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Abstract
We sequenced the Yoruban NA19240 genome on the Oxford Nanopore PromethION
for benchmarking and evaluation of recently published aligners and structural variant
calling tools. In this work, we determined the precision and recall, present high
confidence and high sensitivity call sets of variants and discuss optimal parameters.
The aligner Minimap2 and structural variant caller Sniffles are both the most accurate
and the most computationally efficient tools in our study. We describe our scalable
workflow for identification, annotation, and characterization of tens of thousands of
structural variants from long read genome sequencing of an individual or population.
By discussing the results of this genome we provide an approximation of what can be
expected in future long read sequencing studies aiming for structural variant
identification.
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Introduction
Structural variants (SVs) are defined as regions of DNA larger than 50 bp showing a
change in copy number or location in the genome, including copy number variants
(CNVs, deletions and duplications), insertions, inversions, translocations, mobile
element insertions, expansion of repetitive sequences and complex combinations of
the aforementioned (Escaramís et al. 2015; Sudmant et al. 2015). SVs account for a
higher number of variable nucleotides between human genomes, even though single
nucleotide variants (SNVs) are far more numerous (Conrad et al. 2010). However, the
majority of SVs are poorly assayed using currently dominant short read sequencing
technologies but can be detected using long read sequencing technologies from
Pacific Biosciences and Oxford Nanopore Technologies (ONT) (Chaisson et al. 2015,
2018). Long read sequencing technologies have a lower raw accuracy of
approximately 85% but have the advantage of a better mappability in repetitive
regions, further extending the part of the genome in which variation can be called
reliably (Li and Freudenberg 2014).

Sequencing DNA fragments using a protein nanopore is a relatively old concept,
which got commercialized by ONT with the release of the MinION sequencer five
years ago (Deamer et al. 2016). A MinION flow cell has 512 sensors collecting
measurements from 2048 pores. This device's minimal initial investment, long reads
and rapid results has enabled many applications for smaller genomes (Loman et al.
2015; Quick et al. 2015; Jansen et al. 2017; Bainomugisa et al. 2018; Miller et al.
2018). Recent runs routinely reach 8 Gbase and currently up to 30 Gbase, with a big
in-field variability and incremental improvements over the years (Schalamun et al.
2018). Applications for human genomics could only be achieved by combining
multiple flow cells, which is cumbersome and costly. Early adopters investigated
structural variants in two cancer genomes combining data from 135 flow cells (Cretu
Stancu et al. 2017), and a consortium of MinION users sequenced and released data
from the human reference sample NA12878 generated on 39 flow cells reaching 91.2
Gbase or ~30x coverage (Jain et al. 2018).

Routine human genome sequencing applications have become possible on the
recently commercially available PromethION sequencer. A PromethION flow cell has
3000 sensors and 12000 pores, which generates on average 60 Gbase of data in our
hands (unpublished results), allowing for the sequencing of a 20x covered human
genome per flow cell. At the moment up to 24 flow cells can be run simultaneously on
the machine, with a future upgrade to 48 planned. Here, we present the
characteristics of such PromethION runs, and a bioinformatic workflow for
identification and characterization of structural variants. Finally, we provide a
detailed description of the Yoruba NA19240 reference sample compared with publicly
available variant data and discuss implications for future structural variant detection
projects from long read sequencing.
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Results
Human genome sequencing on PromethION
We generated a 59x median genome coverage on PromethION by combining data
from five flow cells. The run metrics and ENA accession IDs are summarized in Table 1
and Supplementary Figure S2. The longest read we obtained was 177 kb on
PromethION and 219 kb on MinION. Overall, our results are suggestive of an inverse
relationship between yield and read lengths, as higher yields were obtained for
libraries which included shearing to 20 kb fragments.

Table 1: library characteristics and accession ids

Library
identifier

Yield
[Gbase]

Number of reads
[millions]

Median read
length [kb]

N50
[kb]

ENA
accession id

P1-N 48.3 3.5 12.4 20.0 ERR2631600

P2-S 58.4 4.9 11.9 14.1 ERR2631601

P3-N 22.2 1.4 13.7 29.1 ERR2631602

P4-N 19.6 1.2 13.8 28.4 ERR2631603

P5-S 59.1 6.2 9.8 11.8 ERR2631604

M1-N 4.7 0.4 11.6 19.6 ERR2683660

M2-N 7.7 0.3 20.4 32.8 ERR2683661

N: non-sheared/native; S: sheared before library preparation
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Comparing MinION and PromethION
The obtained read lengths were similar between matched library preps sequenced on
MinION and PromethION (respectively P1-N and M1-N, P3-N and M2-N) (Figure 1 A, B).
We observed a higher average quality score and corresponding percent identity after
alignment to the human reference genome GRCh38 for the MinION data (Figure 1 C,
D).

