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16 Abstract

17 Gut microbiota has been demonstrated to be involved in intestinal nutrition, defense, and 

18 immunity, as well as participating in disease progression. This study was to investigate gut 

19 microbiota changes in chickens challenged with netB-positive Clostridium perfringens strain 1 

20 (CP1) and/or the predisposing Eimeria species (Eimeria). In addition, the effects of lauric acid, a 

21 medium-chain fatty acid (MCFA), on NE reduction and modulation of microbiota were 

22 evaluated. The results demonstrated that microbial communities in the jejunum were distinct 

23 from those in the cecum, and the microbial community change was more significant in jejunum. 

24 Challenge of CP1 in conjunction with Eimeria significantly reduced species diversity in jejunal 

25 microbiota, but cecal microbiota remained stable. In the jejunum, CP1 challenge increased the 

26 abundance of the genera of Clostridium sensu stricto 1, Escherichia Shigella, and Weissella, but 

27 significantly decreased the population of Lactobacillus. Eimeria infection on its own was unable 

28 to promote NE, demonstrating decrements of Clostridium sensu stricto 1 and Lactobacillus. Co-

29 infection with CP1 and Eimeria reproduced the majority of NE lesions with significant 

30 increment of Clostridium sensu stricto 1 and reduction in Lactobacillus. The changes of these 

31 two taxa increased the severity of NE lesions. Further analyses of metagenomeSeq, STAMP, and 

32 LEfSe showed significant overgrowth of Clostridium sensu stricto 1 was associated with NE and 

33 Eimeria infection than C. perfringens challenge alone. The supplementation of lauric acid did 

34 not reduce NE incidence and severity but decreased the relative abundance of Escherichia 

35 Shigella. In conclusion, significant overgrowth of Clostridium sensu stricto 1 in the jejunm is the 

36 major microbiota contributory to NE. Controlling proliferation of this taxon in the jejunum 

37 should be the niche for developing effective strategies against NE.
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39 Introduction

40 Necrotic enteritis (NE) as the result of proliferations of Clostridium perfringens (C. perfringens) 

41 type A and their associated toxins in the small intestine of chickens is a devastating enteric 

42 disease, characterized by sudden diarrhea, unexpected mortality, and mucosal necrosis [1, 2]. Up 

43 to 37% of commercial broiler flocks is estimated to be affected by this disease, and it has 

44 contributed to the losses of 6 billion dollars in the global poultry industry [3, 4]. In recent 

45 decades, C. perfringens-associated NE in poultry has been well-controlled by in-feed 

46 antimicrobial growth promoters (AGPs) [5]. However, the emergence of antibiotic-resistant 

47 bacteria from animals and the potential threat of transmission to humans has led to bans on using 

48 AGPs in many countries [6, 7]. Following the withdrawal of AGPs from poultry feed, NE has re-

49 emerged as a significant disease to the poultry industry [8-11].

50 Gut microbiota is one of the central defense components in the gastrointestinal tract against 

51 enteric pathogens, which works by modulating host responses to limit the colonization of 

52 pathogens [12]. Interactions between gut microbiota and the host could influence intestinal 

53 morphology, physiology, and immunity [13]. Recently, gut microbiota has been demonstrated to 

54 regulate intestinal gene expression [14] and T cell-mediated immunity [15] as well as to 

55 accelerate the maturation of the gut immune system [16]. Conversely, a growing number of 

56 studies have observed gut microbial shifts in enteric diseases, considering that gut microbiota 

57 plays a role in the progress of disease development. Similar results were also represented in NE 

58 induction models, proposing that the disturbance of gut microbiota interacts with the host, 

59 subsequently promoting the development of NE [17-20]. In the case of human necrotizing 

60 enterocolitis, an enteric disease in infants associated with C. perfringens [21], a recent study 

61 found that Bacteroides dorei, an opportunist pathogenic bacterium in anaerobic infections, was 
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62 associated with an increased mortality of this disease [22]. Furthermore, several studies have 

63 demonstrated that the increment of bacteria belong to a genus of Escherichia-Shigella was 

64 associated with C. perfringens infection [5, 20]. This evidence raised the possibility that certain 

65 microbes or microbiota in the gut may contribute to the virulence or development of enteric 

66 disease in chickens, particularly for NE. 

