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Abstract 

Background: From genomic association studies, quantitative trait loci analysis, and 

epigenomic mapping, it is evident that significant efforts are necessary to define genetic-

epigenetic interactions and understand their role in disease susceptibility and 

progression. For this reason, an analysis of the effects of genetic variation on gene 

expression and DNA methylation in human placentas at high resolution and whole-

genome coverage will have multiple mechanistic and practical implications.  

Results: By producing and analyzing DNA sequence variation (n=303), DNA methylation 

(n=303) and mRNA expression data (n=80) from placentas from healthy women, we 

investigate the regulatory landscape of the human placenta and offer analytical 

approaches to integrate different types of genomic data and address some potential 

limitations of current platforms. We distinguish two profiles of interaction between 

expression and DNA methylation, revealing linear or bimodal effects, reflecting 

differences in genomic context, transcription factor recruitment, and possibly cell 

subpopulations.  

Conclusions: These findings help to clarify the interactions of genetic, epigenetic, and 

transcriptional regulatory mechanisms in normal human placentas. They also provide 

strong evidence for genotype-driven modifications of transcription and DNA methylation 

in normal placentas. In addition to these mechanistic implications, the data and 

analytical methods presented here will improve the interpretability of genome-wide and 

epigenome-wide association studies for human traits and diseases that involve placental 

functions. 
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Author summary 

The placenta is a critical organ playing multiple roles including oxygen and metabolite 

transfer from mother to fetus, hormone production, and vascular perfusion. With this 

study, we aimed to deliver a placenta-specific regulatory map based on a combination of 

publicly available and newly generated data. To complete this reference, we obtained 

genotype information (n=303), DNA methylation (n=303) and expression data (n=80) for 

placentas from healthy women. Our analysis of methylation and expression quantitative 

trait loci (QTLs) and correlations between methylation and expression data were 

designed to identify fundamental associations between genome, transcriptome, and 

epigenome in this key fetal organ. The results provide high-resolution genetic and 

epigenetic maps specific to the placenta based on a representative ethnically diverse 

cohort. As interest and efforts are growing to better understand the etiology of placental 

disease and the impact of the environment on placental function these data will provide 

a reference and enhance future investigations.  

 

Introduction  

Functional genomic approaches using combinations of genomic, epigenomic and 

transcriptomic data can define regulatory landscapes and provide a basis for biomarker 

discovery and insights into disease etiology. Advances in sequencing technologies have 

resulted in a surge in the number and complexity of multi-omics datasets, providing 

unprecedented opportunities to map the regulatory landscape, while imposing 

substantial analytical challenges. Increasingly, researchers acknowledge the limited 

usefulness of genome-wide approaches that examine a single component of 
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transcriptional regulation in isolation and appreciate the growing importance of “multi-

omic” analyses. Indeed, genomic sequence variation, epigenetic and post-translational 

regulators are interdependent and jointly contribute to the normal functioning or 

dysfunction of a tissue, calling for integrative approaches to fully appreciate the 

interactions between these different layers of regulation. 

 Originally two main lines of investigation were pursued - association studies and 

molecular quantitative trait loci (QTL) analysis. Association studies aim to identify traits 

associated with genetic variants (Genome Wide Association Studies, GWAS) and more 

recently traits associated with changes in DNA methylation (Epigenome Wide 

Association Studies, EWAS). Over the past decades, thousands of common genetic 

variants associated with specific diseases or phenotypes have been cataloged [1-3]. 

Building on the GWAS model, EWAS rapidly became a fast-growing area of research 

[4]. However, these discovery approaches provide limited insights into causal 

mechanisms. To address these limitations, QTL analyses have been implemented 

linking genetic variants with changes in expression (eQTL), DNA methylation (mQTL; 

alternatively abbreviated as meQTL) or other transcriptional regulatory mechanisms. 

Catalogs of thousands of tissue-specific and shared regulatory eQTL variants at high 

resolution, such as in the Genotype Tissue Expression (GTEx) catalog, provide insights 

into the diversity and regulation of gene expression across various tissues [5]. Although 

cytosine methylation varies with sex, age or exposure to environmental factors [6] and 

changes in methylation patterns have been associated with many common diseases [7], 

DNA methylation is also under strong genetic influences [15], and locus-specific 

methylation levels are often correlated in related individuals [8, 9]. Twin studies provide 

additional evidence of the underlying genetic effect on DNA methylation pattern [9, 10] 
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and it has been estimated that more than 30% of the methylation variance can be 

attributed to genotype [11].  

More directly, genetic variants and haplotypes have been shown to influence local DNA 

methylation patterns, most often in cis. Loci, where DNA methylation is under genetic 

control, are known as methylation quantitative trait loci (mQTL). The physical counterpart 

of cis-acting mQTLs, which can be directly scored by bisulfite sequencing (bis-seq; 

methyl-seq) is haplotype-dependent allele-specific methylation (hap-ASM). We (CD, BT) 

have previously characterized mQTLs and hap-ASM in multiple human tissue types, 

including T lymphocytes and brain cells, as well as a small series of placentas [12, 13]. 

In that work, we noted that an analysis of a larger independent series of placentas was 

in progress, which is represented by the current study. 

Unlike most other human tissue types, the number of genome-wide –omic level studies 

involving placentas is relatively limited with placenta being absent from most initiatives 

such as the GTEx consortium or the GWAS database. However, in view of its critical 

role, there is growing interest in better understanding the impact of placenta 

malfunctions throughout fetal life. During a key developmental window, the placenta 

controls fetal access to nutrients, hormone production and mitigation of adverse effects 

from the environment, with placental dysfunction resulting in chronic diseases such as 

heart disease, type 2 diabetes or cancer [14-17]. Evidence suggests that such 

perturbations of the intrauterine environment alter the appropriate genetic programming 

and disrupt placental and fetal development [18-20]. Although there is strong support for 

changes in DNA methylation to be involved, a direct association between environmental 

conditions, methylation alterations, and gene expression is difficult to confirm. The 

unique function of the placenta is reflected through its unique transcriptome and 

methylome profiles. In a previous study, Storvik et al. [21] showed a relatively poor 
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correlation in term of transcriptome between placenta and 34 other tissues based on 

microarray data with many mRNA and miRNA species specific to the placenta. Similarly, 

as previously shown by our group and others, the mean genome-wide level of DNA 

methylation across placentas is lower than that found in other tissues, with an increased 

representation of low and intermediate levels [13, 22]. Such singularities emphasize the 

need for specific investigations of the placenta regulatory landscape. Along these lines, 

Peng et al. [23] performed an eQTL study using 159 placentas. They examined 

correlations between GWAS data and the newly identified eQTLs and found evidence for 

eQTLs potentially driving postnatal disease susceptibility, supporting the Developmental 

Origins of Health and Disease (DOHaD) hypothesis. These findings confirm the need for 

a thorough characterization of the placenta regulatory landscape, preferably not limited 

to genetic variant and gene expression. 

Among the potential limitations of mQTL and eQTL studies are subpopulation effects, 

cell specificity, genetic background or genomic context, as many factors that need to be 

accounted for to achieve reproducibility and accuracy. Further challenges include the 

integration of multiple types of data calls for quality control assessments, independent 

controls for both false-positive and false-negative findings, and a limited understanding 

of stochastic variation in the different signals. Finally, the availability of a reference 

dataset is key to support ongoing functional genomics analysis. However, the cell 

dependent aspect of transcriptional regulation does not allow for direct carryover of 

findings from one tissue or cell type to another. Lack of ethnic and racial diversity can 

also be a limitation, with the most comprehensive studies up to date involving 

predominantly Caucasian populations [24-26].  

These considerations have motivated the present study where we set out to generate 

essential reference data sets of genotypes, gene expression, and DNA methylation 
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patterns, based on a representative population of placentas; an understudied yet 

important tissue. In addition, we aimed to develop stringent analytical methods to serve 

as a blueprint for future studies. We intensively characterized the effects of genetic 

variation on gene expression (eQTLs) and DNA methylation (mQTLs) and developed a 

comprehensive approach to identify methylation-sensitive transcription (abbreviated here 

as expression-relevant Quantitative Trait Methylation; eQTM) in normal human 

placentas. We emphasize technical caveats, independent validations, and consideration 

of both false-positive and false-negative findings. Our integrative multi-omic approach 

provides a multilayered view of gene regulation influenced by common genetic variants 

in the human placentas, thus providing a basis for future advances in individualized 

medicine. 

Results 

Cohort information 

Actual functional genomics studies are suffering from the overrepresentation of 

Caucasian backgrounds, which limit the reproducibility of the findings in more 

heterogeneous and representative populations. Aware of this limitation, it was important 

to characterize the ancestral history of our population to confirm the mix-population 

background of our cohort and to identify outliers that should be excluded from further 

analysis. We performed local ancestry deconvolution using PCA analysis based on the 

reference population using genotype data from the 1000 Genomes Project from 

Caucasians (CEU), Africans (YRI) and East Asians (CHB + JPT). Our data showed a 

clear clustering to populations, with some enrichment for mixed populations represented 
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as expected (S1C Fig) validating the use of our cohort as a representative cohort for 

control placenta samples. 