A B

C D

Figure 1: Comparison of PromethION and MinION libraries.
A: read lengths; B: log-transformed read lengths; C: per read average base call quality
scores; D: percent identity after alignment to the reference genome
P: PromethION; M: MinION; N: non-sheared/native; S: sheared before library preparation
Plots were made using NanoPack (De Coster et al. 2018).
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Comparing aligners
The characteristics of the alignments using ngmlr (Sedlazeck et al. 2018), LAST
(Kiełbasa et al. 2011) and two parameter settings of minimap2 (H. Li 2018) are shown
in Table 2 and Figure 2 and S3. LAST generates many split alignments leading to
more, shorter aligned reads. ngmlr favors aligning short exact fragments for a subset
of the reads (Figure 2). Percent identity comparisons are roughly equivalent, with a
slightly lower median for LAST. Out of the three aligners compared minimap2 is the
fastest and LAST by far the slowest. Median alignment coverage is approximately
equal, with the highest coverage by ngmlr and the lowest by LAST. 90% of the
genome is covered at 40x (Figure S3).

Table 2: metrics of aligners

Aligner Gigabases
aligned

Median
alignment
length

Median
genome
coverage

Runtime*
[seconds / 10 000
reads]

ngmlr 178.3 11573 59 306

LAST 169.2 1240 56 4470

minimap2 187.1 11165 58 46

minimap2-last-like 179.5 7506 57 59

* Average of three measurements on a subset of the data, aligned using 12 threads.

A B

Figure 2: Comparison of aligners
A: log-transformed aligned read lengths; B: read percent identity compared to the reference
genome. Plots were made using NanoPack (De Coster et al. 2018).
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Structural variant calling
Structural variants were called using Sniffles (Sedlazeck et al. 2018) and NanoSV
(Cretu Stancu et al. 2017), and inversions additionally with npInv (Shao et al. 2018).
The number of variants identified and the runtime per dataset are summarized in
Table 3. A detailed overview of the number of variants split by variant type can be
found in Supplementary Table 2. The truth set of SVs from NA19240 contains 29436
variants, of which 10607 deletions, 16337 insertions and 2503 variants of other types,
such as repeat expansions. NanoSV consistently identifies more variants, with a
strikingly high number after LAST alignment. LAST alignment turned out to be
incompatible with calling variants using Sniffles and npInv.

Sniffles is by far the fastest of the evaluated SV callers. In contrast, we stopped
NanoSV after one month when using the full dataset, which also required > 100
Gbytes of RAM per sample, presumably since it is not yet adapted to this volume of
data. To circumvent this issue in our workflow alignments are split by chromosomes
and processed in parallel.

Table 3: metrics of SV callers

Aligner SV caller Number of
variants

Relative run
time*

minimap2

Sniffles 28305 1.18

NanoSV 64761 94.07

npInv 167 2.04

minimap2-last-like

Sniffles 15821 1

NanoSV 38182 80.36

npInv 419 2.71

ngmlr

Sniffles 29159 1.02

NanoSV 47431 60.25

npInv 461 2.27

LAST NanoSV 123729 257.98

*Relatively to the fastest, tested using 12 threads, on a subset of
the data using an average of three measurements
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Precision-recall and combined SV sets
We evaluated the precision and recall of identified SVs for combinations of the
described aligners and SV callers (Figure 3 and Supplementary Table 3). All
combinations perform approximately in the same range, with the exception of
Sniffles after minimap2 alignment with last-like parameters and NanoSV after LAST
alignment, which respectively showed a mediocre recall and precision. Of note,
Sniffles performed at a higher precision with similar accuracy after minimap2
alignment compared with ngmlr alignment. For this reason, further parameter
evaluations will be performed using the combination of Sniffles after minimap2
alignment. For the ngmlr alignment NanoSV performed better than Sniffles. There is
also a considerable number of SV calls overlapping between Sniffles and NanoSV
after alignment using minimap2, which are not part of the truth set (Supplementary
Figure S4). A similar analysis using manta (Chen et al. 2016) and lumpy (Layer et al.
2014) after bwa mem alignment (H. Li 2013) of Illumina reads was performed. Manta
performed the best, with a precision of 55% and recall of 28% with 15122 identified
SVs, while lumpy only reached 18% precision and 4% recall with 6100 identified SVs.