67 The removal of AGPs drove the poultry industry to search for an alternative in prevention to 

68 decrease the incidence of NE. Probiotics, prebiotics, organic acids, plant extracts, essential oils, 

69 and enzymes arose in response to this demand, but the efficacy of those on NE reduction were 

70 variable and inconsistent [23, 24]. However, a medium-chain fatty acid (MCFA), lauric acid, was 

71 found to have strong in vitro antimicrobial activity against gram-positive organisms [25-27] and 

72 C. perfringens [28, 29]. In an in vivo trial, lauric acid with butyric acid demonstrated the lowest 

73 incidence and severity of NE compared to other treatments [29]. However, this promising result 

74 did not promote more applications of lauric acid against NE, and the interaction of lauric acid 

75 with gut microbiota was not even addressed. The evaluation of its modulation effect on NE 

76 reduction and gut microbiota simultaneously would be valuable in exploring specific microbial 

77 community contributory to NE.

78 Although C. perfringens is the causative etiological agent of NE, it is evident that other 

79 predisposing factors are required for NE induction [10, 30-32]. Even though gut microbiota has 

80 been suggested to be involved in the progress of NE development [33, 34], association between 

81 microbiota profile and NE development have not been well elucidated. Most studies intensively 

82 focused on changes of microbial communities in the ileum or cecum where higher quantity of 

83 microbes or/and more diverse microbial compositions were harbored; however, most results 

84 were inconclusive [17-19, 35, 36]. Inversely, microbiota in the jejunum, which serve as the 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/434449doi: bioRxiv preprint 

https://doi.org/10.1101/434449
http://creativecommons.org/licenses/by/4.0/


6

85 primary site for colonization of C. perfringens and development of NE [33], was seldom 

86 evaluated. In the present study, we investigated gut microbiota targeting NE cases and in 

87 chickens with side-by-side treatments with the causative pathogen and parasitic predisposing 

88 factor, Eimeria, and expected to unveil the contributory microbe or microbiota to NE. The 

89 effects of lauric acid on NE reduction and modulation of microbiota were also examined to 

90 confer the alternative intervention to prevent and control NE.

91

92 Materials and methods

93 Ethics statement

94 All procedures for the care, housing and treatment of chickens were approved by the Institutional 

95 Animal Care and Use Committee at Mississippi State University (IACUC 16-439).

96

97 Chicken, diet, and experimental design

98 A total of 50 male and female one-day-old unvaccinated broiler chicks (Cobb strain) were 

99 obtained from a commercial hatchery. Chicks were inspected on receiving to ensure their healthy 

100 status and randomly allotted to 5 groups, studying the NE incidence and gut microbiota after 

101 challenge of netB-positive C. perfringens (A group: CP1), co-infection with netB-positive C. 

102 perfringens and multi-species Eimeria (B group: CP1+Eimeria), addition of lauric acid to feed 

103 chickens co-infected with netB-positive C. perfringens and multi-species Eimeria (C group: 

104 CP1+Eimeria+LA), inoculation of multi-species Eimeria (D group: Eimeria), and no treatment 

105 (E group: CTL). 

106 Chicks in groups were placed in separate temperature-controlled iron tanks with nets in the 

107 floor-pen facility and lined with fresh litter. Throughout the 19-day study period, wheat-based 
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108 diets prepared based on the formula by Branton et al. [37] were offered for the first 7 days, and 

109 then the rations were replaced by fishmeal diets (wheat-based diets containing 50% fishmeal) 

110 obtained from the 1:1 mixture of wheat-based diet with fishmeal 60 N (Seven Springs Farm, 

111 Check, Virginia, USA), containing minimal 60% crude protein from days 8 until the end of the 

112 study. For the lauric acid supplementing group, 400 mg of lauric acid powder (Fisher Scientific, 

113 Pittsburgh, Pennsylvania, USA) was added into 1 kg of wheat-based diet or fishmeal diet to form 

114 the final ration for chickens from day 8 onward [29].