To assure the relevance of our human placenta cohort as representative of 'normal' 

individuals, we used quality control measures to assess the impact of variability in the 

datasets. Sample heterogeneity was estimated running Pearson’s correlation across 

expression and methylation data. Global correlation among our samples ranges between 

0.92 and 0.99 for expression values and between 0.93 and 0.99 for DNA methylation 

values (S1A-B Fig). As correlation can be artificially over-estimated when interrogating 

large datasets with extreme values, further analysis aimed at selecting those genes and 

loci with greater variability. Variability was estimated using median absolute deviation 

(MAD) as previously described [27]. After assigning a variability score to each 

interrogated CpG or transcript, variability was divided using quartile distribution creating 

4 categories: no variability, low, medium and high variability. Loci and transcripts from 

the 4th quartile of variability (high) were used to run correlation using a similar approach 

and range from 0.75 to 0.96 for expression values and from 0.64 to 0.98 for DNA 

methylation values. Principal Component Analysis (PCA) was then used to describe 

variability across samples and link variability to known covariates including batch effects, 

biological and clinical cofactors. As expected, the batch of sequencing is contributing to 

most of the variability in both expression and methylation datasets (S2 Fig). 

Interestingly, when focusing on the principal component accounting for most of the 

variability, we also found a significant association with preeclampsia status and mode of 

delivery in both datasets (S2 Fig). However, our approach still suffers from limitations as 

it only provides us with information on known confounders. For example, even though all 

samples were taken from the same region of the placentas (Methods), heterogeneity in 
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tissue composition likely exists and could influence inter-sample variability but is not 

reflected in this analysis. 

Transcriptome and methylome profiles in human placenta 

The placenta presents a unique transcriptome and methylome profile as demonstrated 

by the poor correlation in term of transcriptomic profiles between placenta and 34 other 

tissues based on microarray data [21]. Among these tissues, the lung was the most like 

placenta and liver showed the weakest correlation. Because microarrays do not query 

the full extent of the transcriptome, we decided to perform a similar correlation analysis 

using RNAseq data comparing placenta transcriptomes from our study with 

transcriptomes of the 53 available tissues from the GTEx consortium. For each tissue, 

we considered median TPM values across samples and only processed genes that were 

expressed (TPM>0.1) across each tissue type. The correlation scores ranged from 0.02 

to 0.27 reflecting a high diversity between placenta and the other tissues (S1 Table). 

Interestingly, among the tissues overlapping between the GTEx consortium and the one 

tested by Storvik et al., we confirmed lung as being closest to the placenta and liver to 

be the one with the weakest correlation. The mean genome-wide level of DNA 

methylation across placentas is lower than that found in other tissues, with an increased 

representation of low and intermediate levels [13, 22].  

High variability in DNA methylation has been studied in CD34+ hematopoietic stem and 

progenitor cells [27] and proposed as a marker that can help localize key regulatory 

elements involve in cell-lineage commitment and cell specific functions. Therefore, we 

decided to further investigate genes with increased variability in expression or DNA 

methylation levels across samples and to look for associated pathways. As described 

above, gene and CpG were classified based on their variability across samples using 
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MAD. We then focus on the top 500 variable genes or CpGs and performed pathways 

enrichment analysis (S2, S3 Tables). Traditional gene set enrichment analysis (GSEA) 

does not take into account the physical characteristics of the gene and has been shown 

to be biased by factors such as the length of the gene [28]. To address this, we used the 

Bioconductor package GOseq [29] developed to control for variability of the length of 

genes. For each CpG, the closest associated gene was considered. For the CpG 

analysis, we adapted the original version of GOseq to control for the number of probes 

by gene instead of gene length, as length is not relevant in this case. Interestingly, in 

both datasets, the majority of the pathways (S4 Table) were related to the immune 

response involving genes from the HLA family suggesting that heterogeneity among 

samples could be driven by a different level of inflammations in each placenta. Looking 

only at expression data, the top pathway is KEGG "ECM-receptor interaction". ECM 

related genes have been previously associated with placental development [30] and 

have been shown to be correlated with oxygen tension and nutrient availability [31]. 

Therefore, variability in the expression for these pathway-associated genes may reflect 

various in utero exposures with impact on placenta development and potential long term 

consequences even in the absence of clear phenotype at birth.   

Expression and methylation quantitative trait loci in human placenta tissue 

To generate maps of associations between genetic variants and gene expression or 

CpG methylation patterns specific to the human placenta, we performed eQTL and 

mQTL analysis across 1,374,581 SNPs, 23,003 genes, and 485,578 CpG sites 

respectively. We focused on identifying cis-eQTLs within windows of 1 Mb between the 

gene transcription start site (TSS) and each SNP. QTL tools identified 28,906 significant 

associations with 1,916 preserved after permutations, which was further reduced to 985 
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eQTLs after exclusion of associations that failed the quality threshold (Methods and Fig 

1, S3 Fig). A complete list is of the 985 eQTLs used for further analysis is provided in 

Supplementary Table 5. For mQTL analysis, we focused on 150 kb windows (75 kb 

upstream and downstream of the CpG site) as it has been previously published that 

mQTLs correlate best with SNPs within 1-2 kb and that most mQTLs are located within 

100 kb in several tissues including placenta [13, 32, 33]. 471,852 significant associations 

were called using our pipeline, only 105,031 associations pass the permutation test with 

4,342 mQTLs conserved for further analysis (Fig 1, S3 Fig) after stringent exclusions 

based on quality threshold (see Methods) and potential probe artifacts. The 4,342 

mQTL associations kept for further analysis are recapitulated in Supplementary Table 

6. 

Some genetic variants that appear as individual differences in methylation can act 

trivially via SNPs that create or abolish CpGs (CpG-SNPs) [34] or via technical artifacts 

due to incomplete probe binding [34] or probe-cross reactivity [35] referred to here as “at 

risk-probe”. Incomplete probe binding may suggest the presence of a genetic variant 

within the probe binding site with greater impact in the proximity of the 3' end of the 

binding probe with differences in signal intensity persisting for up to an approximately 20 

bp [36]. Therefore, to make our lists more stringent, we identified and excluded 

associations involving probes that contain known SNPs, along with probes previously 

identified as cross-reactive. A list of excluded probes is in Supplementary Table 7. As 

we illustrate by independent validations below, this high level of stringency is expected 

to reduce false-positives. Additionally, it can simultaneously give rise to false-negative 

findings, particularly for loci queried by probes that contain internal SNPs with modest 

minor allele frequencies and/or those without strong effects on probe binding, which can 

yield accurate readouts in most samples. 
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By using a reference-based approach, identification of probes sensitive to CpG-SNPs 

may be subject to tissue and sample specificity. Recently, a methodology has emerged 

to identify “at risk” probes independently of reference datasets, based on a clustered 

distribution of methylation scores [36]. Using this approach, the authors were able to 

identify a significant number of “gap probes” that largely overlap with CpG-SNP probes.  

However, as SNP-affected probes can exist without gap signatures, the implementation 

of this reference free approach should be considered in complement with the reference-

based approach. To be as inclusive as possible, we applied the “gap-hunter” [36] 

approach to our datasets to identify remaining probes and associations subject to 

possible technical artifacts. By doing so, we were able to detect 10,971 “gap probes”. 

From these, 3,235 are overlapping with previously identified CpG-SNPs probes and 205 

with cross-reactive probes. Finally, 432 of the remaining “gap probes” overlap with our 

4,342 mQTL associations and 158 overlap with our eQTM associations. These probes 

were not excluded from further analysis but were annotated following the 

recommendation of Andrews et al. [36] (S6, S7 Tables). 

Interestingly, after FDR correction, about 22% of the mQTL (23,043 out of 105,031) 

involved an association between an at-risk probe and genetic variant. We are aware that 

this proportion reflects in part the stringency of our criteria for exclusion.  However, these 

findings are strong enough to encourage for stringent criteria when running genome-

wide analysis. To take into consideration false-negative results, it is particularly attractive 

to use annotation instead of direct exclusion, as we have used previously [13], and in 

part adopted here.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/432211doi: bioRxiv preprint 

https://doi.org/10.1101/432211
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

Reproducibility of QTL associations  

To assess the robustness of our approach we were first interested in looking into the 

overlap between our newly identified associations and published data on the human 

placenta. Because identification of the causal genetic variant is still challenging due in 

part to linkage disequilibrium, overlaps based on genetic variants are likely to not be as 

informative. Therefore, we decided to look at overlap driven by gene or CpG for eQTL 

and mQTL associations respectively. A recent study published by Peng et al. [23] has 

identified 3,218 eQTLs associations based on 159 human placenta tissues. These data 

represent a unique opportunity to assess data reproducibility by examining the number 

of associations preserved across different cohorts. Our 985 eQTL associations represent 

615 unique genes and 62% of them overlap with genes previously identified by Peng et 

al. (S8Table). As noted above, we (CD, BT) previously reported a list of mQTLs in 

placentas from a smaller group of samples [13], independent of the current series. Using 

more lenient criteria for probe exclusions, we identified 866 mQTLs (n=665 with similar 

exclusion criteria). Among these mQTLs, 319 (~48%) were also found in the current 

series, with many of the non-overlapping “hits” reflecting probes on the 450K methylation 

arrays that were excluded from the current study (S9 Table). The significance of these 

overlaps was further confirmed using a permutation test (n=1,000). The significance of 

the enrichment was defined by the overlap between observed versus expected 

distribution. Here, the null distribution represents a random sampling from the total 

number of annotated Refseq genes or CpGs interrogated by the Illumina 450K platform. 

