cell data (36.84% : 47.37% : 15.79%) (Figures 3c and 3d). The analysis using 

t-distributed stochastic neighbour embedding (t-SNE) was performed to visualize the 

major clusters and the gene expression distribution (Supplementary Figure 10). 

Pathway analysis further confirmed that these clusters were enriched for the same 

biological processes, notably the translational activities and the acetylation pathway 

(Figures 3c, 3d and Supplementary Tables 1 & 2). Therefore, the mRNA 

transcriptional phenotypes detected by the half-cell genomics approach and single-cell 

3’ mRNA-seq were in good agreement, justifying the validity to use half-cell mRNA 

profiles to capture single-cell transcriptome and to examine single-cell gene expression 

heterogeneity.   

 

miRNA and miRNA target relationship on the single-cell level 
Having both miRNA and mRNA profiles obtained from the same single cells, 

we reasoned that if miRNA expression heterogeneity contributed to the control of 

single-cell level mRNA expression heterogeneity, one would expect that the mRNA 

targets to be anti-correlated with miRNA expression levels. It has been known that the 

level of global miRNA expression is low in cancer cells4, particularly cancer cell lines 

such as K562, we focussed first on the most abundantly detected miRNA miR-92a-3p. 

We ranked all mRNAs based on their Pearson correlation to the miRNA, and asked 

whether predicted targets of miR-92a-3p were more anti-correlated to the miRNA than 

non-targets. Using two independently defined miRNA target predictions (TargetScan 

and MSigDB), we observed that both target sets were significantly enriched toward the 
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negative correlation scores (Figure 4a). In contrast, predicted targets of another 

miRNA, miR-125a-5p, were not enriched for correlation with miR-92a-3p (Figure 4a). 

These data support that the single-cell-level expression of miRNA targets was overall 

more negatively correlated to miRNA expression, and suggest that miRNA expression 

variation contributes to the control of mRNA variability. 

While examining the predicted targets of miR-92a-3p, we noticed an interesting 

relationship between the level of target expression and the likelihood of the target being 

negatively correlated with the miRNA. Specifically, for targets of higher abundance 

(mean log2(RPKM)>4), we observed a much stronger and significant enrichment 

toward negative correlation than targets with lower expression (Figure 4b). This 

relationship could also be observed when analysing correlation between miR-125a-5p 

and its predicted targets, as well as between miR-26a-5p and its targets (Figure 4c, 4d). 

In both cases, only targets with mean log2(RPKM) over 4 showed significant 

enrichment toward negative correlation with the corresponding miRNA, whereas 

targets with lower expression were not. Indeed, if all the targets of miR-125a-5p and 

miR-26a-5p were analysed without categorization based on their expression levels, we 

could not detect any significant enrichment. This was obviously due to predicted targets 

of lower expression diluting out the signal for abundantly expressed targets, the latter 

of which were of a small fraction among all predicted targets. See Discussion for the 

possible explanations of this observed correlation. Taken together, the data above 

support that miRNA heterogeneity may contribute to shaping the mRNA variability in 

single cells, particularly for abundantly expressed targets. 

The three miRNAs mentioned above, including miR-92a-3p, miR-125a-5p and 

miR-26a-5p, shared the common properties that they were of relatively high abundance 

in K562 cells and they had a reasonably long list of predicted targets (>500) to allow 

effective stratification by expression levels. We thus examined miRNAs with lower 

abundance to determine if targeting relationships could also be observed in paired half-

cell miRNA and mRNA profiles. For let-7a-5p, which was weakly expressed in K562 

cells (Figure 2b, 2c), we did not observe significant enrichment of targets toward 

negative correlation with the miRNA, even though a trend could be seen for predicted 

targets with abundant expression (Figure 4e). This was not surprising, as it has been 

reported that functional targeting requires at least several hundred miRNA molecules 

per cell45. Likewise, we did not observe significant targeting relationships for let-7i-5p 
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and miR-146b-5p, presumably due to low abundance (for let-7i-5p) or a short list of 

predicted targets (for miR-146b-5p).  

Taken together, the data above demonstrate the feasibility of examining 

functional miRNA targeting directly in paired half-cell miRNA and mRNA profiles, 

with the targeting relationship on single-cell level being dependent on both the level of 

miRNA expression and the level of its targets. The data suggest the possibility for 

abundantly expressed miRNAs to influence global transcriptomic phenotypes in single 

cells.    

  

Single-cell miRNA and mRNA profiles reveal regulatory relationships 
controlling miRNA expression 

It is conceivable that heterogeneity in cells’ molecular states may contribute to 

miRNA expression heterogeneity. We thus attempted the searching for new regulatory 

relationships that control miRNA gene expression utilizing the cell-to-cell variability 

of miRNA and mRNA in single cells. We specifically focused on the two highly 

variable miRNAs, miR-146b-5p and let-7i-5p, and queried the mRNA genes (e.g., 

using gene set enrichment analysis (GSEA) based upon the MSigDB database46) or 

molecular connectivity (e.g, using the Connectivity Map (CMap)47) in order to reveal 

cellular pathways and chemical perturbations that are capable of modulating the 

expression of the corresponding miRNA. (Figure 5a).  