115 Co-infection with netB-positive C. perfringens (CP1) and multi-species Eimeria was applied 

116 to induce NE according to our previous studies. The success of reproducing NE was determined 

117 by clinical signs and intestinal lesion scores reaching 2 or more. In brief, chickens in the co-

118 infection group were given a single gavage of coccidial inoculum at day 10, followed by oral 

119 administration of 3 ml CP1 inoculum with average 2.5x108 colony-forming units (CFU)/ml at 

120 day 15 for 4 consecutive days with a frequency of 3 times daily. For a single challenge of CP1 or 

121 Eimeria, the same methodology and time points were conducted as in the co-infection group. All 

122 chickens were inspected on a daily basis and humanely euthanized at day 19 by carbon dioxide. 

123 Dead chickens not resulting from NE were excluded from the trial after necropsy. The 

124 experimental trial was reviewed and approved by the Mississippi State University Institutional 

125 Animal Care and Use Committee.

126

127 Challenge strain and inoculum preparation

128 Anticoccidial live vaccine containing live oocysts of E. acervulina, E. maxima, E. maxima MFP, 

129 E. mivati, and E. tenella was used as a disposing factor. .The vaccine bottle contained 10,000 

130 doses of oocysts in an unspecified proportion of Eimeria species. A ten-fold dose of vaccine was 
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131 prepared then applied on Eimeria-treated and co-infection groups. C. perfringens, a clinical NE 

132 strain designated as CP1 obtained from Dr. John F. Prescott (Ontario Agricultural College, 

133 University of Guelph, Canada), was used to challenge chickens. This strain was characterized as 

134 netB-positive Type A and used to reproduce NE in a number of experiments [38-41]. CP1 was 

135 cultured on blood agar plates and incubated anaerobically at 37°C for overnight. A single colony 

136 was in turn transferred into 3 ml of fluid thioglycollate (FTG) medium (Himedia, Mumbai, 

137 Maharashtra, India) at 37°C for overnight. Thereafter, the bacterial suspension was inoculated 

138 into fresh FTG broth at a ratio of 1:10 and incubated at 37°C for 15, 19, and 23 hours, 

139 respectively. The whole broth cultures were used to induce NE based on the evidence that 

140 clostridia with toxins produce more severe disease than using cells alone [38]. The bacterial 

141 concentration (CFU/ml) of inoculum was calculated by plate counting using Brain Heart Infusion 

142 agar (Sigma-Aldrich, St. Louis, Missouri, USA), followed by anaerobic incubation at 37°C for 

143 16 hours. 

144

145 Sample collection and lesion scoring

146 Three chickens per group were randomly selected to collect fecal contents from the jejunum (AJ, 

147 BJ, CJ, DJ, and EJ) and cecum (AC, BC, CC, DC, and EC). Among three CP1-challenged groups 

148 (A, B, and C), chickens suffering NE (lesion score ≥ 2) were preferentially collected. Then, the 

149 remaining chickens were sampled randomly to reach a quantity of 3. One percent of 2-

150 mercaptoethanol (Sigma-Aldrich) in PBS was used to wash fecal contents, and samples were 

151 immediately frozen at -80°C. The intestinal tissues (duodenum to ileum) were inspected for NE 

152 lesions and scored following the criteria described by Keyburn [42], with a range of 0 (no gross 

153 lesions), 1 (congested intestinal mucosa), 2 (small focal necrosis or ulceration; one to five foci), 
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154 3 (focal necrosis or ulceration; 6 to 15 foci), and 4 (focal necrosis or ulceration; 16 or more foci). 

155 Chickens with lesion scores reaching 2 or higher were identified as NE cases, and the highest 

156 score in their small intestinal sections (duodenum, jejunum, and ileum) was recorded as the final 

157 score of NE. 