Random permutations failed to replicate such overlap with a maximum of 17% 

overlapping genes and 2% overlapping CpGs. Therefore, we feel confident in the 

strength of our study and believe that these newly identified associations represent a 

solid foundation for further exploration. 
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After demonstrating a significant overlap for placenta in different cohorts, we were 

interested in evaluating the overlap across tissue types. The GTEx Project, assessing 

and cataloging eQTLs across more than 40 tissues, is a valuable resource for studying 

human gene expression regulation and its relationship to genetic variation across tissue 

types. However, among the list of tissues in the GTEx project, the placenta has so far 

been missing. Therefore, our current study represents a key opportunity to expand the 

GTEx exploratory work toward this crucial fetal organ. To evaluate to what extent the 

placenta eQTLs replicated the significant SNP-gene pair eQTLs found in the GTEx study 

(at FDR<5%) we used the π1 statistic. The π1 statistic can be interpreted as the fraction 

of eQTL associations shared between the placenta and the other tissues available 

through GTEx. This approach allowed us to identify placenta-specific eQTLs, and 

identify tissues with similarity to the placenta in this respect. Levels of significance were 

collected across the different tissues for our list of significant eQTL association from the 

placenta. π1 value range from 0.31 for the brain cerebellar hemisphere tissue to 0.69 for 

the transformed fibroblast cells (S4 Fig, S10 Table). It is interesting to note the absence 

of interdependence between gene expression correlation and number of conserved 

eQTLs. Indeed, no significant overlap was found (Fisher’s exact test, p.value=0.5935) 

when overlapping the most similar tissues to the placenta (n=10) based on π1 value 

(S10 Table) with the most similar tissues to the placenta (n=10) based on gene 

expression correlation value (S1 Table). Among the 985 eQTL associations identified in 

placenta, 63 appear to be specific to placenta as not found significant in any other GTEx 

tissues (S11 Table). Unfortunately, similar curated reference doesn’t exist for mQTL 

associations with only a limited number of tissue types studied (brain, blood, 

lymphoblastoid cells, T-cells and lung [37-42]). Contrary of the GTEx analytical design, 

there was no consensus on how associations were defined increasing variability across 

studies, a likely confounder when assessing the biological relevance of the overlap.  
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Evaluation of stringency thresholds by bisulfite sequencing 

In this study, we used a conservative approach to minimize false positive by excluding 

probes with potential cross-reactivity or mapping of common SNPs within 20 bp of the 

queried CpG, which might affect the probe hybridization. This stringent approach will 

reduce false-positives, but it can also lead to false-negative findings in which bona fide 

mQTLs are discarded. To investigate this aspect directly, we applied targeted bisulfite 

sequencing (bis-seq) to assess allele-specific CpG methylation (ASM), which is the 

physical counterpart of mQTLs. For this purpose, we chose three loci that passed our 

current stringent criteria for inclusion of the 450K probes and showed mQTLs (ranking 

from 82 to 1900 in strength, see S6 and S7 Tables), and four loci for which the probes 

were excluded by the current criteria but were included by our more lenient criteria and 

showed mQTLs in our prior study of the smaller placental series [13]. While the net 

methylation at the index CpGs showed more inter-individual variability in the bis-seq 

data, the average net methylation matched that observed in 450K arrays (+/- 5%) 

suggesting no or mild hybridization issues with the four excluded Illumina probes. 

Further, statistically significant ASM, affecting from 22% to 45% of the heterozygous 

samples, was found at the amplicon level for all 7 loci (S12 Table and Fig 2 and S5, S6 

Figs), thus validating these loci as genuine mQTLs. 

These data indicate that our stringent criteria for excluding Illumina probes, while 

minimizing false-positives, can also lead to false-negative findings from exclusion of 

probes that are, in fact, legitimately informative. Based on these findings, we conclude 

that an optimal approach for harvesting and interpreting mQTLs using Illumina arrays is 

to annotate each probe as meeting either stringent or lenient criteria for predicted 

reliability, and include this information as a descriptor in comprehensive lists of mQTLs. 

Here we adopt this approach for reporting mQTLs (S6, S13 Tables), but for our 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/432211doi: bioRxiv preprint 

https://doi.org/10.1101/432211
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

bioinformatic enrichment and pathway analyses, we have used only the mQTLs that 

pass our stringent probe selection criteria. 

Characterization of gene expression and DNA methylation patterns 

associated with genetic variants 

Characterizing gene expression and DNA methylation patterns that are influenced by 

genetic variants can potentially provide functional information about disease-causing 

genes and pathways. Therefore, we were interested in better characterizing genes 

(n=615) and CpG sites (n=4,324) associated with eQTLs and mQTLs. First, we aimed to 

assess correlations between level of expression or level of DNA methylation with genetic 

variants. Genes were first assigned to different categories of expression from not 

expressed to highly expressed using quartiles based on our placental RNA-seq dataset. 

A similar approach was applied for DNA methylation levels. Enrichments for specific 

quartiles of expression or DNA methylation were assessed by permutation as described 

in Methods. The significance of the enrichment was defined by the overlap between 

observed versus expected distribution. In these cases, null distribution represents a 

random sampling from the total number of annotated Refseq genes or CpGs 

interrogated by the Illumina 450K platform. eQTL associations were found significantly 

enriched for genes with intermediate and high level of expression (Fig 3). Such 

enrichment has been previously reported in other tissues than placenta by the GTEx 

consortium [5]. By comparing the profile of expression between genes associated and 

genes non-associated to eQTLs, they showed a shift toward high expression for 

associated genes across tissue types. mQTL associations were enriched for CpGs with 

intermediate levels of DNA methylation (Fig 3). This pattern is likely to reflect on the 

placenta specific methylation profile with enrichment for low and intermediate DNA 
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methylation levels. This can also explain the limited range of variation in DNA 

methylation across the different genotypes found in our selected mQTLs (with a 

regression slope <5% for 87% of the association). Due to the nature of the DNA 

methylation signal, intermediate levels of methylation are likely to reflect cellular 

heterogeneity [27]. Therefore, it is possible that mQTLs associations help to identify 

genetic variant impacting cell differentiation mechanisms, expanding downstream 

functional consequences associated with mQTLs.  

To lay a groundwork for future studies on disease susceptibility, identification of 

biological pathways associated with eQTLs and mQTLs are of interest. In this context, it 

is valuable to identify pathways involving genes with greater sensitivity to genetic 

background. Therefore, we looked at gene set enrichment for genes associated with an 

eQTL and the nearest gene from CpG sites associated with a mQTL using the 

Bioconductor package GOseq [29]. For both eQTLs and mQTLs, we found enrichment 

for inflammation related pathways (S14 Table) suggesting that the variability captured by 

our associations may, in fact, reflect different degrees of inflammatory response across 

our collected samples. It is also interesting to note that the enrichment analysis 

outcomes (S14 Table) rely mainly on genes part of the major histocompatibility complex 

(HLA-DRB1, HLA-DBR5, HLA-DQA1, HLA-DQB1, HLA-C). These genes are known to 

be highly polymorphic with 13,840 different HLA alleles reported in the IMGT/HLA 

database [43] suggesting polymorphism mechanism as a possible bias in QTL and 

GWAS analysis. Finally, we decided to look into the overlap between the gene 

associated with eQTLs and gene associated with mQTLs where CpG was associated to 

the closest gene. We found 111 genes overlapping between the 2 associations (S15 

Table) with pathway enrichment only relying on HLA related genes.   
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Genetic variants associated with eQTLs and mQTLs 

Genomic context is known to play a cell type-specific role in regulating transcription. To 

determine whether genetic variation was occurring at regulatory sites, we took 

advantage of public chromatin mapping data for placenta generated by the Roadmap 

Epigenomics Program (S16 Table). The DNase hypersensitivity and ChIP-seq data 

create combinatorial patterns that can help to define functional elements in the genome 

(S7 Fig) [44].  However, because placenta specific reference datasets are limited and do 

not include data from term placenta, we were compelled to build our genomic annotation 

based on data from the pre-term placenta which may affect the accuracy of our 

annotation especially in a highly dynamic tissue like placenta. For relative enrichment 

studies, the observed overlap between genetic variants and a genomic feature was 

compared with the expected overlap given the total coverage of the annotation. For 

permutation tests, we compared the observed overlap of SNPs significantly associated 

with eQTLs (n=608) or mQTLs (n=3,022) and a particular genomic interval (for example 

gene promoters, CpG islands) or feature from ChromHMM analysis with the distribution 

of the same overlap under the null hypothesis. 

SNPs associated with eQTLs and mQTLs were enriched in candidate promoters 

(Feature 1), candidate active and poised enhancers (Feature 2-4) and enriched at 

regions likely to be transcribed (Feature 7) (Fig 4A-B). When looking at the distribution 

of the distance between SNP and gene for eQTL association (n=985) or SNP and CpG 

for mQTL association (n=4,342), we found enrichment for closest interactions (within 

10Kb, S8 Fig) suggesting that the associated genetic variant has an effect via its 

presence in proximal cis-regulatory elements. We then explored the genomic context for 

CpGs (n=4,342) associated with mQTLs and found, as in our previous study of multiple 

human tissues [13], that they are enriched in candidate active and poised enhancers 
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(Feature 2 and 3) (Fig 3C). This finding suggests a possible cis-regulatory impact of 

mQTLs on gene expression.  

Transcription factor binding sites enrichment analysis 

Using combined genetic and epigenetic profiling applied to other human tissues, we and 

others have found evidence that some of the epigenetic effects of genetic variation are 

mediated by SNPs in insulator elements and transcription factor binding sites [13, 45-

47]. Therefore, we decided to analyze the impact of genetic variation on the integrity of 

the binding motif in correlation with predicted binding affinities. Due to linkage 

disequilibrium, the index SNP may not be causal, so we decided to also investigate the 

impact of previously identified SNPs in proximity to the eQTL and mQTL associated 

gene TSS or CpG respectively (regardless of their linkage disequilibrium status). This 

approach allows us to expand our discovery to transcription factors likely to be affected 

by linked genetic variants. We compared the predicted binding affinities between the 

reference and alternative alleles within a window of 39 bp around each targeted genetic 

variant using the motif-based sequence analysis tools FIMO from the MEME suite [48]. 

