
dream: Powerful differential expression analysis for repeated
measures designs

Gabriel E. Hoffman∗1,2,3, Panos Roussos1,2,3,4,5

1 Pamela Sklar Division of Psychiatric Genomics,
2 Icahn Institute for Genomics and Multiscale Biology,
3 Department of Genetics and Genomic Sciences,
4 Department of Psychiatry,
Icahn School of Medicine at Mount Sinai, New York, NY, USA
5 Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical
Center, Bronx, NY, USA

∗ Corresponding author: G.E. Hoffman (gabriel.hoffman@mssm.edu)

Large-scale transcriptome studies with multiple samples per individual are widely used
to study disease biology. Yet current methods for differential expression are inadequate
for these repeated measures designs. Here we introduce a novel method, dream, that
increases power, controls the false positive rate, integrates with standard workflows, and5

yields biological insight in multiple datasets.

Recent advances in the scale of transcriptomic and, more generally, functional genomic studies has
enabled assaying individuals from multiple tissues1, brain regions2, cell types3, time points4–6 or in-
duced pluripotent stem (iPS) cell lines7–10. These studies with multiple samples from each individual
can test region- or context-specific effects, and decouple biological from technical variation in gene10

expression. Yet current analysis methods do not adequately model the complexity of these studies and
can result in loss of power or, more problematically, a large number of false positive findings11,12.

While other software gives state-of-the-art performance on datasets with a single measurement per
individual13–16, these methods are not adequate for repeated measures designs. This is not a short-15

coming of a particular normalization procedure, but rather due to the common assumption that samples
are statistically independent. This core assumption is violated in the case of repeated measures and
existing methods can perform very poorly in this case. The challenge of modeling repeated measures,
and especially the risk of false positives, has been raised11,12. Yet there is currently no adequate sta-
tistical solution for differential analysis of transcriptome or functional genomics data.20

Here we present a novel statistical model, dream, that enables powerful analysis of repeated measures
data while properly controlling the false positive rate. Dream is available within the variancePartition17

Bioconductor package (http://bioconductor.org/packages/variancePartition/) and
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combines:25

• random effects estimated separately for each gene17

• ability to model multiple random effects18

• fast hypothesis testing for fixed effects in linear mixed models19

• small sample size hypothesis test to increase power20

• empirical Bayes moderated t-test2130

• precision weights to model measurement error in RNA-seq counts13,22

• seamless integration with the widely used workflow of limma23

The performance of dream was compared to current methods on biologically realistic simulations. The
methods can be divided into four categories: 1) dream using default settings or a Kenward-Roger ap-
proximation (termed dream-KR), which is more powerful but much more computationally demanding;35

2) duplicateCorrelation from the limma/voom workflow23; 3) DESeq214 and limma/voom13 including
all samples but ignoring the repeated measures design; and 4) DESeq2 and limma/voom with only a
single replicate per individual.

The two dream methods are more powerful than the other methods (Fig. 1). Across a range of40

simulations of 4 to 50 individuals each with 2 to 4 biological replicates, the two dream methods have
a lower false discovery rate (Fig. 1A, Supplementary Fig. 1), better precision-recall curves (Fig.
1B, Supplementary Fig. 2), and larger area under the precision-recall (AUPR) curve (Fig. 1C,
Supplementary Fig. 3).

45

A test of differential expression must control the false positive rate accurately in order to be use-
ful in practice. As expected11,12, the methods that include all samples but ignore the correlation
structure do not control the false positive rate (Fig. 1D). This lack of type I error control is present
in all simulation conditions (Fig. 1E, Supplementary Fig. 4). Even more concerning, increasing
the number of repeated measures can dramatically increase the false positive rate. Notably, dupli-50

cationCorrelation shows a slight increase in type I error at larger sample sizes. Higher type I error
can translate into hundreds of false positive differentially expressed genes even when no genes are
truly differently expressed (Supplementary Fig. 5). Importantly, both versions of dream accurately
control the type I error with sufficient sample size.

55

The two versions of dream give the highest AUPR across all simulation conditions (Fig. 1F) while
properly controlling the false positive rate. While dream-KR gives the best performance, especially
at small sample sizes, the computational time required can be prohibitive. Using dream with the de-
fault settings performs nearly as well in simulations, but can be 2-20x faster (Supplementary Fig. 6).