158

159 DNA extraction

160 Total genomic DNA was isolated from approximately 250 mg of fecal contents using the 

161 MOBIO PowerFecal® DNA Isolation Kit (Mobio, Germantown, Maryland, USA) following the 

162 manufacturer’s protocol with some modifications. After adding bead solution and lysis buffer, 

163 the mixture was heated in a water bath at 65°C for 30 minutes followed by 5 minutes of 

164 vortexing. The concentration and quality of harvested DNA were determined by NanoDrop™ 

165 One Microvolume UV-Vis Spectrophotometer (Fisher Scientific) and visualized on 0.8% 

166 agarose gel (BD Biosciences, San Jose, California, USA). Afterward, genomic DNA was stored 

167 at -20°C until further analysis.

168

169 16S rRNA library preparation and sequencing

170 The variable V3-V4 region of the 16S rRNA gene was PCR-amplified in 25-μl reaction mixtures, 

171 containing 12.5 μl Clontech Labs 3P CLONEAMP HIFI PCR PREMIX (Fisher Scientific), 1 μl 

172 of each 10-μm Illumina primer (forward primer-5’CCTACGGGNGGCWGCAG 3’ and reverse 

173 primer-5’ GACTACHVGGGTATCTAATCC 3’) with standard adapter sequences, and 1 μl of 

174 DNA template. The PCR conditions started with an initial denaturation step at 95°C for 3 

175 minutes, followed by 25 cycles of 95°C for 30 seconds, 55°C for 30 seconds, and 72°C for 30 

176 seconds, and a final extension step at 72°C for 5 minutes on Applied Biosystems GeneAmp PCR 
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177 System 9700 (Applied Biosystems Inc., Foster City, California, USA). The amplicons were 

178 cleaned up by Monarch® DNA Gel Extraction Kit (New England Biolabs, Ipswich, 

179 Massachusetts, USA). Subsequently, an index PCR was performed by using Nextera XT Index 

180 Kit (Illumina, San Diego, California, USA) to attach a unique 8-bp barcode sequence to the 

181 adapters. The applied 25-μl reaction was composed of 12.5 μl KAPA HiFi HotStart Ready Mix 

182 (Kapa Biosystems, Wilmington, Massachusetts, USA), 2.5μl of each index primer, and 1 μl of 

183 16S rRNA amplicon and reaction conditions were as follows: 95°C for 3 minutes, 8 cycles of 

184 95°C for 30 seconds, 55°C for 30 seconds, 72°C for 30 seconds, and 72°C for 5 minutes on 

185 Mastercycler® pro (Eppendorf AG, Hamburg, Germany). The PCR products were purified using 

186 Agencourt AMPure XP beads (Beckman Coulter, Indianapolis, Indiana, USA), and the size and 

187 concentration were determined by Bioanalyzer with DNA 1000 chip (Agilent, Santa Clara, 

188 California, USA) and Qubit® 2.0 Fluorometer with Qubit™ dsDNA HS Assay Kit (Fisher 

189 Scientific). Those libraries were normalized and pooled to one tube with the final concentration 

190 of 10 pM. Samples were thereafter sequenced on the MiSeq® System using Illumina MiSeq 

191 Reagent Kit v3 (2×300 bp paired-end run).

192

193 Sequence processing and data analysis

194 Paired-end sequences were merged by means of fast length adjustment of short reads (FLASH) 

195 v1.2.11 [43] after trimming of primer and adapter sequences. Reads were de-multiplexed and 

196 filtered by Quantitative Insights into Microbial Ecology (Qiime) software v1.9.1 [44], meeting 

197 the default quality criteria and a threshold phred quality score of Q ≥ 20. Chimeric sequences 

198 were filtered out using the UCHIME algorithm [45]. The pick-up of operational taxonomic units 

199 (OTUs) was performed at 97% similarity by the UPARSE algorithm [46] in USEARCH [47]. 
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200 The OTUs were further subjected to the taxonomy-based analysis by RDP Classifier v2.11 with 