For miR-146b-5p, we ranked mRNA genes according to their correlation with 

the miRNA, and performed GSEA querying with MSigDB46, 48. The most noticeable 

association was a negative relationship between multiple gene sets for protein 

translation and miR-146b-5p (Figure 5b and Supplementary Table 3). Interestingly, 

protein translation was also identified as a molecular process differentially expressed 

between the major mRNA transcriptomic subtypes (Figure 3c). We hypothesized that 

a common upstream regulator controls cellular translation and miR-146b-5p expression 

in opposite ways. Given that the AKT pathway positively regulates cellular translation, 

we thus tested the hypothesis that inhibition of AKT could elevate miR-146b-5p 

expression. We treated K562 cells with an allosteric AKT inhibitor MK-2206, which 

significantly increased miR-146b-5p expression (Figure 5d). A similar increase was 

observed in MCF-7 cells (Supplementary Figure 11a). In contrast, MK-2206 did not 

affect miR-92a-3p or let-7i-5p (Figure 5d, 5h), and the inhibition of the hedgehog 

pathway by cyclopamine or the inhibition of HDAC by Trichostatin A did not 
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significantly affect miR-146b-5p expression in K562 cells (Figure 5d, 5g), indicating 

the specificity at the levels of both miRNA and cellular pathway. Upon AKT inhibition 

of K562 cells, we noticed that the intercellular variability of miR-146b-5p expression 

was reduced (Supplementary Figure 11b, for control std=2.41, for AKT inhibition 

std=1.50; p<0.006 see Methods). We further noticed that the AKT inhibitor elevated 

the expression of mature miR-146b-5p, but decreased the expression of the primary 

transcript of miR-146b (Figure 5i), whereas no change was observed for the pri-let7i 

or mature let-7i-5p (Figure 5h), suggesting that the AKT pathway specifically inhibits 

the post-transcriptional maturation of miR-146b. Similar results were observed when 

K562 cells were treated with two additional AKT inhibitors (Supplementary Figure 

11c, 11d). These data indicate that a novel regulatory relationship for miR-146b-5p 

expression could be uncovered by analysing the correlation between miRNA and 

mRNA profiles in single cells, and support a possible role for AKT to control 

intercellular variability of miRNA expression. 

For mRNAs correlated with let-7i-5p, we did not find statistically significant 

positive or negative enrichment for any gene set in MSigDB after multiple-hypotheses 

correction (Supplementary Table 3). Instead, we defined the positive and negative 

transcriptomic signatures of let-7i-5p by using mRNAs correlated and anti-correlated 

with this miRNA respectively, and used these signatures to query the CMap, a database 

of gene expression responses in the presence of chemical perturbation47. Two histone-

deacetylase (HDAC) inhibitors, including Trichostatin A, were scored as top hits 

(Figure 5c and Supplementary Table 4), whose gene expression responses in CMap 

database were negatively enriched for the let-7i-5p signature, leading to the hypothesis 

that inhibiting HDAC could decrease let-7i-5p expression. This was again 

experimentally verified by treating K562 cells with Trichostatin A, which led to a 

significant downregulation of let-7i, with no effect on miR-146b-5p (Figure 5e, 5g). 

MK-2206 and cyclopamine that target other pathways had no effect on the expression 

of let-7i-5p (Figure 5e, 5h). Trichostatin A did not alter the level of primary let-7i 

transcript, suggesting post-transcriptional control on let-7i-5p expression (Figure 5f). 

Taken together, the above results support that informative regulatory relationships for 

miRNA expression could be revealed through single-cell miRNA and mRNA co-

profiling.   
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DISCUSSION 
 Despite the recent advances in single-cell functional genomics and the studies 

reported on separating DNA and RNA for co-measurement of pre-transcriptional 

alterations (e.g., DNA methylome) and mRNA gene expression, to our best knowledge, 

this is the first report on co-analysis of post-transcriptional regulators (miRNAs) and 

the mRNA transcriptome in single cells. This was realized with a half-cell genomics 

approach, which overcomes the challenge to separate and capture small RNAs from 

mRNA without introducing material loss and technical variation35. We evaluated the 

validity of sequencing half-cell RNA materials to measure single-cell miRNA or 

mRNA expression profiles, and further combined half-cell miRNA and mRNA profiles 

from same single cells to perform multi-omic analysis. Having the genome-wide 

miRNA and mRNA profiles from the same single cells permits direct assessment of 

whether intercellular mRNA transcriptomic heterogeneity is in part shaped by the 

intercellular variability of the corresponding miRNA regulators. We observed that 

several abundantly expressed miRNAs, including miR-92a-3p, miR-125a-5p and miR-

26a-5p, were more inversely correlated with its predicted targets than non-targets, 

supporting the above notion. Predicted targets with abundant expression levels were 

more strongly anti-correlated with the miRNA than predicted targets with lower 

expression. Why was a stronger anti-correlation observed only for predicted targets of 

high abundance? One possibility is that the higher technical noise (on log2 transformed 

data) for genes with low expression levels resulted in the lower degree of statistical 

significance even if there were correlation between miRNA and targets. Another 

possibility is that protein-coding genes with low expression levels are more prone to 

regulation by miRNAs of both high and low abundance, diluting the correlation with 

any given single miRNA. In contrast, protein-coding genes with high expression levels 

are susceptible to regulation only by abundantly expressed miRNAs, leading to the 

preservation of correlation with the corresponding miRNA. This second possibility is 

consistent with recent findings that support the efficacy of miRNA-mediated regulation 

being a function of the ratio between miRNAs and targets49-52. Overall, our experiments 

opened up the opportunity to interrogate single cells for post-transcriptional regulation 

of protein-coding genes to modulate mRNA cell-to-cell variability.  

In addition to assessing miRNA-based regulation of mRNA heterogeneity, the 

availability of paired half-cell mRNA and miRNA profiles allowed us to derive 

informative and verifiable hypotheses on regulatory relationships between cellular 
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pathways and miRNA expression that may contribute to intercellular heterogeneity of 

miRNA expression. Notably, the expression of miR-146b-5p could be regulated by an 

AKT inhibitor, which is well recognized to control protein translation. This regulation 

seems to occur at the level of miRNA maturation, because the primary transcript was 

reduced yet the mature miRNA was increased. This effect cannot be explained by 

previous findings of AKT controlling AGO253, which would predict similar responses 

to AKT inhibition by all miRNAs. The lack of effect of the AKT inhibitor on other 

miRNAs (miR-92a-3p and let-7i-5p) and the decrease of primary miR-146b transcript 

by AKT inhibition indicate that this modulation occurs at a separate step from AGO2 

regulation. The exact mechanism requires further studies to elucidate. Similarly, we 

demonstrated that the let-7 family member let-7i-5p could be downregulated by HDAC 

inhibition. HDAC inhibition is often associated with activation of gene transcription, 

which did not seem to occur with let-7i, as the primary transcript of let-7i was not 

altered, again supporting the existence of post-transcriptional regulation of let-7i-5p by 

HDAC. It is thus interesting that post-transcriptional regulation of both mRNA and 

miRNA can be revealed on the single-cell level through co-analysis of mRNA and 

miRNA transcriptomes.    