To assure the accessibility of the binding site, only those overlapping with DNAse 

hypersensitive regions (ENCODE data, release 3) were considered for further analysis. 

The analysis was performed at the motif level. The list of altered binding sites was 

further pruned down based on 2 criteria (1) the significance of the binding with the 

reference allele (q.value<0.05) and (2) the difference in binding affinity between the 

reference and alternative allele. Distributions of the difference of binding affinity between 

the reference and alternative sequence were used to define the cutoff for predicted 

allele-specific binding (difference in binding >8, S9 Fig). The significance of the 

alteration from our filter list of genetic variants and transcription factor binding motif was 
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assessed using atSNP [49]. atSNP performs computations for between-allele score 

differences [50] and outputs p.values for each targeted SNP and selected transcription 

factor binding motif. The complete list of affected transcription factor binding sites is in 

supplementary table 17.  

Interestingly, when looking at transcription factor binding sites associated with mQTLs a 

significant number have been previously associated with alterations of the epigenetic 

landscape (CTCF, REST, HDAC2, EWSR1, FLI1, SP4/1 and BHLHE40). CTCF 

(CCCTC-binding factor) previously identified as associated with mQTLs and haplotype-

dependent allele-specific methylation (hap-ASM) by Do et al. [13] is one of the best 

documented transcription factors affecting DNA methylation. CTCF, which acts to anchor 

high-order chromatin loops and binds at some of its recognition sites in a CpG 

methylation-dependent manner, is known to have an essential role in imprinting control 

achieving allele-specific gene regulation [51] and CTCF binding locally influences DNA 

methylation [52]. REST (REI-silencing transcription factor) inactivation has been shown 

using a transgenic approach to induce de novo methylation and conversely, the 

expression of REST was sufficient to restore the unmethylated state of the DNA 

sequence bound [52]. Direct association between HDAC2 (Histone deacetylase 2), 

EWSR1 (Ewing sarcoma breakpoint region1), FLI1, SP4/1 and BHLHE40 (Basic helix-

loop-helix family member E40) and changes in DNA methylation have not yet been 

demonstrated but they have been previously associated with changes in histone 

methylation or acetylation [53-57]. Numerous evidence supports a complex interplay 

between histone modification and DNA methylation (for review [58, 59]). However, if in 

numerous contexts a bidirectional association between changes in DNA methylation and 

histone modifications has been reported, the exact mechanism involved still needs to be 

identified. Interestingly, these associations seemed to not only rely on direct interaction 
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between DNMT enzymes and histone methyltransferases but also on the recruitment of 

a variety of intermediate factors such as member of the SET domain family (G9a) or 

member of the Polycomb complex (PRC1) suggesting that a large number of histone 

modification factors could indirectly affect DNA methylation. Among the different 

transcription factor binding sites linked to eQTLs, we also found EWSR1, FLI1, and 

SP4/1, suggesting that the effect of transcription factors on gene expression may be in 

part mediated via epigenetic modifications. This list of transcription factors provides 

candidate mechanisms to explain the association between genetic variants and gene 

expression or DNA methylation.  

Genetic variants linked to eQTLs or mQTLs and association with GWAS 

peaks 

The GWAS approach identifies disease-related enrichment for specific genetic variants. 

This approach has considerably improved marker discovery but, because of linkage 

disequilibrium among many SNPs in each chromosomal region, it has a limited ability to 

pinpoint disease genes and regulatory sequence variants. “Post-GWAS” approaches 

that integrate eQTLs and mQTLs to GWAS datasets can help to overcome these 

challenges [12]. For our current analysis, we overlapped the genetic variants listed in the 

GWAS catalog [60] with those associated with eQTLs (n=608) and mQTLs (n=3,022). 

Only 7 genetic variants associated with the placental eQTLs were previously found in 

GWAS peaks. Of these, three validated the previously reported association between the 

genetic variant and gene in the GWAS database (S18 Table). Two mQTLs shared a 

genetic variant with statistical peaks in the GWAS database (S19 Table). The GWAS 

database references a limited number of studies involving trait directly associated with 

placenta function or dysfunction. We identified only 2 studies related to preeclampsia 
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and 6 related to birth weight and none of them appears in the overlaps with eQTLs and 

mQTLs. Nonetheless, among these hits, some are found associated with traits that have 

been previously linked to fetal growth, like obesity and type II diabetes where the 

placenta is likely to play a role. rs35694355 overlaps with our eQTLs and have been 

previously associated with obesity. Interestingly, this genetic variant is associated with 

CRACR2B gene in the GWAS database but with IRF7 in our eQTL study. Contrary to 

CRACR2B, evidence for a direct association between IRF7 and obesity have been 

shown [61] with IRF7 knockout mouse being protected from gain weight after high-fat 

diet exposure. IRF7 is also highly expressed in placenta and it though to play a role in 

the immune barrier between the fetus and the mother [62]. Due to the tight correlation 

between inflammatory response and obesity, IRF7 may appear as a better candidate to 

link rs35694355 with disease sensitivity. From our mQTL analysis, rs623323 has been 

previously associated with Type 2 diabetes in the GWAS database. In both datasets, 

rs623323 was associated with NXN gene. Interestingly in a recent publication, increase 

of DNA methylation and decrease of expression for NXN has been characterized in 

placenta from women with diabetes during pregnancy [63] suggesting that the presence 

of rs623323 may influence susceptibility to type II diabetes via alteration of NXN function 

thus providing with a great example of how integrative QTL analysis can provide with 

evidence to better understand disease susceptibility.  

Relationship of DNA methylation to gene expression 

Being able to establish transcript-CpG specific associations (eQTMs) based on gene 

expression and CpG DNA methylation at a genome-wide scale in a tissue specific 

manner will significantly improve further interpretations of epigenetic modifications when 

considering their functional implications. Using our transcriptomic and epigenomic data, 
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we decided to identify CpG methylation and gene expression with a significant 

correlation. To do so, we applied a similar approach to the one used for eQTL analysis. 

Looking at different combinations of CpG sites and transcripts with linear regression in a 

100 kb window (matrixEQTL), we were able to identify 55,492 eQTM associations, 

representing 47,140 unique CpG sites and 14,352 unique genes. After permutation and 

quality control, 2,655 eQTM associations remained with 2,538 unique CpG sites and 

1,269 genes (S20 Table). 515 associations were located in the sex chromosomes. To 

make the analysis less computationally intensive, we decided to sample gene 

expression profiles instead of CpG methylation profiles during permutation.  

A genomic context-dependent correlation between DNA methylation and expression has 

previously been shown [64]. Negative correlation, when an increase in DNA methylation 

is associated with a decrease in expression, was found for CpG sites located in the 

promoter region. A positive correlation, when an increase in DNA methylation is 

associated with an increase of expression, was found for CpG sites located in the gene 

body. We first assessed if such profiles were also found among our associations. Both 

negative and positive associations were enriched for proximal interaction (Fig 5A). We 

then examined enrichment between our newly annotated features specific to placenta 

and our eQTM candidates stratified based on positive (n=1,009) and negative (n=1,646) 

correlations. We found the negative association to be enriched for feature 1 (candidate 

promoter) and 2 (candidate active enhancer) and associations with positive correlation to 

be enriched for feature 5 (Fig 5B). Unfortunately, feature 5 does not show a clear 

significant enrichment pattern for the interrogated histone marks (S7 Fig). However, 

looking at the distribution over Refseq annotations, we confirm the enrichment for gene 

body region. This validates the inversely correlated relationship between DNA 
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methylation and gene expression in promoter regions as well as the positive correlation 

when targeting the gene body region.  

To identify potential mechanisms underlying the correlation between DNA methylation 

and expression, we assessed the role of transcription factors, looking at enrichment for 

specific binding sites overlapping the CpG site from the eQTM associations (n=2,655)  

using a similar approach as described above. The null distribution represents the 

sampling of CpGs (n=1,000) from the population of all assayed CpGs overlapping with a 

specific TFBS. Associations with negative correlation were found to be globally enriched 

for transcription factor binding sites suggesting a general mechanism where increase 

DNA methylation at a given binding site will alter binding abilities and affect transcription. 

Interestingly, when looking at associations that showed a positive correlation between 

expression and DNA methylation, we found enrichment for only one transcription factor, 

ZNF217 (S21 Table). The ZNF217 transcription factor has been previously recognized 

as a human oncogene and is known to be part of a complex that contains several 

histone-modifying enzymes strongly associated with gene repression [13]. Thus, 

alteration of the binding of this transcription factor is predicted to disturb the formation of 

a gene repression complex and lead to an increase of expression for the targeted gene 

by diminishing its inhibition. There is also evidence for a more distal action of ZNF217 

with only 2% of the binding site within a 1 kb distance from TSS [13].  

When looking at the pattern for correlation between DNA methylation and expression, 

we identified two distinct profiles. We found eQTM associations with a linear distribution 

between methylation and expression representing a range of continuous values for both 

DNA methylation and gene expression and, at other loci, associations with a bimodal 

distribution with no intermediate values for both DNA methylation and gene expression 

(Fig 6). Because DNA methylation is a binary variable as mentioned before, having 
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eQTM associations with bimodal distribution suggest that every interrogated cell within 

the placenta sample share the same DNA methylation and expression profiles, implying 

that the association is non cell- or state-specific. On the contrary, eQTM associations 

with linear distribution suggest a cell- or state-specific mechanism where the continuous 

signal is explained by the distribution of cells being fully or not methylated among the 

placenta sample (S10 Fig). To assign eQTMs to linear or bimodal distribution we 

implemented a Bayesian model for bimodal distribution detection. Each gene expression 

or DNA methylation distribution was analyzed separately and eQTMs were called as 

linear if both expression and methylation represented a linear distribution and called 

bimodal if both expression and methylation show a bimodal distribution profile (see 

Methods).  