201 a cut-off of 80% [48] using the Silva v128 database. Differential abundance of OTU among 

202 treatments was evaluated by metagenomeSeq. The clustered OTUs and taxa information were 

203 used for diversity and statistical analyses by Qiime v1.9.1 and R package v.3.3.1 (http://www.R-

204 project.org/). Differences of taxonomic profiles between groups were compared using Statistical 

205 Analysis Metagenomic Profiles (STAMP) software [49] v2.1.3 with Welch’s t-test. 

206 Furthermore, LEfSe (linear discriminant analysis effect size) from the LEfSe tool 

207 (http://huttenhower.sph.harvard.edu/lefse/), an algorithm for high-dimensional class comparisons 

208 between biological conditions, was used to determine the significant feature taxa between groups 

209 or intestinal location. It emphasizes statistical significance, biological consistency, and effect 

210 relevance and allows researchers to identify differentially abundant features that are also 

211 consistent with biologically meaningful categories [50]. The Kruskal-Wallis rank sum test was 

212 included in LEfSe analysis to detect significantly different abundances and performed LDA 

213 scores to estimate the effect size (threshold: ≥ 4). 
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214 Results 

215 NE reproduction and effects of lauric acid as an alternative prevention

216 Six of the NE cases were identified in three CP1-challenged groups (Table 1). They showed 

217 different degrees of characteristic gross lesions in small intestinal tissues. The most severe 

218 lesions were found in the jejunum, between its proximal end and Meckel’s diverticulum. Under 

219 co-infection with CP1 and Eimeria, the incidence and severity of NE increased. No NE mortality 

220 was noticed. Statistically significant differences of lesion score (LS) were determined between 

221 three CP1-challenged groups (A, B, and C) and the control counterpart (p ≤ 0.05). The co-

222 infection groups (B and C) demonstrated a highly significant difference (p ≤ 0.01). However, the 

223 supplementation of lauric acid did not reduce the incidence and severity which were similar to 

224 the NE positive control group.

225

226 Table 1. NE frequency and mean lesion score by groups

NE lesion score
Group Treatment

0 1 2 3 4
Subtotal Lesion score

NE

case

A CP1 0 9 1 0 0 10 1.11 ± 0.31a 1

B CP1+Eimeria 0 8 0 1 1 10 1.50 ± 1.02a 2

C CP1+Eimeria+LA 0 7 1 1 1 10 1.60 ± 1.02a 3

D Eimeria - - - - - 10 - 0

E CTL 5 4 0 0 0 9 0.44 ± 0.50b 0

227 LA lauric acid; NE necrotic enteritis; CTL: control group.

228 NE case: lesion score reaching 2 or above.

229 One chick in CTL was misclassified during the trial and excluded.

230 Dissimilar letters indicate a significant difference at a level of α=0.05.

231

232 Metadata and sequencing
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233 A total of 11,191,102 sequence reads with an average length of 453 ±5 base pairs were obtained 

234 from 30 samples, including 15 jejunal samples (3 samples per group in AJ, BJ, CJ, DJ, and EJ) 

235 and 15 cecal samples (3 samples per group in AC, BC, CC, DC, and EC). The sequences were 

236 filtered and further clustered into OTU using a cut-off of 97% similarity. The estimate of Good’s 

237 coverage reached 98% for all the jejunal and cecal samples. The rarefaction curve demonstrated 

238 that the sequencing depth was adequate to cover the bacterial diversity in the jejunal and cecal 

239 samples (Figure S1). 

240
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241 Normal microbial composition in the jejunum and cecum

242 Firmicutes (92.1% of relative abundance) was the most dominant phylum in the jejunum, 

243 followed by Cyanobacteria (2.2%) and Proteobacteria (2.1%), Bacteroidetes (1.9%), and 

244 Actinobacteria (1.7%). On the contrary, the phylum of Bacteroidetes (75.5%) predominated in 

245 the cecum, followed by Firmicutes (19.8%) and Proteobacteria (4.7%) (Figure 1A). At the 

246 genus level, jejunal contents were dominated by Lactobacillus (41.2% of relative abundance) and 

247 Clostridium sensu stricto 1 (39.1%), followed by other unclassified genus (8.7%), Weissella 

248 (3.6%), Enterococcus (1.9%), Escherichia Shigella (1.8%), and Staphylococcus (1.6%). 