While our study demonstrated the feasibility and utility of obtaining paired half-

cell mRNA and miRNA profiles, our current approach has limited throughput in terms 

of the number of cells per run. Integrating the protocols demonstrated in this work in 

microfluidic systems could potentially improve on the throughput. Additionally, while 

this study focused on miRNAs, the half-cell small RNA sequencing data also contain 

information of other small RNA species, such as tRNA fragments that have been shown 

to be functionally important in human cancers and other diseases54-56. In addition, small 

RNAs mappable to other genomic regions could be readily detected in our half-cell 

profiles (Supplementary Table 5). We envision that further development and 

application of half-cell co-profiling of small RNAs and mRNAs could lead to novel 

mechanistic insights and far-reaching impact on small RNA biology.  
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MATERIALS AND METHODS 
 
Cell culture 

The human K562 cell line was from American Type Culture Collection 

(ATCC), and was maintained in RPMI 1640 media supplemented with 10% heat-

inactivated fetal bovine serum (FBS, Life Technologies # 16000044) at the cell density 

between 2 × 105 and 2 × 106 per ml at 37°C with 5% CO2. The murine BaF3 

hematopoietic cell line was from ATCC. BaF3 cells were cultured in RPMI 1640 

medium containing 10% FBS, 1% of 100 × Penicillin-Streptomycin-Glutamine (Life 

Technologies # 10378016) and 3 ng ml−1 of recombinant murine IL-3 (Peprotech 

#213-13). MCF-7 cells were cultured in DMEM media (Life Technologies, #11995065) 

with 10% FBS and 1% of Penicillin-Streptomycin-Glutamine.  K562 cells were tested 

and showed sensitivity to Imatinib. BaF3 cells were tested and showed sensitivity 

toward IL3 withdrawal. MCF-7 cells were tested and showed sensitivity toward 

estrogen receptor inhibition. Cells were acquired mycoplasma-free, but have not been 

specifically tested for mycoplasma in this study.   

 For deriving K562 single cell clones, single K562 cells were hand-picked under 

microscope (see Cell Lysis for details) and maintained in single wells of a 96-well plate. 

Visual inspection was performed to ensure that only a single cell was present per well. 

Expanded single cell clones were harvested after ~20 days from the initial single-cell 

plating and further expanded for total RNA preparation.   

For chemical treatment experiments, K562 cells were plated at 50,000 cells/well 

in a 96-well plate. Cells were treated with 10 µM of cyclopamine, 10 µM MK-2206, 1 

µM Trichostatin A, 5 µM Afuresertib (AFU) or 10 µM Ipatasertib (IPA). All chemicals 

were from Sigma Aldrich, except for AFU and IPA which were from Selleckchem 

(GSK2110183 and GDC-0068). Chemicals were dissolved in DMSO, and DMSO was 

added to the control group. Cells were harvested after 24 hours for total RNA 

extraction. 

 

Oligonucleotides and primers 

Sequences and modifications are available in Supplementary Table 6. 

 

Cell Lysis and Pre-treatment 
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Cells were washed once with cold PBS (Corning, #21-031-CV) and diluted to 

< 1000 cells/ml. Prior to picking single cells, 10 µl of lysis buffer (0.25% Triton-X100, 

Sigma #T8787, 4 units (U) recombinant RNase Inhibitor, Takara #2313A) was 

deposited in each PCR tube. All single cell experiments were performed using 8-strip 

PCR tubes (USA Scientific #1402-4700) and 10 µl filter tips (Denville #P1096-FR). 

To ensure single cell resolution, we performed most experiments by hand-picking of 

single cells under microscope. The diluted cell mixture was placed on the cover of a 

petridish, and single cells without close neighbours were manually picked using a 10 

µl pipette, with each cell contained within less than 1 µl of volume. Single cells were 

then added into the lysis buffer. The single-cell lysates were stored at −80 °C. After 

thawing, the lysates were incubated at 72 °C for 20 minutes or 75 °C for 5 minutes to 

release small RNAs for reaction. The lysate was then split into two ~5 µl halves, with 

each half transferred into an empty PCR tube. 

 

Small RNA library preparation and sequencing  

Preparation of the 3’ adaptor: 5’-phosphorylated 3’ adaptor oligonucleotides 

were ordered from IDT. Pre-adenylation of 5’-phosphorylated 3’ adaptor was 

performed by using the 5’ DNA adenylation kit (NEB, #E2610S) and purified using the 

Nucleotide Removal kit (Qiagen, #28304), both following the manufacturer’s protocol. 

The concentration of the pre-adenylated adaptor was estimated by analysis on an 15% 

denaturing polyacrylamide gel (made with American Bioanalytical Sequel NE, 

#AB13021, AB13022) and comparison of band intensity to known quantities of 

synthesized oligonucletides. The pre-adenylated 3’-adaptor (referred to below as 3’ 

adaptor) was stored at −80 °C in aliquots. 5’ Adaptor was ordered from Dharmacon. 

All other oligonucleotides were from IDT. Purification of oligonucleotides was 

performed by the synthesis companies. 