60

Applying dream to empirical data gives biological insight for 3 neuropsychiatric diseases with different
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genetic architectures (Fig. 2). Alzheimers’s disease is a common neurodegenerative disorder with a
complex genetic architecture24. In analysis of RNA-seq data from 4 regions of post mortem brains from
26 individuals25, dream identified known patterns of dysregulation in genes involved in adipogenesis,
inflammation and monocyte response associated with Braak stage, a neuropathological metric of dis-65

ease progression (Fig. 2A, Supplementary Fig. 7). Applying duplicateCorrelation only recovered
a subset of these findings and produced larger false discovery rates across many biologically relevant
gene sets. In order to avoid using arbitrary cutoffs to identify differentially expressed genes, gene set
enrichments were evaluated using the differential expression t-statistics from each analysis (see Online
Methods). Notably, the difference between dream and duplicateCorrelation is due to the way that70

these methods account for expression variation explained by variance across individuals (Fig. 2B).
Genes with expression variation across individuals that is larger than the genome-wide average are sus-
ceptible to being called as false positive differentially expressed genes (see Online Methods) (Fig. 2C).

Timothy syndrome is a monogenic neurodevelopmental disorder caused by variants in the calcium75

channel CACNA1C. Induced pluripotent and derived cell types were generated from 2 affected and 4
unaffected individuals an expression was assayed by microarray26. Since up to 6 lines were generated
per donor for each cell type, it is necessary to account for repeated measures design. Analysis with
dream identified differentially expressed genes enriched for brain, neuron, synapse and ion channel
function, while duplicateCorrelation was not able to identify many of these gene set enrichments (Fig.80

2D, Supplementary Fig. 8).

Childhood onset schizophrenia is a severe neurodevelopment disorder, but the genetic cause is complex
with patients having a higher rate of schizophrenia-associated copy number variants, as well as higher
schizophrenia polygenic risk scores27,28. RNA-seq data was generated from iPS-derived neurons and85

neural progenitor cells from 11 patients with childhood onset schizophrenia7 and 11 controls with up to
3 lines per donor and cell type. Analysis with dream identified gene sets involved in neuronal function
at the 5% and 1% FDR levels that were not identified by duplicateCorrelation (Supplementary Fig.
9, 10).

90

We have demonstrated that dream has superior performance in biologically realistic simulations while
retaining control of the false positive rate. Furthermore, dream is able to identify biologically mean-
ingful gene set enrichments in three neuropsychiatric disorders with different genetic architectures
where the current standard for repeated measures designs, duplicateCorrelation, cannot. Since dream
is built on top of the limma23 and variancePartition17 workflow, it can easily accommodate expres-95

sion quantifications from multiple software packages including featureCounts29, kallisto30, salmon31,
and RSEM32, among others. Moreover, dream works seamlessly for differential analysis of ATAC-seq
or histone modification ChIP-seq data. The power, type I error control, simple R interface, speed
and flexibility of dream enables analysis of transcriptome and functional genomics data with repeated
measures designs.100

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/432567doi: bioRxiv preprint 

https://doi.org/10.1101/432567
http://creativecommons.org/licenses/by-nc-nd/4.0/


Online Methods
Linear mixed models are commonly applied in biostatistics, in order to account for the correlation
between observations from the same individual in a repeated measures study33,34. We start with a
description of a simple linear model for differential expression analysis and build towards the dream
model.105

Linear models for differential expression

Consider a linear model for a single gene

yg = Xβg + εg (1)

where yg is a vector of log2 counts per million for gene g, the matrix X stores covariates as columns,
βg is the vector of regression coefficients, and εg is normally distributed error. In order to account for
heteroskedastic error from RNA-seq counts, the error takes the form110

εg ∼ N (0, diag(wg)σ
2
g) (2)

where σ2
g is the residual variance, and wg is a vector of precision weights13. Precision weights can

be learned from the data in order to account for counting error in RNA-seq or variation in sample
quality13,22. In this case, the estimates β̂g can be obtained by a closed form least squares model fit.