Figure 3: Precision-recall comparison
Aligners are tagged with symbols, variant callers are tagged with colors.

We separately evaluated inversions called by Sniffles, NanoSV and the specifically
tailored tool npInv. As breakpoints of inversions are typically associated with long
repetitive sequences, leading to inaccurate alignments, we allowed a larger distance
between pairs of breakpoints up to 5kb to be considered concordant. The accuracy is
generally poor and the best results were obtained using npInv, with precision
between 17.8% and 33.8% and recall between 19.9% and 25.4% (Supplementary
Table 3).
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High-confidence and high sensitivity variant sets based on respectively the
intersection and union of Sniffles and NanoSV were generated for the aligners used in
this comparison. Their precision and recall compared with the truth set are shown in
Figure 4. No combined call sets were made for LAST alignment since no variants can
be called using Sniffles. Alignments performed with minimap2 consistently
outperform those with ngmlr in both sensitivity and confidence. A remarkable outlier
was again alignment with last-like parameters for minimap2, which showed a high
precision but low recall.

Figure 4: Precision-recall comparison of combined call sets
Aligners are tagged with symbols, variant callers and combined sets are tagged with
colors.

We also evaluated the accuracy of the zygosity determination of Sniffles and NanoSV
after minimap2 alignment (Table 4), showing that these are often inaccurate. For
NanoSV these results did not change notably when limiting to those SVs for which
divergent sequencing depth was available to support the variant type classification
(data not shown). When evaluating precision-recall separately for either insertions or
deletions we observed no remarkable difference for NanoSV, but it turned out that
Sniffles has a lower precision and higher recall for a loss of sequence and conversely
for gains of sequence a higher precision but lower recall (Supplementary Table 3). As
such insertions turned out to be more often correct than deletions, while
proportionally more deletions from the truth set were identified.
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Table 4: Accuracy of zygosity
Determined after minimap2 alignment.

Sniffles NanoSV

nocall het hom nocall het hom

Truth

nocall 0 3295 5828 236 11972 1433

het 4535 4151 5837 4064 9807 652

hom 4544 321 2947 4894 2464 3454

A parameter of Sniffles determines the minimum number of reads supporting an SV
before it gets reported, with 10 as the default. Testing multiple values for this
demonstrated a clear trade-off between precision and recall, as shown in Figure 5A.
When allowing less support for a candidate SV the recall was the highest, but
precision was low and vice versa. An appropriate middle ground appeared to be
around ¼ or ⅓ of the median genome coverage.

By randomly down-sampling the alignment from minimap2 to various fractions of the
original dataset we evaluated the influence of the median genome coverage on the
precision and recall (Figure 5B). Sniffles was used with default parameters
(minimal_support = 10). We concluded that increasing the coverage above 40x did
not substantially increase the recall. The reduction in precision above that value
originated in a sub-optimal selection of the minimal support parameter as described
above.

A B

Figure 5: precision and recall with parameter variation
A: Specifying minimally supporting reads parameter in Sniffles after minimap2
alignment
B: influence of the median genome coverage. The minimap2 alignment was
down-sampled to various fractions. Both sets use Sniffles SV calling.
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We also evaluated the length of SVs and their accuracy (Figure 6 and Supplementary
Figure S5). A substantial proportion of variants <100 bp, the largest group, turned out
to be either missed or false positive by both Sniffles and NanoSV. Most of the variants
correctly identified by Manta were <300 bp and compared to the long read SV callers
more variants were missed in each length category (Supplementary Figure S6).

Figure 6: SV validation status per length
SVs identified using Sniffles after minimap2 alignment, compared to truth set
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Description of detected variants
Sniffles after minimap2 alignment detected 28305 SVs. Of those 11822 overlapped
with genes, of which 695 were in coding sequences. 3780 variants overlap with
segmental duplications. The profile of lengths of SVs in the truth set and after SV
calling with Sniffles and NanoSV (Figure 7 and Supplementary Figure S5) were
comparable, showing a peak around 300 bp corresponding to SVs involving Alu
elements and around 6 kb corresponding to L1 elements, an observation also
reported in other studies (Huddleston et al. 2017; Cretu Stancu et al. 2017).

