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Abstract  

Living organisms must maintain proper regulation including defense and healing. Life-threatening 

problems may be caused by pathogens or an organism's own cells' deficiency or hyperactivity, in 

cancer or auto-immunity. Life evolved solutions to these problems that can be conceptualized 

through the lens of information security, which is a well-developed field in computer science. Here 

I argue that taking an information security view of cell biology is not merely semantics, but useful 

to explain features of cell signaling and regulation. It also offers a conduit for cross-fertilization of 

advanced ideas from computer science, and the potential for biology to inform computer science. 

First, I consider whether cells use passwords, i.e., precise initiation sequences that are required 

for subsequent signals to have any effect, by analyzing chromatin regulation and cellular 

reprogramming. Second, I consider whether cells use the more advanced security feature of 

encryption. Encryption could benefit cells by making it more difficult for pathogens to hijack cell 

networks. Because the 'language' of cell signaling is unknown, i.e., similar to an alien language 

detected by SETI, I use information theory to consider the general case of how non-randomness 

filters can be used to recognize (1) that a data stream encodes a language, rather than noise, 

and (2) quantitative criteria for whether an unknown language is encrypted. This leads to the 

result that an unknown language is encrypted if efforts at decryption produce sharp decreases in 

entropy and increases in mutual information. A fully decrypted language should have minimum 

entropy and maximum mutual information. The magnitude of which should scale with language 

complexity. I demonstrate this with a simple numerical experiment on English language text 

encrypted with a basic polyalphabetic cipher. I conclude with unanswered questions for future 

research.       

 

Keywords: cell signaling; reprogramming; host-pathogen interactions; information security; 

biochemical passwords; biochemical encryption; exobiology; SETI 

 

Main 

Cell signaling and regulatory networks transmit, receive, and process information resulting in 

decision making concerning growth, defense, differentiation, migration, apoptosis, metabolism, 

and other processes1,2. Groundbreaking studies over the last several decades have elucidated 

properties of cellular biochemical signaling and regulatory networks, including scale-free, 

robustness, fragility, noise-filtering, bistability, controllability, ultrasensitivity, signal dissipation, 
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amplification, memory, modularity, feedfoward and other motifs, which are reviewed by Krakauer 

and colleagues2, Uda and Kuroda3, Mousavian and colleagues4,5, Walterman and Klipp6, Azeloglu 

and Iyengar1, and Antebi and colleagues7. Cell networks can become dysfunctional through 

somatic mutation, chemical injury, infection, or other processes, that achieve varying degrees of 

control over the network8. Here, I begin to consider these processes through the lens of 

information security, which as far as I can determine is not common. This is notable for its stark 

contrast to human telecommunications, where cybersecurity is of paramount importance9. In an 

elegant and trenchant examination of theoretical biology, Krakauer and colleagues argue "before 

we can look for patterns, we often need to know what kinds of patterns to look for, which requires 

some fragments of theory to begin with10." Therefore, I propose fragments of theory for 

information security in cells for the community to begin to hunt for patterns and test predictions.   

 

By explicitly incorporating information security concepts into thinking about biological systems, 

several outcomes are possible in general: (1) distinctions without differences: rephrasing familiar 

concepts of immunity and regulation in terms of information security adds no value; (2) cross-

disciplinary fertilization occurs as information security concepts are imported into biological 

theory; (3) new information security knowledge arises from examination of biological systems. 

Recent studies on network controllability provide one framework for examining information 

security in biochemical networks11-15. In this essay, a different perspective is taken to analyze 

whether cells use passwords and encrypt information.        

 

Immune Systems and biological security 

The evolution of immune systems and self-defense against injury and mutation are major 

innovations in the history of life on earth16-18. By total volume, life on earth has its largest habitat 

in the deep ocean with an abundance of bacteriophages, suggesting that evolution leads to a 

proliferation of simple life forms, with consciousness as a kind of statistical accident19. Single-

celled and multi-cellular organisms evolved a wide-variety of defense systems, often 

dichotomized into innate and adaptive systems20. These systems can be conceptualized more 
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generally to include protective mechanisms against both external and internal damage. The 

connection between external and internal injury is seen in the study of viruses, which led to 

insights in cancer biology and the discovery of oncogenes17. Organisms developed the ability to 

recognize self from non-self and destroy xenobiotic material. However, not all foreign genetic 

material is completely destroyed, because it can increase fitness, e.g., antibiotic resistance 

plasmids20,21. On the intracellular level, bacterial defense mechanisms include blocking receptor 

binding (surface modification), genome injection (superinfection exclusion), viral replication 

(restriction modification, CRISPR-Cas, and prokaryotic Argonaute), and abortive infection 

(programmed cell death)21. Similar mechanisms exist in eukaryotic cells, including, RIG-like 

receptor proteins that recognize RNA16, xenophagy22, advanced intracellular nucleic acid 

recognition systems and other cell-autonomous mechanisms23. In plants, sophisticated DICERs 

defend against retroviruses24. Similarly, pathogens use a variety of mechanisms to co-opt, hijack, 

and counteract host defenses25-28. Mutations leading to oncogenes reprogram signaling 

networks29. All of these attacks and counter-attacks involve changes in signaling and regulatory 

networks, and therefore, changes in information.   