Moderated t-statistics for linear models

Since this model is fit for thousands of genes, the widely used limma model21 uses a hierarchical model115

that imposes a prior distribution on the residual variances σ2
g . This approach borrows information

across genes and produces moderated t-statistics that increase power and reduce false positives com-
pared to standard t-statistics. Briefly, the moderated t-statistic for gene g and a subset of regression
coefficients k is defined by a function f where

t̃g,k = fd0,σ2
0

(
β̂g,k, σ̂

2
g , Vg, d

)
(3)

=

√
d0 + d

d

β̂g,k√[
σ̂2
g + (d0/d)σ2

0

]
Vg,k

(4)

and follows a t-distribution with d + d0 degrees of freedom, where β̂g,k and σ̂2
g are the estimates of120

the regression coefficients and residual variance, respectively; Vg,k is the unscaled covariance matrix
of β̂g,k; and d is the residual degrees of freedom of the model fit. The terms d0 and σ2

0 are the prior
residual degrees of freedom and prior residual variance, respectively. These values are estimated using
an empirical Bayes approach combining the models fit for all genes. See Smyth21 for details of the
empirical Bayes estimation of d0 and σ2

0, and derivation of f .125
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Accounting for repeated measures with a two step model: duplicate correlation

The most widely used approach for handing repeated measures in differential expression analysis is
the duplicateCorrelation() function available in limma23. This approach involves two steps.
In the first step, a linear mixed model is fit for each gene separately, and only allows a single random
effect. The model is130

yg = Xβg + Zαg + εg (5)
αg ∼ N (0, τ 2g ) (6)

where Z is the design matrix for the random effect, with coefficients αg drawn from a normal distri-
bution with variance τ 2g . After fitting this model for each gene, a single genome-wide variance term is
computed according to

τ 2 = tanh

(
1

G

G∑
g=1

atanh
(
τ 2g
))

(7)

where G is the number of genes, tanh is the hyperbolic tangent and atanh is its inverse.
135

In the next step, this single variance term, τ 2, is then used in a generalized least squares model
fit for each gene, blocking by individual:

yg = Xβg + εg (8)
εg ∼ N (0, diag(wg)Σε) (9)

Σε =


1 τ 2 0 0 0
τ 2 1 0 0 0

0 0
. . . 0 0

0 0 0 1 τ 2

0 0 0 τ 2 1

 (10)

where Σε is the covariance between samples and considers the correlation between samples from the
same individual. Note that the same τ 2 value is used for all genes. The moderated t-statistics are
defined as before.140

The duplicateCorrelation method allows the user to specify a single random effect usually correspond-
ing to donor. So it can’t model multi-level design. Moreover, duplicateCorrelation estimates a single
variance term genome-wide even though the donor contribution of a particular gene can vary substan-
tially from the genome-wide trend17. Using a single value genome-wide for the within-donor variance145

can reduce power and increase the false positive rate in a particular, reproducible way. Consider the
variance component for gene g, τ 2g , compared to the single genome-wide value, τ 2. For genes where
τ 2g > τ 2, using τ 2 under-corrects for the donor component so that it increases the false positive rate of
gene g compared to using τ 2g . Conversely, for genes where τ 2g < τ 2, using τ 2 over-corrects for the donor
component so that it decreases power for gene g. Increasing sample size does not overcome this issue.150
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Using the single variance term genome-wide and using the tanh and atanh are designed to address the
high estimation uncertainly for small gene expression experiments. However, using this single variance
term has distinct limitations. First, it ignores the fact that the contribution of the random effect often
varies widely from gene to gene17. Using a single variance term to account for the correlation between155

samples from the same individuals over-corrects for this correlation for some genes and under-corrects
for others. In addition, it is a two step approach that first estimates the variance term and then
estimates the regression coefficients. Thus, it does not account for the statistical uncertainty in the
estimate of τ 2. Finally, it does not account for the fact that estimating the variance component changes
the null distribution of β̂g. Specifically, estimating variance components in a linear mixed model can160

substantially change the degrees of freedom of the null distribution for fixed effect coefficients19,20,35–37.
Ignoring this issue can lead to false positive differentially expressed genes.