Using our model, we classified 118 associations as bimodal including 29 unique genes 

and 108 unique CpG sites, and 1,201 as linear which represent 877 unique genes and 

1,140 unique CpG sites (Fig 6, S22 Table). The greater occurrence of linear correlations 

can be attributed to the high cellular heterogeneity of the placenta. Both linear and 

bimodal associations were enriched for proximal interactions, with linear showing a more 

spread distribution (Fig 7A). Interestingly, linear and bimodal distributed associations 

were not found enriched for the same genomic context, linear distributed eQTMs were 

enriched for feature 2 and 3, our candidate active and poised enhancer and bimodally 

distributed eQTMs where enriched for feature 1 our candidate promoter (Fig 7B).  

Looking at transcription factor binding sites across bimodal and linear eQTM 

associations, we identified a specific pattern where bimodal but not linear associations 

were globally enriched in transcription factor binding sites (S21 Table). Interestingly, the 

transcription factor previously identified as part of the bHLH family (MAX, MAZ, MXI1, 

MYC, and SIN3aK20) where highly enriched for bimodally distributed associations while 
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depleted for linear associations (S11 Fig). This suggests that distribution not only reflect 

cell heterogeneity but also provide information on the different factors involved in DNA 

methylation regulation of expression. These observations, if not sufficient to propose a 

definitive mechanism of action, will definitely contribute as key resources to further 

analysis when linking DNA methylation alteration to phenotypes by offering a curated list 

of gene sensitive to methylation alterations specific to the placenta.  

Discussion 

The results presented here highlight the importance of genetic-epigenetic interactions in 

human placentas and provide a resource to further characterize the dynamic of these 

interactions in the context of human diseases. Indeed, because GWAS and EWAS 

analyses are statistical approaches that only report associations between genetic 

variants and interrogated phenotypes, an approach in which GWAS data are combined 

with reference datasets detailing associations between genetic variants and gene 

expression or CpG methylation can help to pinpoint genes and regulatory DNA 

sequence variants linked to disease susceptibility. By providing a curated list of eQTL, 

mQTL, and eQTM associations, with careful consideration of potential false-positive and 

false-negative findings, we have started to address these issues as they pertain to 

human placentas. Our data represent an initial basis for understanding how genetic 

variation in human placentas influences epigenetics marks and expression and allows 

the identification of genes and CpG sites with greater sensitivity to genetic variants, 

which should be considered when interpreting disease-focused studies such as GWAS 

and EWAS. Indeed, a significant amount of research today is built on the dichotomy 

between treated versus non-treated or disease versus non-diseased with less 

consideration toward understanding what constitutes normal or healthy. Thus, our ability 
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to more fully define a 'normal' molecular phenotype will have a notable impact on the 

interpretation and significance of such studies. Lastly, a better understanding of the 

interplay between the multiple functional layers at a systems level under normal 

conditions is needed to fully benefit from the ever-increasing amount of multi–omic data. 

Epigenome-wide association studies, primarily focusing on DNA methylation, have been 

used for examining the impact of environmental exposures and early biomarker 

discovery [13]. The increasing number of studies and challenges in this area have been 

reviewed [65]. Among these challenges is the ability to adequately correlate DNA 

methylation and expression profiles to identify reliable and causal associations in a 

tissue-specific context. Here, we provide a list of candidate genes and CpG sites with 

high genetic-epigenetic correlations in human placentas, revealing some general 

principles of these interactions. Associations found in promoter regions represent a 

categorical/bimodal signal with enrichment for transcription factor binding sites, while 

enhancer interactions represent a linear additive profile with no significant enrichment for 

transcription factors. These differences can be related to cell heterogeneity. Indeed, 

promoter regions show a more constitutive pattern across cell types while enhancers are 

more likely to be cell type specific. Therefore, enhancer regions will present a cell 

specific signal depicted as a continuous range of values for gene expression and DNA 

methylation which transcribe as a linear distribution when looking at methylation-

expression associations. Cell subpopulation effects are now recognized as a major 

source of variability and support the recommendation for single cell type analysis in 

EWAS [4]. The placenta is a highly heterogeneous tissue and demonstrates differences 

in gene expression and DNA methylation, which may be due to changes in the 

proportional distribution of different cell types (for example, as a result of infection, 

inflammation or other conditions) that can later confound methylation-disease 
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associations [66]. Heterogeneity may be corrected using statistical deconvolution 

techniques [67, 68] where a subset of targets is used to represent distinct DNA 

methylation or gene expression profiles for each cell type and assess subpopulation 

distribution. The accuracy of these approaches is highly dependent on the availability of 

reference epigenomes and transcriptomes and the ability to select representative targets 

for the tissue considered. Single cell data for the placenta are not available. However, 

genes and CpG sites with linear distribution can be further used to assess and control 

for cell subtype population in human placenta.  

There are several strengths to our study, the most important of which is the 

comprehensive nature of our analysis.  By sampling more than 300 individual placentas 

from an ethnically diverse and representative population, we present here the most 

extensive placenta-specific genome-wide analysis published to date. Based on our 

heterogeneous population we believe that our findings will be applicable to populations 

with diverse backgrounds including minorities that have been so far underrepresented in 

both GWAS and EWAS studies. Another key factor of our study is the resolution of our 

approach. We combine from the same cohort genome-wide transcriptome, epigenome 

and genetic variation information which allows for improved understanding of the 

intricacy of expression regulation mechanisms in an understudied tissue by overcoming 

the limitations inherent to each individual dataset when considered separately. Finally, 

the ability to extract meaningful information is highly dependent on the quality of the 

analytical approach. Thus, we describe here stringent methods to incorporate different 

datasets and extract robust correlations. We also emphasize the limitations intrinsic to 

the different techniques, which will help to assure reproducibility.  

A major gap in the field has been the lack of placenta-specific annotations. This situation 

also makes our findings valuable as they will promote the creation of a placenta-specific 
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data repository. We believe that the massive amount of high-quality data generated will 

serve as a reference and benefit to further –omics placenta specific studies and 

contribute to a new perspective in term of disease susceptibility and placenta 

development.   

Methods 

Study participants 

Subjects and samples were identified from the Eunice Kennedy Shriver National Institute 

of Child Health and Human Development (NICHD) Fetal Growth Study, which was a 

prospective, multicentered, observational study including 3,000 pregnant women [69].  

Healthy, non-obese, low risk pregnant women across four race/ethnicity groups, who 

conceived spontaneously and had no obvious risk factors for fetal growth restriction or 

overgrowth were eligible for inclusion in the study. Specifically, self-identified non-

Hispanic white, African-American, Hispanic, and Asian/Pacific Islander women with a 

singleton pregnancy less than 13 weeks and 6 days of gestation were enrolled.  All 

women were between 18 and 40 years old with BMI between 19.0 to 29.9kg/m2 with no 

confirmed or suspected fetal congenital structural or chromosomal anomalies. Multiple 

exclusions were identified to assure a low risk population and included but was not 

limited to, cigarette smoking in the past six months, use of illicit drugs in the past year, 

consumption of at least 1 alcoholic drink per day, chronic hypertension, diabetes 

mellitus, HIV or AIDS, and history of gestational diabetes in a prior pregnancy. To assure 

correct dating, all pregnancies had first trimester ultrasound screening consistent with 

gestational age. Placentas were collected from pregnancies with a predicted birthweight 

by ultrasound between the 10th  and the 90th percentile (S23 Table). 
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Sample collection 

Placental samples were obtained and processed within one hour of delivery by trained 

research personnel. Placental parenchymal biopsies measuring 0.5 cm x 0.5 cm x 0.5 

cm were taken from the fetal side of the placenta just beneath the fetal membranes and 

were placed in RNALater and frozen for molecular analysis.  

After delivery, neonatal anthropometric measurements were taken. These included: birth 

weight, head circumference. Information on maternal weight gain, antenatal and 

intrapartum complications, and neonatal outcomes were extracted from the medical 

record. 

Genome-wide gene expression 

RNA from 80 placenta biopsies (42 males and 38 females) was isolated using TRIZOL 

reagent (Invitrogen, MA, USA). Poly-A pull-down was used to enrich for mRNAs, and 

libraries were prepared using the Illumina TruSeq RNA kit. Libraries were pooled and 

sequenced on an Illumina HiSeq2000 machine with 100 bp paired-end reads. RTA 

(Illumina, San Diego, CA, USA) was used for base calling and bcl2fastq (version 1.8.4) 

for converting BCL to FASTQ format, coupled with adaptor trimming. The reads were 

mapped to the human reference genome (NCBI/build37.2) using Tophat  (version 2.0.4) 

with 4 mismatches (--read-mismatches = 4) and 10 maximum multiple hits (--max-

multihits = 10). The relative expression level of genes was estimated by FPKM 

(Fragments Per Kilobase of transcript per Million mapped reads) using cufflinks (version 

2.0.2) with default settings. FPKM values were used in log2-transformed scale after 

quantile normalization.  
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Genome-wide DNA methylation  

Genomic DNA from 303 placental biopsies (151 males and 152 females), 500 ng, was 

used as per the manufacturer’s instructions for HumanMethylation 450 Beadchips 

(Illumina), with all assays performed at the Roswell Park Cancer Institute (RPCI) 

Genomics Shared Resource. Data were processed using Genome Studio, which 

calculates the fractional methylation (AVG_Beta) at each queried CpG, after background 

correction, normalization to internal control probes, and quantile normalization. All 

probes mapping to the X or Y chromosome were removed. As recommended by 

Illumina, AVG_Beta values with a detection p-value>0.05 were excluded from the 

analysis and replaced by missing values. Probes that queried CpGs directly overlapping 

the positions of known common DNA variants as reported in 1000 Genomes Project 

Phase 3 (allele frequency >1%) and within a 20 base pair window upstream of the 

interrogated CpG were excluded since these CpGs may be abolished by the SNP itself 

or the binding of the probe itself could be altered [34]. Additionally, the accuracy of the 

Illumina 450K can be affected by cross-reactive probes that were also excluded from our 

analysis [35].  