Small RNA library preparation: Single-cell or half-cell lysate (5 µl) was 

subjected to 3’ adaptor ligation by adding 5.24 µl of 3’ adapter ligation reaction 

mixture (1 pmole 3’ adapter, 1.66 µl 50% PEG 8000, NEB #M0373S, 250 U T4 RNA 

Ligase 2 truncated KQ, NEB #M0373S, 0.83 µl 10× T4 RNA ligase buffer, NEB 

#M0373S, 20 U recombinant RNase Inhibitor, Takara, #2313A) and the reaction was 

incubated at 30 °C for 6 hours followed by 4 °C for 10 hours. Next, 5 µl adaptor-

digestion mixture was added (10 pmole RT primer, 5 U Lambda exonuclease, NEB 
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#0262S, 5 U 5’ deadenylase, NEB #M0331S) and the reaction was incubated at 30 °C 

for 15 min followed by 37 °C for 15 min. Next, 5 µl 5’ adapter ligation reaction 

mixture was added (10 pmole 5’ adapter oligo, 10 U T4 RNA ligase 1, Thermo Fisher 

#EL0021, 1 µl T4 RNA ligase buffer, Thermo Fisher #EL0021, 2 µl 50% PEG 8000, 

NEB #M0373S) and incubated at 37 °C for 1 hour. Reverse transcription reaction was 

performed in three steps using M-MLV reverse transcriptase (RT) (Invitrogen 

#28025013). First, 5 µl of RT reaction mix was added (10 pmole RT primer) and the 

reaction was incubated at 65 °C for 5 minutes. Second, the mix of 2.1 µl 5x First Strand 

buffer (Invitrogen, #28025013), 0.3 µl H2O and 0.8 µl of 0.1M DTT (Invitrogen 

#28025013) was added and incubated at 42 °C for 30 minutes. Third, 3.3 µl of RT 

reaction was added (0.6ul M-MLV reverse transcriptase, 1 µl 5x First Strand buffer, 

Invitrogen #28025013, 0.3 µl H2O, 0.8 µl of 0.1M DTT, Invitrogen #28025013 and 

0.6 µl 10mM dNTP mix, Invitrogen #18427088) and the reaction was incubated at 42 

°C for 2 hours. The first PCR amplification was carried out by adding 35 µl of the 

reagents (3.5 µl 10xThermoPol Reaction Buffer, NEB #M0267S, 0.7 µl 10mM dNTP 

mix Invitrogen #18427088, 35 pmole RT primer oligo, 35 pmole PCR primer oligo, 

0.5 µl Taq DNA Polymerase NEB #M0267S, 23.3 µl H2O) and incubating at 98 °C 

for 30 seconds followed by 13 cycles of 98 °C for 10 seconds, 60 °C for 30 seconds 

and 72 °C for 30 seconds and a final incubation at 72 °C for 5 minutes. Next, 1 µl of 

the amplified product was transferred to a fresh tube and to 25 µl of second PCR 

reaction (consisting of 10 µM indexed primer, 10 µM 5’ Illumina PCR primer, 2.5 µl 

10x ThermoPol Reaction buffer, 0.5 µl Taq DNA Polymerase NEB #M0267S, 0.5 µl 

10mM dNTP mix, Invitrogen #18427088), followed by a 30 second incubation at 98 

°C, 13 cycles of 98 °C for 10 seconds, 67 °C for 30 seconds and 72 °C for 30 seconds 

and a final incubation at 72 °C for 5 minutes. PCR products of ~140 bp were gel-

purified after the second PCR on a 8% non-denaturing acrylamide gel. Gels were 

prepared by using Protein Gel Mix (American Bioanalytical #AB00283). Samples 

were prepared by adding 1/5 volume of 6X Gel loading dye purple (NEB #B7024S). 

Electrophoresis was performed at 140V for 80 minutes. After electrophoresis, the gel 

was stained in 15 ml water containing 1.5 µl GelStar Nucleic Acid Gel Stain (Lonza 

#50535) for 15 minutes. Bands were cut, eluded in 0.3 M sodium chloride overnight 

and precipitated.  

All barcoded small RNA libraries were sequenced on an Illumina HiSeq 2000 
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instrument. Alternatively, for Luminex-based detection, the second PCR was 

performed with a 5’ biotinylated primer, and detected on the Luminex platform as 

previously published57.  

 

SMART-Seq mRNA profiling library preparation and sequencing  

We followed the manufacturer’s protocol of SMART-Seq v4 Ultra Low Input 

RNA kit for sequencing (Clontech #634889). Then, Nextera DNA Library Preparation 

Kit (Illumina #FC-131-1096) was used to fragment and prepare the sequencing library. 

The libraries were sequenced on an Illumina HiSeq 2000 instruments with paired end 

100 base reads.  

 

Massively parallel single cell 3’-enriched RNA-seq  

Massively parallel single cell 3’-end mRNA sequencing was performed by 

adopting the DropSeq procedure37 to microwell arrays, similar to demonstrated 

before38,39. Microwell arrays were fabricated in polydimethylsiloxane (PDMS) using 

standard soft lithography. Each array consists of 15,000 – 50,000 microwells, and 

microwells are sized 55 micron in diameter and 45 micron in depth to ensure capture 

of only one barcoded bead with poly-T-containing probe in each well by size exclusion. 

Cells were loaded into the device such that only 5-10% of the wells were loaded with 

single cells to prevent cell doublets and verified by microscopy before proceeding 

further. Once cell loading was completed, beads were loaded into the array at high 

density to ensure that each well receives a single bead (>95% bead occupancy). 

Following bead loading, lysis buffer was introduced into the array, and the array was 

then immediately sealed by introducing fluorinated oil. The cell lysates and beads were 

then incubated for an hour to capture the released mRNA molecules onto barcoded 

beads. Beads were then removed from the devices by centrifuging the devices upside 

down to push the beads out of microwells and flushing them out into an Eppendorf tube. 

The beads are then processed with subsequent reverse transcription, exonuclease 

treatment, amplification and library preparation as in the Dropseq protocol, and 

sequenced using paired end sequencing. After sequencing, read alignment and 

generation of gene expression matrices were performed as described in the DropSeq 

protocols42. 