Dream model

The dream model extends the previous model in order to

• enable multiple random effects165

• enable the variance terms to vary across genes

• estimate residual degrees of freedom for each model from the data in order to reduce false positives

• perform hypothesis testing with moderated t-statistics using empirical Bayes approach

The definition of the dream model follows directly from the definition of the previous models. First,
consider a linear mixed model for gene g with an arbitrary number of random effects:170

yg = Xβg +
∑
j

Zjα
(j)
g + εg (11)

α(j)
g = N (0, τ 2g,j) (12)

where Zj is the design matrix for the jth random effect, with coefficients α(j)
g drawn from a normal

distribution with variance τ 2g,j. As before, heteroskedastic errors are modeled with precision weights
with

εg = N (0, diag(wg)σ
2
ε). (13)

In this case, estimates of coefficients β̂g and variance components σ̂2
g,j must be obtained via an iterative

optimization algorithm18.175

For the linear model and generalized least squares model described above, the residual degrees of
freedom is fixed based on the number of covariates and the sample size:

d = N − p (14)
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where N is the number of samples, and p is the number of covariates. For the single-step linear mixed
model, we can explicitly account for the fact that estimating the random effect changes the residual180

degrees of freedom of the model19,20,35–37. Thus let dg be the residual degrees of freedom for gene g.
We omit the statistical details here, but dg can be estimated from the model fit using the Satterthwaite
approximation19,37 or the Kenward-Roger approximation20,36.

Afterwards, the moderated t-statistics are computed as185

t̃g,k = fd0,σ2
0

(
β̂g,k, σ̂

2
g , Vg, dg

)
(15)

so that t̃g,k follows a t-distribution with dg+d0 degrees of freedom. Since dg can vary substantially across
genes, the moderated t-statistics for all genes are transformed to have the same degrees of freedom.
The t̃g,k values are transformed using the cumulative distribution function of the t-distribution to
produce ṫg,k which follows a t-distribution with d degrees of freedom. Thus the pair {t̃g,k, dg} gives the
same p-value as {ṫg,k, d}, but ṫg,k is easier to interpret across genes since the transformation makes the190

degrees of freedom constant.

Software

The dream() method is available in the variancePartition17 package
(http://bioconductor.org/packages/variancePartition/) from Bioconductor version
≥ 3.7.195

Implementation

Precision weights are estimated using voom() in the limma package13,21. Linear mixed models are
estimated using lmer() from the lme4 package18. Estimating the residual degrees of freedom is
performed with either Satterthwaite approximation37 in the lmerTest package19 or the Kenward-Roger
approximation36 in the pbkrtest package20. Moderated t-statistics are computed using an extension200

of the eBayes() function in the limma package21. Parallel processing of thousands of genes on a
multi-core computer is performed with doParallel38 and foreach39. Visualization is performed with
ggplot240.

Simulations

The true expression values were simulated from a linear mixed model with two components: vari-205

ance across individuals and variance across two disease classes (i.e. cases versus controls). Multiple
samples from the same individual are always in the same disease class. Variance across individuals
(i.e. heritability) accounts for 40% of the expression variation. Expression values were simulated for
20,738 protein coding genes from GENCODE v19, and 500 genes were differentially expressed with
a fold change of of 3, corresponding to a log2 fold change of 1.58. Simulated read counts follow-210

ing a realistic error model were then generated using polyester v1.14.041. Approximately 30 million
total reads counts were generated for each sample. Simulations using a range of values for each of
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these parameters did not change the conclusions. Simulation and data analysis code is available at
https://github.com/GabrielHoffman/dream_analysis

Data analysis215

Data for Timothy syndrome26 was downloaded from GEO at GSE25542. Data for childhood onset
schizophrenia7 was downloaded from https://www.synapse.org/#!Synapse:syn9907463.
Post mortem brain RNA-seq data from Alzheimer’s and controls25 was downloaded from https:
//www.synapse.org/#!Synapse:syn3159438. Analysis was performed on individuals from
European ancestry that were assayed in each of 4 brain regions (Brodmann areas 10, 22, 36 and 4),220

had ApoE genotype data, had Braak stage information, and were either controls or definite AD pa-
tients (i.e. possible and probable cases were excluded). Differential expression analysis corrected for
batch, sex, RIN, rRNA rate, post mortem interval, mapping rate and ApoE genotype.

Enrichment analysis was performed with cameraPR in the limma package23. In order to avoid us-225

ing arbitrary cutoffs to identify differentially expressed genes, gene set enrichments were evaluated by
applying cameraPR to the differential expression t-statistics from each analysis.