Figure 7: length profile of SV calls
SV calls made by Sniffles after minimap2 alignment. The upper panel has SVs up to 2 kb, the
lower up to 20 kb with a log-transformed number of variants.
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Discussion
For benchmarking and characterization we sequenced a well-characterized reference
genome on the Oxford Nanopore PromethION. We observed a substantial variability
in the yield of the PromethION which can partially be attributed to using sheared or
unsheared DNA and differences in concentration of the final library. Further
optimizations of the library preparation will point to the optimal balance between
yield and read length. While much longer reads have been reported by other users on
MinION (Payne et al. 2018), this was not our primary aim. Based on the higher quality
scores and percent identity it seems that he MinION system is currently better
understood, yielding slightly more accurate results. However, we assume similar
improvements can be made to the PromethION base calling models when more data
becomes available and the system has matured to the level of the MinION. In fact, an
updated version of the basecaller is available, modestly improving the
nucleotide-level accuracy. However, we do not anticipate a large impact on SV
detection. Further improvements in base call quality might increase the accuracy of
breakpoint detection.

In this work, we evaluated the precision (positive predictive value) and recall
(sensitivity) for multiple long read aligners and SV callers. While the truth set in our
comparison was based on multiple integrated technologies (Chaisson et al. 2018), we
cannot exclude that any variants were missed. However, with the combination of
short read, long reads, linked reads and strand-seq both shorter and longer SVs, and
more challenging inversions have been characterized. For this application, we
anticipated this set was sufficiently complete. Follow-up of high-confidence, but
presumably false positive variants using orthogonal methods could be valuable.

Ngmlr uses a convex gap cost allowing alignment across SVs, while simultaneously
accounting for small indels, the dominant errors in long read sequencing. Alignments
are split in the case of larger SVs. This aligner is co-developed with the SV caller
Sniffles (Sedlazeck et al. 2018). Minimap2 is an accurate and ultra-fast aligner for
reads from (paired) short and long DNA sequencing, long RNA sequencing or
assembled contigs and genomes. SVs between reference and individual are taken
into account using a concave gap cost (Li 2018). LAST was not developed recently but
was suggested to be the most accurate for e.g. NanoSV (Cretu Stancu et al. 2017).
LAST is developed for sensitive comparison of long sequences and is based on BLAST
but reduces alignment time by eliminating seeds in repetitive elements (Kiełbasa et
al. 2011). However, we demonstrated that it is clearly not optimal for this volume of
data and takes too long to be used on a larger scale.

Sniffles calls indels, duplications, inversions, translocations, and nested SVs and
takes read support, SV size and breakpoint consistency into account (Sedlazeck et al.
2018). Unexpectedly, we observed that Sniffles, while developed for ngmlr alignment,
performed better after minimap2 alignment, yielding a higher precision at a similar
recall compared to ngmlr. Even higher precision was obtained using the 'last-like'
parameter settings of minimap2, but this came at a considerable trade-off of lower
recall and is therefore not recommended. NanoSV uses clustering of split and gapped
alignments for identification of breakpoint junctions, (Cretu Stancu et al. 2017). While
Sniffles is very fast, NanoSV requires further software optimizations to handle these
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large volumes of data and limit runtime and memory usage. We had to execute
NanoSV per chromosome in parallel to keep the runtime reasonable, with the
limitation that interchromosomal variants cannot be detected. However, for our
application of germline structural variants in a healthy individual, we expected these
to be less relevant. While LAST is the recommended aligner by the authors of NanoSV
the number of variants identified was excessive, with a high number of false positives.
NanoSV, too, obtained the best results after minimap2 alignment. In our comparison
with SVs called from short read sequencing data using Manta and Lumpy a clear
advantage for long reads was demonstrated, with substantially higher recall values.
However, our evaluation of the accuracy of the zygosity of the identified SVs showed
that these are highly unreliable, owing to the complexity of a diploid genome. We also
observed that both SV callers performed poorly in the largest group of variants, those
with a length below 100 bp. Thousands of variants in this group were either missed
(not identified) or false positively called as SV. Improvements in this size range, or
more specialized SV callers, are definitely welcome here.