 

Small RNA sequence analysis 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 30, 2018. ; https://doi.org/10.1101/431213doi: bioRxiv preprint 

https://doi.org/10.1101/431213
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

 Small RNA reads were analysed by a custom perl pipeline that has been 

described58. This pipeline was based on and modified from the miRDeep2 package56. 

Specifically, after removing adaptor sequences, collapsing reads with the same 

sequence, and removal of reads with less than 15 bases in length, small RNA reads were 

mapped to miRNA precursors from miRBASE release 21 using miRDeep2, allowing 

zero mismatches. Mapped reads were quantified by miRDeep2. In addition, reads were 

also mapped to several categories of known RNA species sequentially, using bowtie2. 

Reads were first mapped to human miRNA precursors, with unmapped reads used in 

the next step to map to snoRNAs. Similar sequential mapping was performed for 

snRNA, scRNA, tRNA, rRNA and piRNAs. Unmapped reads left from the above 

mapping were also mapped to the genome. However, we found that there are often 

sequence variants of the ligation adaptors with perfect mapping to the genome, thus 

creating artefacts. We thus did not utilize the mapping to the genome to quantify the 

mapping results. Overall, among the 19 half cells, total reads that map to miRNA 

account for 30.18±7.62% of all reads mapping to the above mentioned RNA species. 

Reads that map to snoRNA, snRNA, scRNA, tRNA, rRNA and piRNA represent 

8.23±2.41%, 1.02±0.33%, 2.17±1.07%, 6.11±0.88%, 52.28±9.27% and ~0.01% 

respectively.   

 Normalization of miRNA reads were performed by dividing the reads quantified 

by miRDeep2 with total miRNA reads quantified by bowtie 2. This is because some 

reads were counted multiple times when miRDeep2 assigned them to miRNA 

precursors, especially for miRNAs that map to multiple genomic loci. The resultant 

data reflect the fraction of a given miRNA within all miRNAs, which we refer to as 

miRNA expression or miRNA levels in figures. The validity of using this fraction-based 

data was supported by single-cell qRT-PCR validation. Normalized data were further 

applied with a minimal expression level of 10e-4 (i.e. all values lower than this 

threshold were set to this level), and log2 transformed for further analyses. 

 

RNAseq data analysis 

 RNAseq data from the half-cell profiles were processed using GenePattern 

software. Specifically, K562 RNAseq data were aligned using Tophat to hg19 genome 

assembly, using gtf files based on UCSC gene definition downloaded from the 

GenePattern server. Aligned reads were quantified using the CuffDiff program, by 

using UCSC gtf definition for hg19, to obtain RPKM values. Among the 19 half K562 
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cell profiles, the number of genes detected is 11209±592 per half-cell. Data were 

applied with a minimal expression level of 10e-3, and log2 transformed for further 

analyses. 

 To identify similar groups of cells, consensus clustering was performed using 

matlab codes. Specifically, for each iteration, 80% of samples were randomly sampled, 

and subjected to hierarchical clustering. Hierarchical clustering was performed with 

average linkage and Pearson correlation metrics after row-based centring and 

normalization (subtracting mean of each row and dividing by standard deviation of each 

row). A total of 50 iterations was performed, and consensus clusters of 2 to 5 were 

manually examined. Three clusters were selected based on the clustering results for 

further analyses.  

 To identify differential gene expression between clusters, permutation was 

performed to shuffle sample labels, with a total of 5000 iterations, and using ttest score 

as a metric. Nominal p values were obtained by quantifying the fraction of permutations 

that reached a more extreme t-test score. False discovery rates were then computed 

based on the nominal p values using the Benjamini-Hochberg method. For 19 K562 

half-cell data, the differential gene expression was defined with FDR<0.1. For ~400 

K562 single cells, the differential gene expression was defined with FDR<0.05. 

Enrichment of pathways was performed by DAVID analysis with the corresponding 

groups of differentially expressed genes. 

 

Co-analysis of miRNA and mRNA  

 To analyse the relationship between miRNA and miRNA targets, mRNA genes 

were ranked by the Pearson correlation to miRNA expression among the 19 K562 half-

cells. Initial analyses were performed using Gene Set Enrichment Analysis, using 

miRNA target gene set defined in MSigDB, with 1000 or more permutations on gene 

labels, and with Pearson correlation as weights during the enrichment analyses. In 

addition, miRNA target genes defined in TargetScan release 7.1 were also examined, 

using the same enrichment algorithm as in GSEA.  

 For examining miRNA-target relationships using cumulative distribution 

functions, the predicted miRNA targets were obtained from TargetScan release 7.1, and 

filtered to eliminate predicted targets with poor total context scores. Specifically, we 

only retained predicted targets that had total context scores <-0.1. Targets were further 
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categorized according to mean log2 expression (measured in RPKM). P values were 

calculated based on the Kolmogorov-Smirnov test, using matlab’s kstest2 function. 

 For any given miRNA, the rank list of mRNA according to the correlation was 

also used to query MSigDB for potential pathways or gene sets. To query the 

Connectivity map (cMap), the ranked mRNAs were separated into positively correlated 

genes and negatively correlated genes, with a cutoff of 0.45 or -0.45 for the correlation 

score. These two lists of gene symbols were then mapped to the probe names of U133A 

chip to query CMap. 