Reproducible analysis code, figures, and statistics from differential expression and enrichment analyses
are available at https://github.com/GabrielHoffman/dream_analysis.230

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/432567doi: bioRxiv preprint 

https://github.com/GabrielHoffman/dream_analysis
https://www.synapse.org/#!Synapse:syn9907463
https://www.synapse.org/#!Synapse:syn3159438
https://www.synapse.org/#!Synapse:syn3159438
https://www.synapse.org/#!Synapse:syn3159438
https://github.com/GabrielHoffman/dream_analysis
https://doi.org/10.1101/432567
http://creativecommons.org/licenses/by-nc-nd/4.0/


References
[1] Aguet, F. et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213

(2017).

[2] Zhang, B. et al. Integrated systems approach identifies genetic nodes and networks in late-onset
Alzheimer’s disease. Cell 153, 707–20 (2013).235

[3] Van Der Wijst, M. G. et al. Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and
co-expression QTLs. Nature Genetics 50, 493–497 (2018).

[4] Watson, C. T. et al. Integrative transcriptomic analysis reveals key drivers of acute peanut allergic
reactions. Nature Communications 8, 1943 (2017).

[5] Breen, M. S. et al. Gene networks specific for innate immunity define post-traumatic stress240

disorder. Molecular Psychiatry 20, 1538–1545 (2015).

[6] Alasoo, K. et al. Shared genetic effects on chromatin and gene expression indicate a role for
enhancer priming in immune response. Nature Genetics 50, 1–8 (2018).

[7] Hoffman, G. E. et al. Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and
neurons are concordant with post-mortem adult brains. Nature Communications 8, 2225 (2017).245

[8] Carcamo-Orive, I. et al. Analysis of Transcriptional Variability in a Large Human iPSC Library
Reveals Genetic and Non-genetic Determinants of Heterogeneity. Cell Stem Cell 20, 518–532.e9
(2017).

[9] Adamo, A. et al. 7Q11.23 Dosage-Dependent Dysregulation in Human Pluripotent Stem Cells
Affects Transcriptional Programs in Disease-Relevant Lineages. Nature Genetics 47, 132–141250

(2015).

[10] Schwartzentruber, J. et al. Molecular and functional variation in iPSC-derived sensory neurons.
Nature Genetics 50, 54–61 (2018).

[11] Jostins, L., Pickrell, J. K., MacArthur, D. G. & Barrett, J. C. Misuse of hierarchical linear models
overstates the significance of a reported association between OXTR and prosociality. Proceedings255

of the National Academy of Sciences of the United States of America 109, E1048 (2012).

[12] Germain, P. L. & Testa, G. Taming Human Genetic Variability: Transcriptomic Meta-Analysis
Guides the Experimental Design and Interpretation of iPSC-Based Disease Modeling. Stem Cell
Reports 8, 1784–1796 (2017).

[13] Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. Voom: precision weights unlock linear model260

analysis tools for RNA-seq read counts. Genome Biology 15, R29 (2014).

[14] Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome Biol 15 (2014).

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/432567doi: bioRxiv preprint 

https://doi.org/10.1101/432567
http://creativecommons.org/licenses/by-nc-nd/4.0/


[15] Pimentel, H., Bray, N. L., Puente, S., Melsted, P. & Pachter, L. Differential analysis of RNA-seq
incorporating quantification uncertainty. Nature Methods 14, 687–690 (2017).265

[16] Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biology 17, 13
(2016).

[17] Hoffman, G. E. & Schadt, E. E. variancePartition: interpreting drivers of variation in complex
gene expression studies. BMC Bioinformatics 17, 483 (2016).

[18] Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4.270

Journal of Statistical Software 67 (2015).

[19] Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in Linear
Mixed Effects Models. Journal of Statistical Software 82 (2017).

[20] Halekoh, U. & Højsgaard, S. A Kenward-Roger Approximation and Parametric Bootstrap Meth-
ods for Tests in Linear Mixed Models - The R Package pbkrtest. Journal of Statistical Software275

59, 3–4 (2014).

[21] Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression
in microarray experiments. Statistical applications in genetics and molecular biology 3, Article3
(2004).

[22] Liu, R. et al. Why weight? Modelling sample and observational level variability improves power280

in RNA-seq analyses. Nucleic acids research 43, e97 (2015).

[23] Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and
microarray studies. Nucleic acids research 43, e47 (2015).