 

Information security in computer science 

Information security has been critically important for millennia, with the Caesar substitution cipher 

being a prominent early example30. (The cipher works by shifting each letter of the English 

alphabet by 3, i.e., A->C, B->D,...,X->A30) Computer viruses achieved notoriety in 1987 when the 

Brain, Lehigh, and April Fool viruses came to worldwide attention31. Hackers achieved infamy and 

also contributed to the advancement of information technology32. Information security depends on 

the use of passwords for system access and encryption to alter information so that its meaning is 

obfuscated33. Development of secure encryption systems, e.g., the RSA asymmetric public key 

cryptography, was an essential innovation in the history of the internet33 and must constantly 

evolve to meet new threats9. Steganography is an altogether different approach that conceals the 

existence of information, e.g., writing with invisible ink, and appears to have had played less 

importance in the history of information technology than cryptography33. Attacks on encrypted 
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systems can involve interception, modification, fabrication, or interruption of information33. There 

has been considerable work in adapting biomolecules for use in information security in human 

telecommunications using biosteganography34 where information is invisible and molecular 

cryptography, where synthetic biology is used to re-engineer molecules to decode and encode 

information35. Despite obvious parallels in the world of computers, less explicit attention appears 

to have been paid to theoretical descriptions of cells in terms of their native information security 

systems, prompting me to ask: Do cells use passwords? Do they encrypt information?  

 

Information systems in cells 

Individual cells have a variety of sophisticated information systems. They encode information 

through the genetic code, which utilizes double-stranded complementary base pairing to provide 

built-in error correction, which is a type of backup or repair security system. At the proteome level, 

cells can greatly expand on the genetic code with a few hundred different post-translational 

modifications in various combinations, that give rise to numerous proteoforms36, which form 

components of signaling and regulatory networks. Somatic recombination in immunoglobulins 

and T-cell receptors can vastly increase protein variants in certain cell types37. Interactions of 

these macromolecules form networks that store and transmit information6. There is a context 

specificity to many signaling pathways, including TGF-beta and AKT, which means that cells 

respond differently to pathway activation depending on the cell type38,39. Many intracellular 

signaling pathways do not match one receptor to a single ligand, but instead use multiple 

receptors and ligands that interact combinatorially40, or use combinations of numerous nuclear-

receptor cofactors to regulate activity41. Therefore, genetic, epigenetic, transcriptomic and 

proteomic variation gives rise to a large repertoire of interacting components. These mechanisms 

are present in complex multicellular organisms, where advanced regulation is needed to control 

differentiation42 and also in bacteria for quorum sensing2.  

 

Cancer has been shown to involve rewiring cellular networks by oncogenes and therefore, in 

some sense, these represent alterations in information transmission and compromised 
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security29,43. Cells can be reprogrammed through microRNAs and gene regulatory networks in 

cancer to oncogenic states with distinct metabolism44. Similarly, viruses can substantially rewire 

signaling and regulatory networks to hijack cellular machinery for viral benefit45. In the early days 

of cancer research, similarities between the two systems caused the scientific community to think 

that viruses cause cancer, and studies into viral biology provided insights into cancer17,46. Both 

pathogenic and pathological processes involve hijacking cellular networks.   

 

In multicellular organisms, combinations of histone modifications give rise to varying 

chromosomal accessibility and epigenetic states, which are read, written, and erased by 

chromatin modifiers47,48. This epigenetic regulation is capable of encoding memory at the single-

cell level49. Redundancy and correlation among epigenetic marks, transcription factors, and co-

regulators provides a system of information compression to specific cell state50. For example, 

ligand identity can be encoded as pulsatile (DLL1-Notch1) or sustained (DLL4-Notch1) to induce 

opposite cell fates. In the adult human body, several hundred distinct cell types exist in "cell 

states", some of which can be dynamically reprogrammed from one state to the next using 

sophisticated perturbations51-53. The language used to describe these cellular properties (code, 

encode, read, write, memory, erase, reprogram, compression, rewire) points to their aspects as 

information systems.  

 

Do cells use passwords? 

Password authorization systems allow access based upon entry of a correct code out of many 

possible entries. They can be viewed conceptually as an initiation sequence of signals without 

which the system will not respond to subsequent signals. Typically, passwords function as a 

logical AND operation, i.e., each character must be entered correctly to allow system access. 