 

Single-cell Quantitative Real Time RT-PCR  

 Single cell qRT-PCR was performed following a published study19 with 

modifications. For preparation of cell lysate for qRT-PCR, prior to picking single cells, 

4 µl of lysis buffer (1% Triton X-100, 4 U recombinant RNase Inhibitor, Takara 

#2313A) and 2e-19 mole of synthetic hsa-miR-371-5p, Ambion) was deposited in each 

PCR tube (TempAssure PCR 8-Stripes, USA Scientific #1402-4700). The spiked-in 

hsa-miR-371-5p permitted final data normalization with a miRNA not expressed 

endogenously in K562 cells. K562 cells were first washed once with cold PBS. K562 

single cells were manually picked by using a 10 µl pipette in 1µl volume and added to 

lysis buffer. Cell lysate was stored in -80 °C, thawed and incubated at 75 °C for 5 

minutes and subjected to miScript RT reactions (Qiagen, by adding 2 µl 5x miSript 

HiSpec buffer, 1 µl 10x nucleotides, 1 µl miScript RT enzyme mix). RT product was 

diluted 20 times (v/v) with water, and 1 µl diluted RT product was used for Pre-PCR 

reaction in 10 µl total volume with Power SYBR-green PCR master mix (Applied 

Biosystems) for miRNAs. For a given experiment, all relevant miRNA-specific primers 

(2 pmole each), as well as that of the spike-in control were added. See Supplementary 

Table 6 for specific primers used. qPCR reaction was then performed after pre-PCR 

and the dilution of pre-PCR product 20 times with water (v/v). The total volume for the 

reaction was 10 µl (5 µl Power SYBR-green PCR master mix, 2pmole miScript 

universal primer, 2pmole miRNA specific primer, 2 µl diluted pre-PCR product). The 

expression of each miRNA was quantified by comparative Ct method (2-ΔCt), using the 

detected levels of hsa-miR-371-5p as a control. 

 

RNA Extraction and bulk population qRT-PCR 
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Total RNA was extracted using the TRIzol Reagent (Life Technologies 

#15596018) following the manufacture’s protocol. For qRT-PCR of bulk population 

samples, 10 ng of total RNA was used for each biological sample. U6 small RNA was 

used as a control for qRT-PCR of miRNAs. All RT, qPCR and data analysis details 

were following the procedure in above sections.  

 

Statistical Analysis 

 Student’s t-test (unequal variance, two-tailed) was used in analysis of chemical 

treatment experiments. Number of replicates were determined after an initial 

experiment with three biological replicates to gauge the data variation. For analysis of 

correlation between miRNAs and its predicated targets, Kolmogorov-Smirnov test was 

used (two-sided) through Matlab kstest2 function. Statistics of Gene Set Enrichment 

Analysis was obtained from the GSEA program output, using the familywise-error rate. 

For evaluating the variation of miR-146 with AKT inhibitor treatment, p value was 

calculated using custom matlab codes by performing random permutations. 

Specifically, for both control and AKT inhibitor groups, 15 samples per group were 

randomly drawn to calculate standard deviations. A total of 1000 permutations were 

performed. P value was calculated as the probability of rejecting the hypothesis that the 

AKT inhibitor group has lower variation than the control group, by dividing the number 

of random instances, in which the standard deviation of the AKT inhibitor group is 

larger or equal to that of the control group, by the total number of random instances. P 

value of 0.006 was observed. Similar significant results were obtained with random 

sample size from 13 to 18.  

 

 

Data Availability 

 Next-generation sequencing data have been deposited to GEO under series 

GSE114071.  
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Figures and Figure Legends 
 

 
 
Figure 1. Experimental workflow. (a) Overall strategy for profiling miRNA and mRNA 

from the same single cells using half-cell genomics. It involves cell lysis, half-cell split, 

followed by small RNA & large RNA library preparation. (b) For miRNA library 

preparation, a pre-adenylated (APP) 3’ adaptor was used to ligate to the 3’ end of 

miRNA molecules, followed by digestion of unreacted 3’ adaptor, ligation with 5’ 

adaptor, RT and PCR amplification. (c) For mRNA library preparation, first-strand 

cDNA synthesis was primed by the 3’ SMART-Seq CDS Primer IIA. Template 

switching at the 5’ end of transcript was performed using the SMART-Seq v4 

oligonucleotides. After PCR amplification, cDNA was fragmented using Illumina’s 

Tagmentation process.  
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Figure 2. Profiling of miRNAs from half-cell lysate. (a) A single K562 cell was 

lysed, and two halves of the lysate were separately subjected to small RNA 

sequencing. Scatter plot of normalized and log2-transformed miRNA expression 

levels (miRNA expression levels represent the fraction among total miRNA, see 

Methods) is shown. Each circle represents one annotated miRNA. The correlation 

coefficient R2=0.93. (b) The standard deviations (on y-axis) of miRNA expression 

across 19 successfully profiled half cells were plotted against the mean expression on 

x-axis, using normalized and log2-transformed miRNA expression data as described 

in (a). Each circle represents one annotated miRNA. The blue line shows the trend of 

the distribution based on locally averaged values. Specific miRNAs are highlighted 

with red arrows. (c) Validation experiment was carried out by quantifying miRNA 

expression in 20 single K562 cells using qRT-PCR. Relative levels of let-7i-5p, let-7a-

5p, miR-146b-5p, miR-92a-3p and U6 were determined relative to a spike-in control 

(synthetic miR-371). Each dot represents one K562 cell. Each data point reflects the 

average measurements from two technical replicates. Error bars present standard 

deviation. The levels of miRNA are shown in log2 scale. The dashed lines and NC 

(negative control) indicates the detection range of water samples. (d) Single K562 

cells were grown to derive 17 clones, and the relative levels of miR-92a-3p, miR-146b-
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5p and let-7i-5p were determined in clonal populations by qRT-PCR. Roughly 40,000 

cells were used from each clone. Each dot represents one K562 clone. Each data 

point reflects the average from two technical replicates. Error bars present standard 

deviation. U6 was measured as a control for normalization. The levels of miRNAs are 

shown in log scale. 
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Figure 3. Global profiling of mRNAs from half cells. (a) A single K562 cell was lysed, 

and two halves of the lysate were separately subjected to RNAseq. Scatter plot of 

normalized and log2-transformed mRNA expression levels (in FPKM units) is shown. Each 

circle represents one annotated mRNA. The correlation coefficient R2 is 0.930. (b) The 

standard deviations of mRNA expression across 19 successfully profiled half cells were 

plotted against the mean expression, using log2-transformed mRNA expression data. Each 

circle represents one annotated mRNA. (c) Consensus clusters were identified in the 19 