[24] Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for
Alzheimer’s disease. Nature Genetics 45, 1452–1458 (2013).285

[25] Wang, M. et al. The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic
data in Alzheimer’s disease. Scientific data 5, 180185 (2018).

[26] Pasca, S. P. et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with
Timothy syndrome. Nature medicine 17, 1657–62 (2011).

[27] Ahn, K. et al. High rate of disease-related copy number variations in childhood onset schizophre-290

nia. Molecular Psychiatry 19, 568–572 (2014).

[28] Ahn, K., An, S. S., Shugart, Y. Y. & Rapoport, J. L. Common polygenic variation and risk for
childhood-onset schizophrenia. Molecular Psychiatry 21, 94–96 (2016).

[29] Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: An efficient general purpose program for
assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).295

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/432567doi: bioRxiv preprint 

https://doi.org/10.1101/432567
http://creativecommons.org/licenses/by-nc-nd/4.0/


[30] Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quan-
tification. Nature Biotechnology 34, 525–527 (2016).

[31] Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and
bias-aware quantification of transcript expression. Nature Methods 14, 417–419 (2017).

[32] Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or300

without a reference genome. BMC Bioinformatics 12, 323 (2011).

[33] Pinheiro, J. & Bates, D. Mixed-effects models in S and S-Plus (Springer, New York, 2000).

[34] Laird, N. M. & Ware, J. H. Random-effects models for longitudinal data. Biometrics 38 (1982).

[35] Hoffman, G. E. Correcting for Population Structure and Kinship Using the Linear Mixed Model:
Theory and Extensions. PLoS ONE 8, e75707 (2013).305

[36] Kenward, M. G. & Roger, J. H. Small sample inference for fixed effects from restricted maximum
likelihood. Biometrics 53, 983–97 (1997).

[37] Giesbrecht, F. G. & Burns, J. C. Two-Stage Analysis Based on a Mixed Model: Large-Sample
Asymptotic Theory and Small-Sample Simulation Results. Biometrics 41, 477 (1985).

[38] Weston, S. doParallel: Foreach Parallel Adaptor for the ’parallel’ Package. R package version310

1.0.11 (2017).

[39] Weston, S. foreach: Provides Foreach Looping Construct for R. R package version 1.4.4. (2017).

[40] Wickham, H. Elegant Graphics for Data Analysis (Springer, New York, 2016).

[41] Frazee, A. C., Jaffe, A. E., Langmead, B. & Leek, J. T. Polyester: Simulating RNA-seq datasets
with differential transcript expression. Bioinformatics 31, 2778–2784 (2015).315

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/432567doi: bioRxiv preprint 

https://doi.org/10.1101/432567
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40 50

Individuals

F
a

ls
e

 p
o

s
iti

ve
 r

a
te

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40 50

Individuals

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40 50

Individuals

E

Single replicate (limma/voom)

Single replicate (DESeq2)

Full data, ignore corr (limma/voom)

Full data, ignore corr (DESeq2)

duplicateCorrelation (limma/voom)