249 Bacteroides (75.5%) was the most abundant genus in the cecum, followed by other unclassified 

250 genus (17.2%), Escherichia Shigella (3.1%), Eisenbergiella (1.7%), and Anaerotruncus (1.5%) 

251 (Figure 1B). The genera of Lactobacillus, Clostridium sensu stricto 1, Weissella, Enterococcus, 

252 Staphylococcus, and Bifidobacterium in the jejunum exhibited significant difference in 

253 abundance compared to those in the cecum. Cecal microbiota contained significantly higher 

254 abundance of Bacteroides and Proteus (Welch’s t test, p < 0.05; Figure S2).

255
256
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257 A)

258
259
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260 (B)

261
262
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263 (C)

264 Figure 1. Microbiota composition in jejunum and cecum with different treatments. Each bar 

265 represents the average relative abundance of each bacterial taxon within a group. The top 5 and 

266 10 abundant taxa are shown at the level of phylum and genus, respectively. (A) Abundant phyla 

267 in jejunum and ceca by groups; (B) Abundant genera in jejunum and ceca by groups; (C) 

268 Abundant genera in jejunal and cecal samples. LS stands for lesion score of NE.
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269 Changes of microbial communities in response to treatments

270 In the jejunum, challenge of CP1 increased the relative abundance of the genera of Clostridium 

271 sensu stricto 1 (54.75%), Escherichia Shigella (9.57%), and Weissella (4.99%) but significantly 

272 decreased the population of Lactobacillus (25.44%) (Figure 2). The inoculation of Eimeria to 

273 chickens significantly increased the relative abundance of Weissella (16.01%) and 

274 Staphylococcus (6.51%), but decreased the amount of Lactobacillus (30.66%) and Clostridium 

275 sensu stricto 1 (27.69%). Co-infection with CP1 and Eimeria led to significant increment of 

276 Clostridium sensu stricto 1 (71.89%), increased relative abundance of Escherichia Shigella 

277 (4.68%), but the decrements of Lactobacillus (16.99%), Weissella (0.44%) and Staphylococcus 

278 (0.40%). In the cecum, different treatments did not promote significant difference of taxa 

279 abundance between groups with an exception of Eisenbergiella, significantly increased in co-

280 infection group. However, challenge of CP1 and co-infection of CP1 and Eimeria still promoted 

281 cecal increments of Clostridium sensu stricto 1 (the relative abundance of this taxon in groups 

282 challenging with CP1, CP1 and Eimeria, and control was 0.75%, 1.99%, and 0.02%).

283

284

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/434449doi: bioRxiv preprint 

https://doi.org/10.1101/434449
http://creativecommons.org/licenses/by/4.0/


19

285 (A)

286
287 (B)

288

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/434449doi: bioRxiv preprint 

https://doi.org/10.1101/434449
http://creativecommons.org/licenses/by/4.0/


20

289  (C)

290
291

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/434449doi: bioRxiv preprint 

https://doi.org/10.1101/434449
http://creativecommons.org/licenses/by/4.0/


21

292 (D)

293
294

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/434449doi: bioRxiv preprint 

https://doi.org/10.1101/434449
http://creativecommons.org/licenses/by/4.0/


22

295 (E)

296
297

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/434449doi: bioRxiv preprint 

https://doi.org/10.1101/434449
http://creativecommons.org/licenses/by/4.0/


23

298 (F)

299
300 Figure 2. Differential abundance of genera between groups by metagenomeSeq. (A) 

301 Lactobacillus; (B) Clostridium sensu stricto 1; (C) Weissella; (D) Staphylococcus; (E) 

302 Escherichia Shigella; (F) Eisenbergiella. * p ≤ 0.05 and ** p ≤ 0.01.

303

304 Microbial diversities in response to treatments

305 In jejunal microbiota, challenge of CP1 (AJ) and co-infection with CP1 and Eimeria (BJ) 

306 reduced species richness and evenness, but the infection of Eimeria (DJ) exerted counter results. 