However, a logical AND gate is not strictly required. For example, a bouncer at a nightclub may 

listen for the password "more cheese" but accept partial matches, such as "more these" or 

"Moishe's". I consider whether there is an evidence for the existence of passwords, i.e., an 
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initiation sequence of signals without which the system will not respond to subsequent signals 

using the example of transcription factor-chromatin accessibility.  

 

Organization of chromatin into highly compact, inaccessible regions, and open, accessible 

regions appears on its face to be a form of cellular information security because some genes are 

"locked" and therefore, cannot be transcribed. Chromatin is frequently characterized as being in 

"open" and "closed" states that must be unlocked for cell differentiation by pioneer transcription 

factors. This appears to be a potential case where cells use passwords. There are multiple 

algorithms to predict combinations of transcription factors to reprogram human cells from one 

type to another with the number of successful conversions being relatively low, reviewed by 

Kamaraj and colleagues51. The systems work by engineering overexpression of transcription 

factors, rather than as it happens normally in development through extracellular signaling 

molecules that signal to transcription factors to achieve the rewiring. To our knowledge, no one 

has attempted to predict upstream combinations of signals, e.g., growth factors, hormones, 

adhesion contacts, etc. that would trigger the right combinations of transcription factors. 

Sampattavanich and colleagues demonstrated that FOXO3 dynamics can code for different 

growth factors and their concentrations, which are under combinatorial control of ERK and AKT 

pathways54. One simple way to conceptualize this is that it takes the right combination of 

transcription factors to unlock the epigenetic code to transdifferentiate cells, i.e., it might require 

an initiation sequence and therefore, a password. This is distinct from simply requiring a series of 

events. If the reprogramming transcription factors are active during the entire reprogramming 

process, then they are not performing an initiation sequence and therefore, not entering a 

password. Similarly, if only one member of the combination can partially reprogram cells then it 

would seem inappropriate to conceptualize the mechanism as a password. I predict that 

password-length, i.e., the complexity of the reprogramming initiation is directly proportional the 

fitness cost posed to the organism from the conversion. For example, because stem cells have 

greater replicative potential, they might pose greater risk to develop into cancer and 

consequently, require a more complex password for reprogramming. Detailed time course 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/432120doi: bioRxiv preprint 

https://doi.org/10.1101/432120
http://creativecommons.org/licenses/by/4.0/


 8 

measurements are necessary to resolve whether there is a distinct initiation sequence during cell 

reprogramming. 

 

Do cells encrypt information? 

If cell signaling networks use encryption, how might we know? Put another way, if we do not 

know the underlying language, i.e., the unencrypted information, how can we recognize 

encrypted information? To explore this question, several concepts from information theory are 

useful. The Shannon entropy is defined as55: 

 H = E[I(X)]= − p(x)log2(x)x∍X∑       (1) 

 where H is the entropy in bits, defined as the expected information of a distribution of random 

variables X. The entropy can be thought of as how predictable the next character in a transmitted 

message is. A message that is purely random characters and therefore, not meaningful language, 

will have the highest entropy55. Considering only the 26 letters in the English alphabet, the 

maximum entropy is log2(26)=4.7 bits. Shannon analyzed words of size N up to 8 letters and 

found the entropy of the English language to be roughly 2.3 bits per letter, a 50% reduction over 

random56. The English alphabet could eliminate the letter c with either k or s without any 

meaningful effects. Moreover, English text can be re-coded and stored in smaller file sizes 

without loss of information (lossless compression) using sophisticated algorithms55. Entropy 

provides a limit on lossless compression55. 

 

A related concept to entropy is Zipf's law, which states that a word's probability is inversely 

proportional to its rank and has been found in English language phrases, and also other fields, 

e.g., city sizes, firm sizes, and neural activity57.    

Frequency∝ 1
Rank

        (2) 

A large number of explanations has been proposed for why Zipf's law exists, which are reviewed 

by Piantadosi58. Purely random texts do not follow Zipf's law59. Salge and colleagues found that 

Zipf's law emerges through minimization of communication inefficiency and direct signal cost60. 
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Williams and colleagues found that Zipf's law held more generally for phrases in English than 

words, which is intriguing because phrases are "the most coherent units of meaning in 

language61."  

 

Language has additional structure that can be captured through analysis of pairwise and higher-

order interactions62. One measure of association is mutual information6. It can be defined 

between two sets of variables X and Y, e.g., adjacent letters in the English alphabet as 

MI(X,Y ) = H (X)+H (Y )−H (X,Y ),       (3) 

where H(X,Y) is the joint entropy between the X and Y, which is defined as 

H (X,Y ) = − p(x, y)log2 p(x, y)
y∍Y
∑

x∍X
∑ .       (4) 

When X and Y are statistically dependent, the joint entropy H(X,Y) is lowest and the mutual 

information is maximized.  