Inversions are generally challenging or impossible to identify, especially using
traditional methods such as comparative genome hybridization, PCR-based
approaches or short read sequencing, because those variants are copy-neutral with
breakpoints often in (long) highly repetitive sequences. For a comprehensive
detection Strand-Seq is currently the only applicable protocol (Chaisson et al. 2018).
Long read sequencing could offer an advantage, as these might provide more
accurate alignments in repetitive sequences. However, we observe here a generally
low precision and recall for the callers identified, with precision and recall between
around 15 and 30%, with much lower precision for NanoSV. We hypothesize that even
longer read lengths might be beneficial here, together with algorithmic
improvements.

Due to its speed, we could evaluate relevant parameters for Sniffles, and concluded
that adding more than 40x coverage did contribute little to the identification of novel
variants. Presumably longer reads might reveal more hidden variation in highly
repetitive sequences. We suggest using a minimal supporting number of reads of
one-fourth to one-third of the median genome coverage to optimize precision and
recall. Ultimately, setting stringency filters is a trade-off between sensitivity and
specificity, for which the applications at hand determine if it's appropriate to tolerate
false positives, or rather accept that some genuine calls can be missed. It is worth
noting that Sniffles can be used in a two-pass mode, in which variants identified in the
first stage can be used to force genotyping in a second stage. As such this shifts the
burden of 'discovery' of SVs to 'genotyping' known SVs, potentially increasing the
sensitivity in larger cohorts and at lower coverage.

After the identification of SVs, we also annotated these with information about
overlapping genes, segmental duplications and known variants in DGV. Obviously
overlapping genes are relevant to judge the potential pathogenicity of the identified
variants, while the impact of SVs in non-coding regions is currently less well
understood. The annotation of SVs localized in a segmental duplication plays a double
role, as these regions are both known to be a hotspot for SV formation, but
simultaneously are troublesome for alignments and as such can give rise to false
positive variant calls (Stankiewicz et al. 2003; Sharp et al. 2005; Bailey and Eichler
2006).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/434118doi: bioRxiv preprint 

https://doi.org/10.1101/434118
http://creativecommons.org/licenses/by/4.0/


14

Here we provided an estimate of what can be expected in future long read whole
genome sequencing data. While SVs can contribute to disease, it was clear that, just
as with the better understood SNVs, the majority will be mostly harmless. To
distinguish pathogenic SVs from polymorphisms we will need comprehensive
catalogs across multiple populations.

Methods
Sample preparation
The lymphoblastic cell line (LCL) GM19240 was ordered from the Coriell Cell
Repository and cultured as specified by the Coriell Institute for Medical Research
(Camden, NJ USA). DNA from GM19240 (NA19240) was extracted using both manual
QIAmp DNA Blood mini kit (Qiagen, USA) and a robotic extraction platform
(Magtration system 8LX, PSS, Japan), as specified by the suppliers. As specified in the
QIAamp protocol RNase A treatment was performed during the extraction, while
robotically extracted DNA was treated additionally with RNase A (RNase A, 10mg/ml,
using 1µl RNase A per 100µl template, Thermo Fisher Scientific, USA) to remove RNA.

Extractions of 5 million LCL cells, resuspended in 200 µl of PBS, as well as extraction
with 8LX (PSS, JP), yielded between 15 to 17 µg of gDNA per extraction, with average
A260/280 of 1.86, A260/230 of 2.50 and average gDNA size between 38 and 41 kb.
Information on the five aliquots used for library preparation is supplied in the
Supplementary Table 1. The fifth aliquot (P5) was a pool from DNA of automated PSS
and manual QIAmp extraction.

As we wanted to evaluate the efficiency of different library preparations, two out of
five aliquots were sheared using Megaruptor (Diagenode, BE) to an average size of 20
kb and three aliquots were non-fragmented. All aliquots were purified and size
selected using a high pass protocol and the S1 external marker on the BluePippin (on
0.75% agarose gel, loading 5 µg sample per lane) (Sage Science, MA, USA). The size
selection cutoff differed between fragmented and unfragmented samples
(Supplementary Table 1). The average recovery of the size-selected DNA aliquot was
between 40-70% of the initial input. After size selection, all aliquots were purified
using AMPure XP beads (Beckman Coulter, USA) using ratio 1:1 (v:v) with DNA mass
recoveries between 88-99%. All fragment analyses were performed on Fragment
Analyzer with DNF-464 High Sensitivity Large fragment 50 kb kit, as specified by the
manufacturer (Advanced Analytical, Agilent, USA).
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Library preparation
The recommended protocol for library preparation on PromethION was followed with
minor adaptations. In short, potential nicks in DNA and DNA ends were repaired in a
combined step using NEBNext FFPE DNA Repair Mix and NEBNext Ultra II ER/dAT
Module (New England Biolabs, USA) followed by AMPure bead purification and ligation
of sequencing adaptors onto prepared ends. Four libraries were constructed using 1D
DNA Ligation Sequencing kit SQK-LSK109 following the PromethION protocol
(GDLE_9056_v109_rev E_02Feb2018) and one (P4) was made using Ligation
Sequencing kit SQK-LSK108 following the SQK-LSK108- PromethION protocol
(GDLE_9002_V108_revO_28Mar2018) since LSK109 consumables were depleted at
that time. The main differences between SQK-LSK109 and SQK-LSK108 protocols are
increased ligation efficiency, a different clean-up step, the combined FFPE repair and
end-repair. These modifications, making sequencing of long reads more efficient,
were used for both protocols.