dream

dream-KR

0

10

20

30

40

50

0 30 60 90 120

genes selected

fa
ls

e
 d

is
c
o

v
e

ri
e

s

0

0.25

0.50

0.75

1.00

0 0.25 0.50 0.75 1

Recall

P
re

c
is

io
n

False positive rate 

at p<0.05

0 0.05 0.10 0.15 0.200 0.1 0.2 0.3

AUPR

A B C D

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50

Individuals

A
U

P
R

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50

Individuals

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50

Individuals

replicates: 2 replicates: 3 replicates: 4

F

Figure 1: Performance on biologically realistic simulated data. A,B,C,D) Performance from 50
simulations of RNA-seq datasets of 8 individuals each with 3 replicates. A) False discoveries plotted against the
number of genes called differentially expressed by each method. B) Precision-recall curve showing performance
in identifying true differentially expressed genes. Dashed line indicates performance of a random classifier. C)
Area under the precision-recall (AUPR) curves from (B). Dashed line indicates AUPR of a random classifier.
D) False positive rate at p < 0.05 evaluated under a null model were no genes are differentially expressed
illustrates calibration of type I error from each method. As indicated by the dashed line, a well calibrated
method should give p-values < 0.05 for 5% of tests under a null model. E,F) Performance summary for
simulations with between 4 to 50 individuals with between 2 to 4 replicates. For each condition, 50 simulations
were performed for a total of 1800. E) False positive rate at p < 0.05 for simulations versus the number of
individuals and replicates. Black dashed line indicates target type I error rate of 0.05. F) AUPR for simulations
versus the number of individuals and replicates.
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Figure 2: Application to transcriptome data from neuropsychiatric disease. A) Gene set enrichment
FDR for genes associated with Braak stage. Results are shown for dream and duplicateCorrelation. Lines
with broad and narrow dashes indicate 5% and 1% FDR cutoff, respectively. B) Comparison of − log10 p-
values from applying dream and duplicateCorrelation to Braak stage. Each point is a gene, and is colored
by the fraction of expression variation explained by variance across individuals. Black solid line indicates a
slope of 1. Dashed line indicates the best fit line for the 20% of genes with the highest (red) and lowest
(blue) expression variation explained by variance across individuals. C) Expression of TUBB2B stratified by
individual and colored by Braak stage so that each box represents the expression in the multiple samples from
a given individual. Bar plot of variance decomposition shows that 68.3% of variance is explained by expression
variance across individuals. Since this value is much larger than the genome-wide mean, duplicateCorrelation
under-corrects for the repeated measures. D) Gene set enrichment FDR for genes associated with Timothy
syndrome compared to controls in four cell types or conditions.
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Supplementary Figure 1: False discovery rates for multiple simulation conditions. False discoveries
plotted against the number of genes called differentially expressed by each method. Results are shown for
between 4 and 50 individuals (rows) and 2 to 4 replicates (columns). For each combination, 50 simulated
datasets were analyzed.
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Supplementary Figure 2: Precision-recall curves for multiple simulation conditions. Plots shows
performance in identifying true differentially expressed genes. Dashed lined indicates performance of a random
classifier. Results are shown for between 4 and 50 individuals (rows) and 2 to 4 replicates (columns). For each
combination, 50 simulated datasets were analyzed.
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Supplementary Figure 4: False positive rate for multiple simulation conditions. False positive rate
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Supplementary Figure 5: Number of genes passing FDR cutoff of 5% in a null simulation. False
discoveries plotted against number of individuals for simulations with between 4 to 50 individuals with between
2 to 4 replicates from Figure 1. The values shown are averaged across 50 simulations for each condition. The
analysis considered only genes that were not differentially expressed in the simulation, so that there are no
true positive genes and all positive genes are false positives.
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Supplementary Figure 6: Run time comparison. Run time for was evaluated on the simulated datasets
using 12 threads on a 12 core Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz. Each combination of individuals,
replicates, methods and threads was evaluated on 2 simulated datasets. Lines show loess smoothing. The
formula used was: ∼ Disease + (1|Individual).
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Supplementary Figure 8: Gene set enrichment FDR for top 20 genesets from differential expres-
sion analysis of Timothy Syndrome. Enrichment FDRs were computed using t-statistics from dream and
duplicateCorrelation analysis of A) neurons at rest, B) iPSC, C) neurospheres, and D) neurons in 67 mM
KCl for 9 h.
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Supplementary Figure 9: Application to transcriptome data from childhood onset schizophrenia.
A) Comparison of − log10 p-values from applying dream and duplicateCorrelation to disease status in neurons.
Each point is a gene, and is colored by the fraction of expression variation explained by variance across
individuals. Black solid line indicates a slope of 1. Dashed line indicates the best fit line for the 20% of genes
with the highest (red) and lowest (blue) expression variation explained by variance across individuals. B) Gene
set enrichment FDR for genes associated with disease status in iPS-derived neurons and neural progenitor cells.
Results are shown for dream and duplicateCorrelation. Lines with broad and narrow dashes indicate 5% and
1% FDR cutoff, respectively.
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Supplementary Figure 10: Gene set enrichment FDR for top 30 genesets from differential ex-
pression analysis of childhood onset schizophrenia. Enrichment FDRs were computed using t-statistics
from dream and duplicateCorrelation analysis of iPSC-derived A) neural progenitor cells (NPCs) and B)
neurons.

23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/432567doi: bioRxiv preprint 

https://doi.org/10.1101/432567
http://creativecommons.org/licenses/by-nc-nd/4.0/