K562 half-cell mRNA expression data. A heatmap is shown for differentially expressed 

genes between the red and blue clusters, with enriched pathways annotated by the 

DAVID pathway analysis. Each row represents one annotated gene whereas each 

column represents a single cell. (d) K562 cells were profiled using a massively parallel 

single-cell 3’-end RNAseq technology. A heatmap is shown for differentially expressed 

genes between the red and blue consensus clusters, with enriched pathways 

annotated by the DAVID pathway analysis. Each row represents one annotated gene 

whereas each column represents a single cell.  
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Figure 4. Relationships between miRNA and miRNA targets in paired half-cell 
data. (a) mRNAs were ranked according to their correlation with miR-92a-3p using 

data from the 19 pairs of half-cell miRNA and mRNA profiles. The resultant rank list 

was queried with predicted targets of miR-92a-3p obtained from TargetScan or 

MSigDB (left and middle panels) or with targets of miR-125a-5p from TargetScan (right 

panel). Gene Set Enrichment Analysis plots are shown with p values indicated. (b-e) 
mRNAs were ranked according to their correlation with (b) miR-92a-3p, (c) miR-125a-

5p, (d) miR-26a-5p or (e) let-7a-5p. Cumulative distribution functions were plotted with 

non-targets and with predicted targets of the corresponding miRNA (based on 

TargetScan). Predicted targets were further categorized based on the mean RPKM 

values across the 19 K562 half-cell samples. The number of genes in each category 

is indicated in parentheses. P values were calculated based on the Kolmogorov-

Smirnov test between the indicated pairs of conditions. **: P<0.005; *: P<0.05; ns: not 

significant.  
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Figure 5. Uncovering regulators of miRNA expression through paired half-cell 
data. (a) Schematics of the approach to infer chemical perturbation of miRNA 

expression through paired half-cell mRNA and miRNA profiles. Regulators of miRNA 

were predicted based on Gene Set Enrichment Analysis (GSEA) Molecular Signature 

Database (MSigDB) and Connectivity Map (CMap). (b) mRNAs were ranked according 

to Pearson correlation coefficients with miR-146b-5p. The resultant rank list was used 

to query the MSigDB database. An enrichment plot is shown for the gene set KEGG-

Ribosome in which genes in this gene set were enriched for negative correlation with 

the miRNA. False discovery rate (FDR) is indicated. (c) mRNAs were ranked according 

to Pearson correlation coefficients with let-7i-5p. mRNAs with correlation coefficient 

R>0.45 were defined as the positive signature whereas mRNAs with correlation 

coefficient R<-0.45 were used as the negative signature. mRNA signatures of let-7i-5p 

were used to query the CMap database. Two HDAC inhibitors were ranked at the top 

of the list (left panel). Right panel shows the enrichment plots of Trichostatin A and 

Vorinostat treatment instances within the CMap database. (d-i) K562 cells were treated 

with 10µM AKT inhibitor MK-2206, 10µM Cyclopamine, 1µM HDAC inhibitor 

Trichostatin A or vehicle control (DMSO) for 24 hours. (d, e) The expression levels of 

miR-146b-5p, miR-92a-3p or let-7i-5p were determined with qRT-PCR. N=6 biological 

replicates. Error bars: standard deviation. A representative experiment out of two is 

shown. (f-i) Mature miR-146b-5p and let-7i-5p levels, as well as the expression levels 

of the corresponding primary miRNA transcript were determined by qRT-PCR. In 

addition, primer sets that detect both primary and precursor miRNAs were also used 

(pri/pre). N=6 biological replicates. Error bars: standard deviation. A representative 

experiment out of two is shown. *: p< 0.01; ** p> 0.05; ns: not significant, as determined 

by student’s t-test. 
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Supplementary Figures 
 

 

Supplementary Figure 1. New protocol to improve the splitting of single-cell lysate 

to profile miRNAs. Direct splitting of single-cell lysate prepared using current methods 

did not yield even distribution of miRNAs in two half-cell samples. This is presumably due 

to the binding of miRNAs in cytoplasmic proteins that are still tethered to partially digested 

cellular materials. The new protocol that combines multiple freeze/thaw and heat 

treatment led to significant improvement in single-cell lysate splitting. Left: profiling of 

microRNAs from two half-cell samples split from the same single cell. Cell lysis was 

performed using standard methods. Right: the same profiling except that the protocol for 

the cell lysis and pre-treatment method has been modified for single cell miRNA profiling. 

The log2 transformed miRNA expression levels (see Methods) are plotted, with each dot 

representing a single miRNA. 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 30, 2018. ; https://doi.org/10.1101/431213doi: bioRxiv preprint 

https://doi.org/10.1101/431213
http://creativecommons.org/licenses/by-nc-nd/4.0/


3	
	

 

 

Supplementary Figure 2. Profiling of miRNA expression in two half-cell samples 

derived from the same single cells. (a) The indicated single cells were lysed, and two 

halves of the lysate from the same single cell were split (using the improved approach) and 

independently subjected to the processing shown in Figure 1b and then miRNAs were 

measured on the Luminex Multiplex Bead Array platform. Scatter plots of normalized and log2-

transformed miRNA expression levels (see Methods) are shown, with each panel showing 

data from one of the indicated cells. Each dot represents one annotated miRNA, with R2 

indicated. (b) Similar to (a), the indicated single cells were lysed, and two halves of the lysate 

from the same single cell were split and subjected to RNAseq analyses. Scatter plots of log2-

transformed mRNA expression levels are shown. Each dot represents one annotated mRNA, 

with R2 indicated. 
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Supplementary Figure 3. qRT-PCR analysis of miRNA expression in two half-cell 

samples derived from the same single cells.  Single K562 cells were lysed. Lysate 

was split with each half of the lysate analyzed for miR-146b-5p expression using 

qRT-PCR. Each dot reflects a single cell. A total of 30 cells were analyzed. The 

Scatter plot shows the Ct values (see Methods on single cell qRT-PCR) of the two 

halves of the same single cells.  
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Supplementary Figure 4. Single-cell vs half-cell miRNA profiles. Scatter plots 

showing the comparison of miRNA profile between a single cell and a half cell 

cross three different types of cell lines. Cell types and R2 values are indicated. 