 

Doyle and colleagues describe the search for extraterrestrial intelligence (SETI) as fundamentally 

applying Zipf's law and higher-order information-entropic filters to received sources of 

electromagnetic radiation63. Cell signaling and gene expression have been shown to pass both of 

these non-randomness filters6,64. These non-random filters can also be applied to any sort of data 

stream to check if it is non-random.  

 

If a simple substitution cipher is applied to an unknown language, the frequency distributions of 

letters, words, and phrases do not change, and therefore, given enough text would be 

recognizable as language, although perhaps untranslatable. For a more complex cipher, e.g., a 

polyalphabetic cipher, the entropy will increase and frequency distributions will deviate from Zipf's 

law. In other words, if SETI receives a long stream of an alien communication that is encrypted by 

relatively simple methods, its non-randomness filters should recognize it as a language. If the 

alien language is encrypted with a polyalphabetic cipher, which was subsequently decrypted, the 

plaintext would have lower but non-trivial entropy.  
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A quantitative test for whether a text is encrypted is whether there is a decryption, such that: 

 argmax
d∍D

MI(E),−H (E)( )        (3) 

Where d is a decryption out the set of all possible decryptions D, E is the decrypted plaintext, and 

MI is the mutual information in the decrypted plaintext, e.g., the mutual information in adjacent 

letters, and H is the entropy of the decrypted plaintext, e.g., per letter. In other words, a signal 

stream is encrypted if a decryption can be found, such that the entropy is minimized and the 

mutual information is maximized.  

 

To demonstrate this, I provide a simple numerical example. The text of Jane Austen's novel Pride 

and Prejudice was downloaded from the Gutenberg project65, processed and cleaned of special 

characters in the R programming language using the textclean package66, and encrypted with a 

simple polyalphabetic substitution cipher of 0,+1,+2. Figure 1A shows the frequency distributions 

of adjacent letters in the plaintext. Figure1B shows how the frequency distributions of adjacent 

letters in the encrypted text result in an increase in entropy. The Entropy R package was used to 

compute entropy per letter and mutual information for adjacent letters67. Figure 1C shows how 

applying varying levels of decryption using several different methods results in changing entropy 

per letter and mutual information of adjacent letters. As the text is decrypted more completely, the 

entropy per letter decreases and the mutual information per pair of adjacent letters increases. 

Complete decryption produces a maximum of this mutual information and a minimum of entropy. 

Therefore, we can begin to look for patterns that may involve encryption in very rich data of cell 

signaling by applying this quantitative criterion.  

 

Conclusions and open questions 

Evolutionary potential is vast and a complex interplay among environmental change, ecosystems, 

speciation, niche diversification, extinctions, and innovation have shaped life on earth68,69. 

Considering how rapidly passwords and encryption evolved in human telecommunications, it is 

natural to ask whether they are used in nature by cells. This theoretical exploration suggests that 
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cells may use passwords to lock-in cell state, which must be unlocked through the right 

combination of transcription factors. Open questions include if cells use passwords to initiate cell 

signaling cascades, programmed cell death, neuron-to-neuron transmissions, or other areas. 

Also, is it the case that password-length, i.e., the complexity of an initiation sequence is directly 

proportional the fitness cost? When there is selection pressure due to co-evolution of pathogens 

are there more complex initiation sequences, i.e., harder-to-crack passwords? Do these have 

greater complexity in their molecular mechanisms? Another open question is do pathogens 

launch attacks similar to those seen in computer science, e.g., denial-of-service attacks?  

 

While I have not presented direct evidence for cell passwords, encryption, or other security 

measures, I suggest that they may exist and provide fragments of theory and criteria that the 

community can use to look for patterns that may demonstrate their existence. This framework 

does not address how to encode the information present in cell signaling, nor which decryption 

strategies to try. I also have not addressed the critical question of noise in biological systems and 

measurements, which add considerable complexity to information theoretic analysis of biological 

systems. If encryption does exist, it would seem to point towards both greater complexity because 

of the existence of encoders/decoders, but perhaps also greater simplicity, because if a message 

is encrypted, it may become intelligible once decrypted. If there is evidence for encryption, 

identifying the molecular mechanisms by which it occurs could yield new and powerful insights 

into signaling, pathogens, and pathologies.    
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Figures 

 
 
Figure 1. How entropy and mutual information change during decryption of a complex 
text Pride and Prejudice. A Frequencies of adjacent letters in the un-encrypted text 
(plaintext). B Frequencies of adjacent letters in the encrypted (ciphertext). C Changes in 
entropy and mutual information during decryption of Pride and Prejudice. The entropy is 
maximal in the ciphertext and decreases during decryption. The mutual information 
follows a more complex trajectory before becoming maximal at complete decryption.  
   

 

A Frequencies of adjacent letters in the plaintext

B Frequencies of adjacent letters in the ciphertext

C Information changes during decryption
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