307 Addition of lauric acid into co-infection group (CJ) exacerbated the reduction observed in BJ 

308 group. However, no apparent effect was noted on cecal microbiota following above treatments 

309 (Figure S3 and Figure 3). Analysis of alpha diversity by Shannon index further demonstrated 

310 that challenge of CP1 in conjunction with Eimeria infection significantly reduced species 

311 diversity in jejunal microbiota. The 16S rRNA gene survey by principal coordinate analysis 
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312 (PCoA) and principal component analysis (PCA) showed a distinct separation of two community 

313 profiles between the jejunal and cecal microbiota. Cluster and heat map analyses exhibited 

314 distinct classifications and microbial compositions between the jejunum and cecum, coinciding 

315 with observations on PCoA and PCA (Figure 4). Additionally, the results of PCoA and PCA 

316 also depicted the differential diversity between the CP1-challenged (group AJ, BJ and CJ), 

317 Eimeria-infected (DJ), and control (EJ) groups in jejunal microbiota, showing that challenge of 

318 CP1 shared similar microbial community structures with co-infection with CP1 and Eimeria. 

319 However, cecal groups with CP1 treatments did not display cluster phenomenon as jejunal 

320 groups displayed in PCoA. PCA with hierarchical clustering further reflected that Clostridium 

321 sensu stricto 1 was contributory to the similarity of NE assemblage, and the genera of 

322 Lactobacillus, Weissella, and Staphylococcus contributed to discrepant community structures in 

323 Eimeria-treated and control groups in the jejunum. On the other hand, Bacteroidetes was the 

324 main genus contributing to the distinct separation between jejunal and cecal groups (Figure 5). 

325

326
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336 (D)

337
338 Figure 3. Comparison of microbial diversity between groups in jejunum and cecum using 

339 different measures of alpha diversity. (A) Shannon index, (B) Simpson index (C), abundance-

340 based coverage estimator (ACE) index, and (D) Chao1 index. Results are shown as mean ± 

341 SEM. Kruskal-Wallis test: * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001.

342
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348 (C)

349
350 (D)

351
352 Figure 4. Comparison of the compositions and similarities of jejunal and cecal microbiota with 

353 different treatments. (A) Weighted Unifrac principal coordinate analysis (PCoA); (B) principal 

354 component analysis (PCA); (C) cluster analysis by unweighted paired-group method using 
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355 arithmetic means (UPGMA) using unweighted Unifrac distance; (D) heat map analysis at the 

356 genus level.

357

358
359 Figure 5. Principal component analysis and hierarchical clustering of contributory genus to NE 

360 assemblage (in red circle) and to the dissimilarity between groups.

361

362 Microbial community structure and taxa contributory to NE

363 Analysis of jejunal microbiota in NE cases revealed that Clostridium sensu stricto 1, to which 

364 causative C. perfringens belongs, was the most dominant genus, followed by Lactobacillus, 

365 Weissella, Escherichia Shigella, Staphylococcus, and others. Accompanying the elevation of NE 

366 severity, the relative abundance of Clostridium sensu stricto 1 increased (relative abundance ≥ 

367 75% in LS4 compared to 50-75% in LS2 and LS3). Conversely, the population of Lactobacillus 

368 decreased while the lesion score was elevated. The relative amount of Escherichia Shigella was 
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369 variable in NE cases, presenting higher abundance after CP1 challenge but low population 

370 following co-infection with CP1 and Eimeria. (Figure 1C).  