Additionally to consumables supplied with the sequencing kit, several steps were
performed using NEB enzymes (NEBNext FFPE DNA Repair Mix, NEBNext Ultra II
ER/dAT Module and NEBNext Quick Ligation Module, all New England Biolabs, USA) as
recommended in 1D genomic ligation protocols (SQK-LSK 109 and SQK-LSK108).
Overall, ONT protocols were followed, with slight increases in incubation times during
DNA template end-preparation, purification, and final elution. The final mass loaded
on the flow cells was determined based on the molarity, depended on average
fragment size and was chosen based on our prior experience and communication
with specialists at Oxford Nanopore Technologies.

Two aliquots of the unfragmented NA19240 were used for library preparation and
sequencing on MinION using R9.4.1 flow cells as a quality control for library
preparation (Oxford Nanopore Technologies, UK) (Supplementary Table 1). The
MinION libraries M1-N and M2-N were prepared identically to PromethION libraries
'P1-N' and 'P3-N', respectively.

Data processing
Base calling of the raw reads from MinION and PromethION was performed using the
Oxford Nanopore basecaller Guppy (v1.4.0) on the PromethION compute device. Run
metrics were calculated, summarized and compared to each other using NanoPack
(De Coster et al. 2018). Reads were aligned to GRCh38 from NCBI, without alternative
contigs and including a decoy chromosome for the Epstein–Barr virus (H. Li 2017)1.
Reads were aligned with ngmlr (v0.2.6) (Sedlazeck et al. 2018), LAST (v876) (Kiełbasa

1 ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs
_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz
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et al. 2011) and two parameter settings of minimap2 (v2.11-r797), of which one was
supposed to mimic alignments by LAST (H. Li 2018) (see Supplementary data for
commands and parameters). The substitution matrix for alignment with LAST was
determined using LAST-TRAIN with a subset of 5000 reads (Hamada et al. 2017).
Coverage was assessed using mosdepth (Pedersen and Quinlan 2018). Processes
were parallelized using gnu parallel (Tange 2011).

Comparison of structural variant calls
Structural variant calling was performed using Sniffles (v1.0.8) (Sedlazeck et al. 2018)
and NanoSV (v1.2.0) (Cretu Stancu et al. 2017) with default parameters. Inversions
were called with the specific tool npInv (Shao et al. 2018). Alignment with LAST
turned out to be incompatible with Sniffles and npInv. We were unsuccessful at using
Picky (Gong et al. 2018) and reported several issues to the authors, which remained
unanswered and unresolved. For reference, we also evaluated the short read SV
callers Manta (Chen et al. 2016) and Lumpy (Layer et al. 2014) after bwa mem
alignment (H. Li 2013) from Illumina data generated by Chaisson et al (Chaisson et al.
2018).

As a gold standard truth set of SVs in NA19240, we used haplotype-resolved SVs
which were identified by combining PacBio long read sequencing, Bionano Genomics
optical mapping, Strand-Seq, 10x genomics, Illumina synthetic long reads, Hi-C and
Illumina sequencing libraries (Chaisson et al. 2018). This set of variants will be called
the "truth set" from here on. It is worthy of note that both Sniffles and NanoSV report
SVs from at least 30 bp, while the formal definition and the truth set use 50 bp as the
lower limit. Therefore all accuracy calculations are performed for variants ≥ 50 bp.
Obtained variant call sets were combined SURVIVOR (v1.0.2) (Jeffares et al. 2017)
and precision-recall metrics were calculated after parsing with cyvcf2 (Pedersen and
Quinlan 2017) and plotted using matplotlib (Hunter 2007). For combining SVs a
distance of 500 bp between pairs of start and end coordinates was allowed to take
inaccurate breakpoint inferences into account. Furthermore, we normalized
duplications to insertions since not all variant callers identify the same types of
variants.