Log2-transformed miRNA expression data are shown (see Methods), with each 

dot presenting a single miRNA. 
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Supplementary Figure 5. Principal component analysis of half-cell miRNA profiles. 

miRNA expression profiles from 19 different half-cells (black) and two half-cell miRNA 

profiles from the same single cell (red) were analyzed with principle component analysis, 

with each dot representing a half cell. Note that the two red dots are very close by. 
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Supplementary Figure 6. Pair-wise correlation across 19 half-cell miRNA profiles. 

Paired half-cell mRNA and miRNA sequencing was successfully performed for 19 single 

K562 cells. The heatmap shows the pair-wise correlation matrix of 19 K562 half-cell 

microRNA data subjected to hierarchical clustering. Color key is shown below the plot as 

the Pearson Correlation Coefficient R. A grey color was assigned to designate self-

correlations. Overall, there is a good correlation ranging from R=0.902 to 0.975 among 

the group of 19 single cells. The order of cells is the same as in Supplementary Figure 7.  
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Supplementary Figure 7. Pair-wise correlation across 19 half-cell mRNA profiles. 

Paired half-cell mRNA and miRNA sequencing was successfully performed for 19 single 

K562 cells. The heatmap shows the pair-wise correlation matrix of half-cell mRNA data 

subjected to hierarchical clustering. Color key is shown below the plot as the Pearson 

Correlation Coefficient R. A grey color was assigned to designate self-correlations. The R 

value ranges from R=0.884 to 0.937 among the group of 19 single cells. The order of cells 

is the same as in Supplementary Figure 6.  
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Supplementary Figure 8. Library quality check for 400 single K562 transcriptome 

sequencing data. Single K562 cells were analyzed using our in-house massively parallel 

single-cell 3’-end RNAseq technology. The quality of the libraries was examined through 

histograms of single cell RNAseq data as a function of the library size (reflecting total 

number of mapped reads, top left) or of the number of genes detected (top right). These 

results are in agreement with literature results (Klein AM, et al., Cell, 161(5), 1187-1120. 

2015). The relationship between mean log2 normalized transcript counts and variation is 
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shown in the bottom figure with each dot representing a single detected gene. 

Normalization procedure is described in Methods. 
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Supplementary Figure 9. Comparison of K562 single-cell mRNA-seq data between 

this work and the data generated by InDrop. Single K562 cells were analyzed using 

our in-house massively parallel single-cell 3’-end RNAseq technology (this work). The top 

20 highly variable genes (HVGs) were determined from our dataset (this work, 400 single 

cells) and that from the data generated with InDrop published by Klein et al. (right panel, 

238 single cells). The two panels show scattered and violin plots for 11 HVGs that were 

shared between the two datasets. Despite higher number of single cells (N=400) in this 

work compared to InDrop data (N=238) and the resultant lower depth per cell, the 

expression levels of these HVGs are consistent between this work and the InDrop K562 

data.  
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Supplementary Figure 10. tSNE Analysis of 400 single K562 cell mRNA sequencing 

data. Single K562 cells were analyzed using our in-house massively parallel single-cell 

3’-end RNAseq technology. tSNE analysis was performed to visualize the transcriptomic 

data from 400 single cells. The result indicates the existence of three clusters, consistent 

with the heatmap in Figure 3d. Also shown is the distribution of selected highly variable 

genes in order to visualize the expression of specific genes in major clusters.   
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Supplementary Figure 11: The regulation of miR-146b expression by AKT. (a) 

MCF7 cells were treated with vehicle control (Ctrl, DMSO) or AKT inhibitor (AKTi, 

MK2206) for 24 hours, and the expression of miR-146b-5p was determined by qRT-

PCR. N=3 biological replicates. Data are from a representative experiment out of two 

performed. P<0.01, student’s t-test. (b) K562 cells were treated with vehicle control 

(DMSO) or AKTi MM2206 for 24 hours. Single K562 cells were analyzed for miR-146b 

expression using qRT-PCR. Each dot stands for one cell. Standard deviation in the Ctrl 

group is 2.41 and in the AKTi group is 1.50. Error bars stand for standard deviation. 

P<0.01. (c, d) K562 cells were treated with two additional AKT inhibitors IPA (c) and 

AFU (d). The expression of mature miR-146b-5p or primary miR-146b were determined 
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by qRT-PCR. N=6 biological replicates. Data are from a representative experiment out of 

two performed. Error bars stand for standard deviation. *P<0.05; **P<0.01, student’s t-

test.
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Supplementary Tables 

(all supplementary tables are uploaded separately) 

Supplementary Table 1. List of genes enriched in the first & second cluster for 19 K562 

half-cell. Table is sorted by p-values (low to high).  

Provided as an excel file: Supplementary Table 1.xlsx 

 

Supplementary Table 2. List of genes enriched in the first & second cluster for 400 

K562 single-cell. Table is sorted by p-values (low to high) .  

Provided as an excel file: Supplementary Table 2.xlsx 

 

Supplementary Table 3.  Gene set enrichment analysis (GSEA) with miR-146b-5p & 

let-7i-5p 

	

Supplementary	Table	4.		CMAP	query	with	let-7i-5p	mRNA	signatures	

Provided	as	an	excel	file:	Supplementary	Table	4.xlsx 

	

Supplementary	Table	5.		Summary	of	small	RNAs	in	19K562	half-cell	mappable	to	

other	genomic	regions.	

Provided	as	an	excel	file:	Supplementary	Table	5.xlsx 

	

Supplementary	Table	6.	List	oligonucleotides	and	primer	sequences,	with	their	

respective	modifications.		

Provided	as	an	excel	file:	Supplementary	Table	6.xlsx	
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