Genome-wide SNP genotyping 

The DNA samples (n=303, 151 males, and 152 females) were genotyped on Illumina 

HumanOmni2.5 Beadchips, followed by initial data processing using Genome Studio. 

SNPs were annotated using dbSNP138. Quality control exclusionary measures for 

subjects were: genotype call rates <95%, marked departure from Hardy-Weinberg 

equilibrium (p<0.001) and low minor allele frequencies <5% after QC filtering genotype 

was conserved for 1,374,581 SNPs.  
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Association analyses and FDR control  

To test for association between genotype and expression (each SNP vs each transcript, 

eQTL) or genotype and DNA methylation (each SNP vs each methylation site, mQTL) 

we used a linear regression model implemented in QTLtools [70]. For the association 

between expression and DNA methylation (each transcript vs each methylation site, 

eQTM) we used a linear regression model (LINEAR) implemented in Matrix eQTL [71]. 

For eQTL and eQTM, the linear regression model was corrected using principal 

component analysis (PCA) and PEER normalization (K=10) based on expression data 

[72]. For PCA analysis, only the principal components (PC) significantly contributing to 

variability were added into the model.  In our case, PC1 and PC2 were included as 

contributing for up to 32% of variability (S2 Fig). For PEER analysis, covariate 

contribution was estimated using Bayesian approaches to infer hidden determinants and 

their effects from gene expression profiles by using factor analysis methods [72]. For 

each association, FDR was estimated by permutations a 1,000 times after correction for 

multiple comparisons using Benjamini & Hochberg [73] approach implemented in R 

package (p.adjust). The same random indexes were applied to the PEER factors and 

covariates. For eQTLs and mQTLs, permutation is implemented in the QTLtools 

package.  For expression-methylation associations (eQTMs), we permuted ratio for each 

transcript with significant association (n=14,353) 1,000 times. For eQTL analysis, the 

correlation was run between expression and genotype across 80 samples (42 male, 38 

female), for mQTL analysis association between methylation and genotype was 

calculated across 303 samples (151 male, 152 female) and for eQTM analysis through 

74 samples (38 male, 36 female). 

Associations reaching the significance threshold were retained to further analysis if 

having at least a shared genotype in 5% or more individuals (AA, AB, BB, where A is the 
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reference and B the alternate allele) and regression slope >5%. Associations were 

further prioritized based on their regression slope and distance between a genetic 

variant and associated gene or CpG to encompass the linearity and the magnitude of the 

progression between the different genotype. Briefly, we generated a score for each 

association following this equation [score = (1-P.value)*abs(regression 

slope)/log(abs(distance)+2)].  

Determination of “at-risk” probes 

“At-risk” probes were defined following 3 distinct criteria (1) the presence of common 

SNPs in a 20 bp window from the 3’ end of Illumina probe (SNP-probe) [34], (2) previous 

identification as cross-reactive probes [35] and (3) based on a specific methylation 

profile using Gap-Hunter algorithm (gap-probe) [36]. Criteria 1 and 2 were sufficient to 

exclude the probe from further analysis while criteria 3 only resulted in a flagging of the 

identified probes. We first identified all CpG-SNPs interrogated by the Illumina 450k 

assay based on 1000 Genomes Project Phase 3 dataset using an allele frequency >1%. 

We then used the same reference to identify probe with known genetic variants within 

the 20 bp upstream of the interrogated CpGs including the single base extension for 

probe of type I. We decided to consider 20 bp because of the absence of consensus for 

exclusion and because we did not detect a differential enrichment from 20 bp to the 5’ 

end of the probe (S12 Fig). This list of affected probes was further pruned down by 

excluding probes containing a genetic variant with reference and alternative alleles 

involving a C or a T which will not affect the binding of the probe as we are considering 

bisulfite-treated reads. The list of cross-reactive probes is publicly available [35]. We 

used the function “gaphunter” from the minfi package (v1.18.4) to identify probes with a 

gap in a beta signal. Such probe signal has a tendency to be driven by an underlying 

SNP or other genetic variants. Beta values were provided as input and the function 
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outcomes a data frame listing for each identified gap signal, the number of groups and 

the size of each group. Only gap signals not driven by outlier (cutoff=1%) were 

considered. A complete list of SNP-probe, cross-reactive probe as well as gap-probe is 

available as S7 Table. Table S7 also includes the list of association involving a gap-

probes. Finally, the non filtered list of mQTLs with annotated probes (SNP/cross-

reactive/Gap-probes) is available at S13 Table.  

Enrichment analysis 

For an observed overlap X between our candidates and a list of intervals of interest Y of 

size n from a total population of assayed sites Z, we compared the observed value of X 

with the distribution of the same overlap n under the null hypothesis using permutation 

tests. To obtain the null distribution, we employed a random sampling approach where 

we randomly sampled 1,000 times from the population of all assayed sites (Z). Thus, 

with Y, n, and an observed overlap with a genomic interval, X, we sampled n loci from Z 

and found the overlap of the random sample with the interval, Yk, for k in 1, 2, …, 1000 

(that is 1000 random samples). Next, we compared X with the distribution of simulated 

overlaps, Y1, 2, …, 1000. If the resulting null distribution, Y1, 2, …, 1000, contains the observed 

overlap, X, then we can conclude that there is no significant enrichment. Conversely, 

when the null distribution, Y1, 2, …, 1000, excludes the observed overlap, X, then we can 

conclude that there is significant enrichment beyond that of random chance. The 

significance is further assigned as follow: the number of time when Yk > X divided by k.  

π1 statistics 

The π1 statistic was used to quantify overlap between eQTL associations found in 

placenta and the tissue cataloged by the GTEx consortium. The non–model-based 

pairwise analysis method identifies significant SNP-gene pairs in a first tissue, and then 
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uses the distribution of the P values for these pairs in the second tissue to estimate π1, 

the proportion of non-null associations in the second tissue. It provides an estimate of 

the fraction of true positive eQTLs, π1=1-π0, where π0=estimated fraction of null 

eQTLs, estimated from the full distribution of p-values (Storey and Tibshirani q-value 

approach [74]). The π1 statistic considers also sub-threshold placenta eQTL p-values 

below the FDR<5% cutoff. 

Transcription factor binding affinity estimate 

Using the 1000 Genomes Project Phase 3 dataset, we identified all genetic variants 

within 2 kb windows centered on the gene transcription start site (eQTL) or CpG (mQTL) 

using a minor allele frequency >1%. The transcription factor dataset was from ENCODE 

ChIP-seq experiments, together with DNA bindings motifs identified within these regions 

as displayed by the ENCODE Factorbook repository [75]. We first compare transcription 

factor binding affinity between the reference and alternative allele using the FIMO tools 

in the MEME suite [48]. FIMO is a software tool for scanning DNA or protein sequences 

with motifs described as position-specific scoring matrices. The program computes a 

log-likelihood ratio score for each position in a given sequence database, uses 

established dynamic programming methods to convert this score to a P-value and then 

applies false discovery rate analysis to estimate a q-value for each position in the given 

sequence. FIMO output a list of significant binding site for both reference and alternative 

allele. However, FIMO only provides with qualitative information and does not allow for 

significant quantification of the difference in binding affinity between the two alleles. 

Therefore, we used atSNP [49] to quantify the difference between the reference and 

alternative allele for the binding site identified by FIMO. It uses ENCODE motifs and 

JASPAR motifs to evaluate the regulatory potential of the SNPs. It outputs for each SNP 

the significance of the match to each position specific matrix with both the reference and 
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the alternative allele and also the significance of the change in these match 

scores. atSNP relies on sampling algorithm with a first-order Markov model for the 

background nucleotide sequences to test the significance of affinity score and SNP-

driven changes in these scores. atSNP is an R package.  

Pathways analysis 

For pathways analysis, we used the Bioconductor package GOseq [29] combined with 

the KEGG annotation database [76]. GOseq is based on gene ontology analysis but 

allows for correction such as gene length that has been shown to bias gene set 

enrichment analysis. For eQTL associations, we control for gene length as implemented 

in the reference manual and for mQTL associations, we generated a list of the number of 

probes per genes using Illumina 450K and Refseq annotations. This list was then used 

as input to control for gene overrepresentation bias.   

Genome annotation 

Placenta specific genome annotation has been generated using publicly available data 

from the Roadmap in Epigenomics project. Chromatin immunoprecipitation followed by 

massively parallel sequencing (ChIP-seq) was obtained from fetal placenta primary 

tissue from several donors (S16 Table).  Annotation involved processing the raw data for 

chromatin accessibility (DNase hypersensitivity) along with ChIP-seq data for six histone 

modifications (H3K4me1, H3K27me3, H3K27ac, H3K4me3, H3K36me3 and H3K9me3), 

followed by the use of the ChromHMM algorithm [77] to predict seven features as 

previously described. ChromHMM is based on a multivariate hidden Markov model that 

models the observed combination of chromatin marks using a product of independent 

Bernoulli random variables, which enables robust learning of complex patterns of many 

chromatin modifications. ChromHMM outputs both the learned chromatin-state model 
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parameters and the chromatin-state assignments for each genomic position. Based on 

enrichment and genomic localization, feature 1 was annotated as candidate promoter 

(H3K4me3), feature 2 as candidate active enhancer (H3K4me1 and H3k27ac), feature 3 

and 4 as candidate poised enhancer (H3K4me1 and H3k27me3) and feature 7 as 

transcribed sequences (H3K36me3). Finally, features 5 and 6 did not show enough 

specific enrichment to be annotated (S7 Fig).  