By default, Sniffles requires 10 supporting reads to call a structural variant. We also
tested alternative minimum numbers of supporting reads to see the effect on
accuracy. In addition, we performed a downsampling experiment of the alignment to
see how it affects the performance of Sniffles. No parameter variation experiments
were performed for NanoSV due to its long running times. We also evaluated the
accuracy of the zygosity determination and investigated the difference in accuracy
between "gain" and "loss" CNVs. All scripts for evaluation and plotting of our results
are available on https://github.com/wdecoster/nano-snakemake/
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Structural variant analysis workflow
We generated a workflow for structural variant analysis based on the snakemake
engine (Koster and Rahmann 2012), combining minimap2 (H. Li 2018) and ngmlr
(Sedlazeck et al. 2018) for alignment followed by sorting and indexing bam files using
samtools (H. Li et al. 2009) and structural variant calling using Sniffles (Sedlazeck et
al. 2018) and NanoSV (Cretu Stancu et al. 2017). Per aligner, we took the union of the
SV calls from Sniffles and NanoSV to form a high sensitivity set, and the intersection
of both callers to form a high confidence set. Resulting variant files are processed
using vcftools and bcftools (H. Li 2011; Danecek et al. 2011), combined using
SURVIVOR (Jeffares et al. 2017) and annotated with information of segmental
duplications, overlapping genes and known variants in the Database of Genomic
Variants (DGV) (MacDonald et al. 2014) using vcfanno (Pedersen, Layer, and Quinlan
2016). Read depth is calculated using Mosdepth (Pedersen and Quinlan 2018). Plots
were generated using Python scripts with the modules matplotlib (Hunter 2007),
pandas (McKinney 2011), seaborn (Waskom et al. 2017) and cyvcf2 (Pedersen and
Quinlan 2017). The snakemake workflow is available on
https://github.com/wdecoster/nano-snakemake/. A graphical representation of the
workflow can be found in Supplementary figure S1.
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Supplementary data
Commands used for alignment and SV calling
Alignment
ngmlr
zcat *.fastq.gz | ngmlr --presets ont -t {threads} -r {genome} | samtools sort -@ {threads} -o
{output} -

minimap2
minimap2 --MD -a -t {threads} {genome} *.fastq.gz | samtools sort -@{threads} -o {output}

minimap2-last-like
minimap2 --no-long-join -r50 --MD -a -t {threads} {genome} *.fastq.gz | samtools sort -@
{threads} -o {output} -

LAST
Substitution matrix was obtained from LAST-train, parallelizing alignment was done
using gnu parallel. Obtained bams are merged using samtools merge.
lastal -P12 -Q1 -p <(tail -n 5 last-train-params.txt) lastdb_GRCh38 reads.fastq.gz | \
last-split | \
python2.7 maf-convert_py2.py -f genome.fna.dict sam /dev/stdin | \
samtools sort -o ${OUT}/{/.}.bam

SV calling
Sniffles
Sniffles --mapped_reads {alignment} --vcf {output-calls} --threads {threads}
Sniffles --mapped_reads {alignment} --vcf {output-genotypes} --threads {threads} --Ivcf
{output-calls}

NanoSV
NanoSV --bed {exons.bed} --threads {threads} --sambamba samtools {input.bam} -o
{output}

npInv
java -jar npInv1.21.jar --input {alignment.bam} --output {output.vcf}
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Supplementary tables
Supplementary table 1: Library prep metrics Ligation Sequencing
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P1 PSS 8LX 38.4 NA >10 1.82 2.32 LSK109 7179 8.46 38.0 360.3 5.9 250