Targeted bisulfite sequencing  

Targeted bis-seq was performed for the validation of 3 mQTL regions and to assess the 

effect of common SNPs in 4 Illumina probes as described in Do et al. [13]. Briefly, the 

primers (S24 Table) were designed using MethPrimer. Bisulfite-converted DNA was 

amplified by PCR, followed by Nextgen sequencing (Illumina MiSeq). The PCR and 

library preparation were performed using Fluidigm Access Array system. PCRs were 

performed in triplicate and pooled to ensure sequence complexity. ASM was assessed 

when the coverage was at least 100 DNA fragments. While the absolute differences 

between methylation of the two alleles are not exaggerated by ultra deep sequencing, 

the p-values tend to zero as the number of reads increases. Therefore, the Wilcoxon non 

parametric test was performed using bootstrapping (1000 random samplings, 20 reads 

per allele) to minimize an artificially low p-value due to ultra deep coverage. The 

significance of the allele asymmetry was defined by p<0.05 and an absolute methylation 

difference between allele >20%. For the graphical representations of the bis-seq, one 

representative random sampling of the reads was shown per allele. Samplings and 

bootstrapping were performed using R. 
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Assessment of the association’s distribution  

First, we assessed unimodal and bimodal distribution for expression and methylation 

data. For expression, a Bayesian model of normal distribution was used to estimate the 

parameters of the normal distribution fitting the data. The likelihood function is given by a 

normal distribution: 

𝑒𝑥𝑝𝑖  ~ 𝑑𝑛𝑜𝑟𝑚(𝜇, 𝜏) 

Here, 𝑒𝑥𝑝𝑖  is the expression value for the 𝑖!!  sample. 𝜇  denotes the mean of the 

normal distribution, 𝜏  is the precision of the normal distribution. Standard deviation 

𝜎 =  !
!
. 

The prior for the parameter 𝜇 and 𝜏 are described by two non-informative priors as: 

𝜇 ~ 𝑑𝑛𝑜𝑟𝑚 0,0.0001 𝐼(0, ) 

𝜏 ~ 𝑑𝑔𝑎𝑚𝑚𝑎(0.01,0.01) 

Here, the prior for the 𝜇 is distributed on the right side of a normal distribution with mean 

0 and standard deviation 100. The prior for the precision is described as a gamma 

distribution with mean 1 and standard deviation 10. To assess the bimodal distribution of 

expression data, a mixture of two normal distributions model was used to estimate the 

means, standard deviation and the mass of the bimodal distribution.  

The likelihood function can be written as: 

𝑒𝑥𝑝!  ~ 𝜔!𝑑𝑛𝑜𝑟𝑚 𝜇!, 𝜏 +  𝜔!𝑑𝑛𝑜𝑟𝑚(𝜇!, 𝜏) 

 

Here, 𝜔! and 𝜔! represent the mass of each mixture. 𝜇! and 𝜇! are the means of each 

mixture. We assumed that the two mixtures have similar variance, 𝜏. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/432211doi: bioRxiv preprint 

https://doi.org/10.1101/432211
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39 

The prior for the mass 𝜔! is described as: 

𝜔! ~ 𝑑𝑏𝑒𝑡𝑎(1,1)[0.1,0.9] 

𝜔! + 𝜔! = 1 

Here, the prior of the mass for the first mixture follows a uniform beta distribution ranging 

from 0.1 to 0.9, which means the proportion for any mixture has to be larger than 10%. 

And the two mixtures add up to 1. 

The prior for the means 𝜇!  and 𝜇!  are described the same way as the mean in a 

unimodal model.  

Because the methylation value for CpG site ranging from 0 to 1, we used a beta 

distribution to describe the unimodal distribution of the methylation data instead of the 

normal distribution.  

Likelihood: 

𝑚𝑒𝑡ℎ𝑦!  ~ 𝑑𝑏𝑒𝑡𝑎(𝛼,𝛽) 

Here, 𝑚𝑒𝑡ℎ𝑦! is the methylation value for the 𝑖!! sample.  

The parameters of the beta distribution 𝛼 and 𝛽 are determined by 𝜇, the mean of the 

methylation data, and 𝜅, the variation of the methylation data, as: 

𝛼 =  𝜇 ∗ 𝜅 

𝛽 = 1 − 𝜇 ∗ 𝜅 

The priors for 𝜇 and 𝜅 are modeled as: 

𝜇 ~ 𝑑𝑏𝑒𝑡𝑎(1,1) 

𝜅 ~ 𝑑𝑔𝑎𝑚𝑚𝑎(0.01,0.01) 
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Here, 𝜇  follows a non-informative uniform beta distribution, and 𝜅  follows a gamma 

distribution. 

For bimodal distribution of methylation data, a mixture of two beta distributions was 

used. 

The likelihood: 

𝑚𝑒𝑡ℎ𝑦!  ~ 𝜔!𝑑𝑏𝑒𝑡𝑎 𝛼! = 𝜇!𝜅,𝛽! = (1 − 𝜇!)𝜅 +  𝜔!𝑑𝑏𝑒𝑡𝑎(𝛼! = 𝜇!𝜅,𝛽! = (1 − 𝜇!)𝜅) 

Here, 𝜔! and 𝜔! represent the mass of each mixture. 𝜇! and 𝜇! are the means of each 

mixture. We assume that the two mixtures have similar variance, 𝜅. 

The prior for the mass 𝜔! is described as: 

𝜔! ~ 𝑑𝑏𝑒𝑡𝑎(1,1)[0.2,0.8] 

𝜔! + 𝜔! = 1 

Here, the prior of the mass for the first mixture follows a uniform beta distribution ranging 

from 0.2 to 0.8, which means the proportion for any mixture has to be larger than 20%. 

And the two mixtures add up to 1. 

The prior for the means 𝜇! and 𝜇! are described the same way as described in unimodal 

methylation data. 

Having both the model and data, we used the Gibbs Sampler JAGS (Martyn Plummer 

2003) to sample the posterior distribution through the “rjags” package (Martyn Plummer  

2016). Finally, we compared the goodness of fit of a unimodal and bimodal model for the 

data by Bayesian Information Criteria (BIC). The unimodality or bimodality of the data is 

determined by the model with better BIC. The mean and standard deviation of the data 

is estimated from the posterior distribution sampled by JAGS. 
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Figure	Legends	

Fig 1. Identification of eQTLs and mQTLs.  Q-Q plot representing expected versus 

observed significance for the association between gene expression and genetic variant 

(A) and between CpG methylation and genetic variant (B)  

Fig 2. mQTL validation.  Targeted bis-seq data showing Hap-ASM in LRWD1 region. 

The bis-seq amplicon covers 289 bp including the mQTL index CpG queried in Illumina 

450K BeadChips arrays (cg25932869), as well as contiguous CpGs. Graphical 

representation from 3 representative heterozygous placenta samples with hap-ASM is 

shown. This region overlaps with the common SNP, rs11761361. Allele A and B are 

analyzed and represented separately. The SNP dictates methylation level with the 

alternate allele (allele B) being significantly hypermethylated compared to the reference 

allele (allele A), suggesting the presence of haplotype-dependent ASM in 19 out of 21 

heterozygous samples. The low methylated allele is significantly biased toward allele A 

(p=10-06, using binomial test) which ruled out imprinting. The hap-ASM overlaps with an 

insulator chromatin state (blue) in a NHEK cell line which suggests the presence of a 

dynamic regulatory element. For each heterozygous sample, Wilcoxon p value and 

methylation difference between alleles were calculated by bootstrapping (1,000 sampling 

of 20 reads per allele) and are indicated only for significant hap-ASM defined as the 

difference in percentage methylation >20%, >3 ASM CpGs, and p < 0.05. One 

representative random sample of each allele (20 reads per allele) is shown. mQTL, 

eQTL, and placenta chromatin states tracks are from our analyses. The GWAS SNPs 

track was downloaded from the NHGRI-EBI GWAS Catalog [1], TF ChIP-seq data, 

DNAse I hypersensitive sites and cell line chromatin states were downloaded from the 
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ENCODE project [78].  ∆Meth (difference in the percentage of methylation between 

alleles in heterozygous samples) and Wilcoxon p-values are from bootstrapping.    

Fig 3. Expression and Methylation profiles associated with eQTLs and mQTLs. 

Enrichment for quartile of expression (A) or DNA methylation (B) was assessed using 

permutation tests. The density plots represent the distribution of overlaps between 

random sampling and the different quartiles whereas the red line illustrates the overlap 

value between candidate associations and corresponding quartiles.   

Fig 4. Genomic annotations of placental eQTLs and mQTLs. Bar graphs 

representing the observed versus expected ratio for each feature define by ChromHMM 

analysis and from Refseq annotations. Grey filling represents enrichment that did not 

reach significance (A). Significance was assessed using a permutation test. The density 

plots represent the distribution of overlaps between random sampling and the different 

features whereas the red line illustrates the overlap value between candidate 

associations and the corresponding features (B). eQTL-SNP refers to enrichment 

considering the genetic variant associated to eQTL, mQTL-SNP refers to enrichment 

considering the genetic variant associated to the mQTL and mQTL-CpG refers to 

enrichment considering the CpG associated to the mQTL.  

Fig 5. Placenta-specific genomic annotations of eQTMs. The histogram represents 

the density of eQTM associations in function of the distance from transcription start site 

(TSS) considering positive and negative correlation separately (A). The density plots 

represent the distribution of overlaps between random sampling and the different 

features as defined by permutations tests whereas the red line illustrates the overlap 

value between candidate associations and corresponding features (B).   

Fig 6. Linear and Bimodal correlations among eQTMs. Representation of linear and 

bimodal distributions for DNA methylation and expression (A). Scatter plot representing 
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the correlation between DNA methylation and expression among the samples for 

selected top candidates associations (B). The red line represents the linear regression 

for each association.  

Fig 7. Differences in genomic distribution between linear and bimodal eQTMs. The 

histogram represents the density of eQTM associations in function of the distance from 

transcription start site (TSS) considering linear and bimodal correlation separately (A). 

The density plots represent the distribution of overlaps between random sampling and 

the different features as defined by permutations tests whereas the red line illustrates 

the overlap value between candidate associations and features (B).    
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Supporting information 

S1 Fig. Cohort Description. Heatmap representing gene expression correlation across 

samples for the full dataset (ALL) and highly variable genes defined using MAD (High 

MAD) (A). Heatmap representing DNA methylation correlation across samples for the full 

dataset (ALL) and highly variable genes defined using MAD (High MAD) (B). Genetic 

background analysis using principal component. Each plot represents principal 

component 1 versus principal component 2 when considering the 1000 genomes 

samples reference dataset (1000 Genomes Project samples), our placenta cohort 

(Placenta Samples) and the overlap between the two. Populations are color coded in the 

reference dataset and black squares represent samples from the placenta cohort (C).   

S2 Fig. Identification of cofounders. The principal component analysis was run to 

identify cofounders within the gene expression and DNA methylation datasets. 

Histogram representing the proportion of variance explains for each principal component 

from 1 to 10 (A). Association between principal component and the known factor was 

assessed using linear regression. Heatmap representing the level of significance for the 

association between a principal component and each factor for gene expression dataset 

(B) and DNA methylation dataset (C).  

S3 Fig. Representative association for eQTLs and mQTLs.  Boxplot representing the 

profile of expression for each genotype for selected top candidate eQTLs (A). Boxplot 

representing the profile of methylation for each genotype for selected top candidate 

mQTLs (B).  

S4 Fig. The overlap between placenta specific association and GTEx dataset. 

Histogram representing the enrichment for cis-eQTLs from the placenta in transformed 
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fibroblasts from GTEx (A) and in brain cerebellar hemisphere (B). The π1 value 

represents similarity between tissue ranging from 0 (least similar) to 1 (most similar). 

S5 Fig. mQTL validation. Targeted bis-seq data showing Hap-ASM in LOC01848 

region. The bis-seq amplicon covers the mQTL index CpG (cg15548566), as well as 

contiguous CpGs. This region overlaps with the common SNP, rs13360436 which 

dictates methylation level with the alternate allele (allele B) being significantly 

hypermethylated compared to the reference allele (allele A), suggesting the presence of 

hap-ASM in 11 out of 19 heterozygous samples. The low methylated allele is 

significantly biased toward allele A (p=4x10-06, using binomial test) which ruled out 

imprinting. In this region, rs112724034 has been associated with Alzheimer’s disease 

(AD) [1]. ∆Meth (difference in the percentage of methylation between alleles in 

heterozygous samples) and Wilcoxon p-values are from bootstrapping. 

S6 Fig. Example of false-negative in our stringent mQTL set. Bis-seq showing hap-

ASM in CLDN23 region.  cg24900164 was excluded from our main analysis since the 

probe maps a common non-CT SNP located 7 bp from the index CpG and was therefore 

not included in our stringent mQTL list. However, targeted bis-seq identified hap-ASM 

dictated by rs13254997 in 9 out of 20 heterozygous samples (7 positives and 2 negative 

hap-ASM). In addition, the net methylation estimates from Illumina 450K BeadChips 

arrays and bis-seq were similar suggesting that the SNP did not affect the probe 

hybridization. These findings suggest the presence of genuine mQTL at this locus. 

S7 Fig. ChromHMM annotations. ChromHMM algorithm was used to define genomic 

annotations based on ChIP-seq tracks available for the placenta. Heatmap representing 

the enrichment for the different ChIP-seq mark in each feature (A). Heatmap 

representing the enrichment for previously defined genomic annotation in each feature 
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(B). Density plot representing the enrichment for each feature in function of the distance 

from the transcription starting site (TSS) (C).   

S8 Fig. Enrichment for proximal associations. Histogram representing the distribution 

of associations from the transcription start site (TSS) for eQTL (A) and from the CpG site 

for mQTL (B).  

S9 Fig. Distribution of difference in binding affinity. Representative density plot of 

the difference in binding affinity between the reference and alternative allele for eQTL 

(A) and mQTL (B) as defined by FIMO. Null differences and binding not reaching a 

p.value <0.0001 were excluded prior to analysis.  

S10 Fig. Schematic representation of the subpopulation effect on the correlation 

between DNA methylation and gene expression. Scenario representing a correlation 

between CpG and gene which is not cell specific as DNA methylation and gene 

expression profiles are similar across the different cells of each sample. CpG is either 

fully or not methylated and expression is high or low. This scenario will be called as 

bimodal distribution (A). Scenario representing an absence of correlation between DNA 

methylation and gene expression (B). Scenario representing a correlation between CpG 

and gene which is cell specific as DNA methylation and gene expression profiles are 

variable across cell within each sample. This profile will be called a linear distribution 

(C).  

S11 Fig. Transcription factor binding sites enrichment for eQTMs. The density plots 

represent the distribution of overlaps between random sampling and the selected 

transcription factors binding site as defined by the ENCODE Factorbook repository when 

the red line illustrates the overlap value between candidate associations and the 

corresponding transcription factor binding site for linear (A) and bimodal (B) distributions. 
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S12 Fig. mQTL association within Illumina 450k probes. Scatter plot representing the 

enrichment for significant associations in function of distance from 3’end of Illumina 

probe. The blue dash line represents the cutoff use during our study. This cutoff was 

defined based on previous observations and on the decrease, enrichment observed in 

our analysis.  

   

S1 Table. Correlation of expressions between placenta and Tissue from the GTEx 

consortium.  

S2 Table. Summary of genes with high variability across the placenta.  

S3 Table. Summary of CpGs with high variability across the placenta.  

S4 Table. Summary of pathways associated with gene showing high variability. 

This table relates the significant outcome of the gene set enrichment analysis using 

GOseq and KEGG database for genes and CpG-associated genes classified as high 

variable across placenta using MAD. 

S5 Table. Summary of eQTL associations.  

S6 Table. Summary of mQTL associations.  

S7 Table. Excluded probes. This table recapitulates the list of probes from Illumina 

450K design that were excluded in the present analysis, the list of cross-reactive probes 

as defined by Chen YA, et al., the list of probes that were flagged by Gap-hunter as well 

as the list of mQTLs and eQTMs that match with these flagged probes. 

S8 Table. Summary of genes associated with eQTL overlapping with the 

previously published association by Peng et al..  
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S9 Table. mQTL association overlapping with previously identify mQTLs in the Do 

et al. paper. The overlap between our candidate mQTLs and the one previously 

identified by Do et al. was generated focusing on mQTL associated CpG.  

S10 Table. π1 score across the GTEx tissues. π1 was calculated for each available 

sample from the GTEx database as a measure of similarity between these tissues and 

placenta.  

S11 Table. List of placenta specific associations. 

S12 Table. mQTLs validation. The outcome of the validation using a targeted approach 

for selected mQTL candidate found in our and Do et al. studies.  

S13 Table. The complete list of mQTL associations with flagged at “risk” probes.  

S14 Table. KEGG analysis. This table relates the significant outcome of the gene set 

enrichment analysis using GOseq and KEGG database for eQTL and mQTL 

associations. 

S15 Table. List of genes overlapping between eQTLs and mQTLs. 

S16 Table. ChromHMM input dataset. Information regarding placenta specific ChIP-

seq tracks used to perform ChromHMM. 

 S17 Table. List of the transcription factor with altered binding affinity due to 

genetic variants associated to eQTLs and mQTLs. This list represents the outcome 

of the atSNP algorithm. 

S18 Table. The overlap between placenta specific eQTLs and associations from 

the GWAS database. This analysis was centered on overlapping genetic variants 

between placenta eQTLs and genetic variant previously reported in the GWAS 

database.  
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S19 Table. The overlap between placenta specific mQTLs and associations from 

the GWAS database. This analysis was centered on overlapping genetic variants 

between placenta mQTLs and genetic variant previously reported in the GWAS 

database.  

S20 Table. Summary of eQTM associations.  

S21 Table. Transcription binding sites analysis for eQTM associations. List of 

transcription factor binding sites showing significant enrichment for eQTM candidates 

considering bimodal, linear distribution and positive or negative correlation separately.  

S22 Table. Summary of eQTM association based on the correlation distribution 

profile.  

S23 Table. Cohort information. 

S24 Table. List of primers for bis-seq validation.  

 

Codes used during our analysis are available here: 

[https://github.com/fabiendelahaye/Placenta_analysis.git] 
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Figure 1  
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Figure 2 
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Figure 3  
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Figure 4  
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Figure 5 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/432211doi: bioRxiv preprint 

https://doi.org/10.1101/432211
http://creativecommons.org/licenses/by-nc-nd/4.0/


 61 

Figure 6 
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Figure 7  
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