P2 QIAamp 40.6 20 kb >8 1.85 2.43 LSK109 7339 2.38 18.7 193.6 0.8 69.2

P3 QIAamp 40.6 NA >10 1.85 2.45 LSK109 4224* 2.24 41.9 109.2 0.6 23.3

P4 QIAamp 40.6 NA >10 1.86 2.32 LSK108 7019 3.6 38.9 129.9 1 41.9

P5 pool 39.5 20 kb >6 1.87 2.43 LSK109 7154 4.3 15.8 374.6 1.2 123.2

M1 QIAamp 40.6 NA >10 1.82 2.32 LSK109 899 7.15 33.6 289 3 144.5

M2 QIAamp 40.6 NA >10 1.82 2.52 LSK109 1249 1.4 0.29 11.7

Extraction is specifying the DNA extraction method (sample P5 is a pool of both); size specifies average DNA smear size on
Fragment Analyzer in kb after extraction (Advanced Analytical, Agilent, USA); Shearing specifies size to which sample was
fragmentated using Megaruptor if applicable (Diagenode, BE); Size cutoff specifies the lower limit used during BluePippin
electrophoresis; 260/280 and 260/230 specify the purity of the aliquots after BluePippin size selection and AMPure XP final bead
purification; Active pores specifies the number of active pores detected by mux-scan after loading the library; Mass lib prep
specifies mass of DNA used at the start of library prep; size DNA specifies average size of the fragments used in the ligation step,
measured with Fragment Analyzer (Advanced Analytical, Agilent, USA); Mol DNA for ligation specifies amount of femto-moles used
for each ligation reaction; Mass. specifies mass of each library loaded onto PromethION flow-cell; Mol seq. specifies molarity of
library loaded on flow cell in fmol; *While loading a library onto PromethION flow cell an air bubble was introduced in one quadrant,
causing decreased active pore numbers prior to sequencing.
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Supplementary table 2: number of variants identified per
type, per dataset

Variant type
minimap2 minimap2-last-like LAST ngmlr

Sniffles NanoSV Sniffles NanoSV NanoSV Sniffles NanoSV

Insertion 12199 36645 4565 16687 37518 10109 21280

Deletion 15296 21684 8513 8082 30630 17502 20107

Duplication 549 625 16 4079 11325 33 476

Undetermined - 5807 - 9334 44256 - 5568

Inversion 245 - 2639 - - 1421 -

Inversion/
duplication

3 - 82 - - 70 -

Duplication/
insertion

5 - 4 - - 12 -

Deletion/
Inversion

8 - 2 - - 12 -
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Supplementary table 3: precision and recall
Precision and recall of SVs as identified per aligner and variant caller, compared with the
truth set (Chaisson et al. 2018)

Data Aligner Call set Filter Precision Recall

PromethION

ngmlr

high confidence - 74.6 55.8
high sensitivity - 48.9 66.6

NanoSV - 57 61.6
inversions 0.8 26.2

Sniffles - 58.5 64
inversions 14.3 27.9

npInv inversions 17.8 22.1

minimap2

high confidence - 76.1 59.1
high sensitivity - 51 70.5

NanoSV

- 55.9 67
loss 64.6 67.1
gain 63 66

inversions 0.9 26.2

Sniffles

- 64.6 65
loss 56.2 70.0
gain 80.5 60.8

inversions 15.2 23.0
npInv inversions 33.8 19.9

minimap2-last-like

high confidence - 84.2 31.5
high sensitivity - 45.9 49.4

NanoSV - 50.2 49.2
inversions 0.6 29.5

Sniffles - 67.2 37.3
inversions 6.4 24.6

npInv inversions 20.8 25.4

LAST NanoSV - 24.3 61.8
inversions 0.2 32.8

Illumina bwa mem manta - 55 28
bwa mem lumpy - 18 4
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Supplementary figures

Supplementary Figure S1: Graphical representation of a
workflow
Snakemake rule graph visualized using Graphviz, for minimap2 alignment
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Supplementary figure S2: throughput in gigabases
per library
P: PromethION; M: MinION;
N: non-sheared/native; S: sheared before library preparation
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Supplementary figure S3: Read depth distribution
Read depth calculated using mosdepth for NA19240 PromethION datasets after alignment
with LAST, mimimap2 with two parameter sets and ngmlr

Supplementary Figure S4: Venn diagram
of SV calls after minimap2 alignment
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Supplementary figure S5: length of identified SVs
SVs identified using NanoSV after minimap2 alignment, compared to truth set

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/434118doi: bioRxiv preprint 

https://doi.org/10.1101/434118
http://creativecommons.org/licenses/by/4.0/


26

Supplementary figure S6: length of identified SVs
SVs identified using Manta after bwa mem alignment, compared to truth set
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A

B

Supplementary figure S7: length of identified
SVs
A: lengths in the truth set from Chaisson et al 2018;
B: lengths from NanoSV after minimap2 alignment
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