371 Heat map analysis exhibited that NE cases harbored the similar microbial community profile. 

372 Clostridium sensu stricto 1 and C. perfringens were consistently presented and abundant taxa in 

373 jejunum (Figure 6). Opposite low abundance of Lactobacillus was noted. However, only the 

374 increment of Clostridium sensu stricto 1 but not C. perfringens (data not shown) demonstrated 

375 significance on NE by metagenomeSeq (Figure 2B). Using Welch's t-test,  jejunal groups further 

376 showed that CP1 in conjunction with Eimeria increased significantly Clostridium sensu stricto 1 

377 and C. perfringens when compared to the control (Figure S4; p < 0.05), whereas challenge of 

378 CP1 alone did not lead to significant increase of these taxa. Differential abundant phylotypes 

379 between different treatments in jejunum were further evaluated by LEfSe using the LDA score of 

380 4. This threshold guarantees that the meaningful taxa is compared and eliminates most of rare 

381 taxa. LEfSe demonstrated similar results as Welch’s test that challenge of CP1 unable to yield a 

382 significantly higher amount of Clostridium sensu stricto 1 and C. perfringens. However, 

383 significant differences were displayed when CP1 co-infected with Eimeria (Figure 7). No 

384 differential taxon was found in cecal groups (AC, BC, CC, HDC, and EC) while Welch's t-test 

385 and LEfSe were applied.

386

387
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394 (C)

395

396
397 Figure 6. Heat map analysis of contributory taxa to NE at the genus level in jejunal (A) and 

398 cecal (B) samples. (C) Heat map of gut bacteria with the relative abundance of OTUS by z score 
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399 and represented bacterial taxa information, including phylum, family, genus, and species. Top 26 

400 taxa was shown.

401

402 (A)
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405 (B)

406
407 Figure 7. LEfSe identified the most differentially abundant clades at all taxonomic levels 

408 between jejunal groups using the LDA score of 4. Differentially abundant taxa in group BJ 

409 versus EJ (A) and CJ versus EJ (B).

410

411 Comparison of gut metagenomes in co-infected chickens with and without lauric acid

412 Addition of lauric acid increased the relative abundance of Clostridium sensu stricto 1 and 

413 Weissella but decreased the relative amount of Escherichia Shigella in the jejunum compared to 

414 the co-infection group without supplementing lauric acid. Nonetheless, no significance was 

415 detected in this comparison. In addition, supplementation of lauric acid did not apparently affect 

416 the cecal microbiota between these two groups. 
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417 Discussion

418 By exploring microbial composition in normal chickens, the major microbial genera in the 

419 jejunum were Lactobacillus and Clostridium sensu stricto 1, followed by other unclassified 

420 bacteria, Weissella, Enterococcus, Escherichia Shigella, and Staphylococcus. Bacteroides was 

421 the most abundant group in the cecum, and the remaining taxa were sequentially other 

422 unclassified bacteria, Escherichia Shigella, Eisenbergiella, and Anaerotruncus. Side by side 

423 treatments of C. perfringens and Eimeria altered microbial community compositions, 

424 significantly in jejunal microbiota. In this study, challenge of CP1 increased the abundance of 

425 Clostridium sensu stricto 1, Escherichia Shigella, and Weissella in the jejunum, but significantly 

426 decreased the population of Lactobacillus. Infection of Eimeria significantly increased the 

427 abundance of Weissella and Staphylococcus, but decreased the amount of Lactobacillus and 

428 Clostridium sensu stricto 1. Co-infection with C. perfringens and Eimeria led to significant 

429 increment of Clostridium sensu stricto 1, increased abundance of Escherichia Shigella, but 

430 decrements of Lactobacillus, Weissella and Staphylococcus. Specifically, it decreases the α-

431 diversity index of the small intestinal microbial community, promoting single dominance of 

432 Clostridium sensu stricto 1 reaching the relative abundance to 71.89%. On the other hand, six 

433 NE cases shared similar microbial community profile observed in PCA, indicating there exists a 

434 certain microbiota contributory to the disease. With more NE severity, higher relative abundance 

435 of Clostridium sensu stricto 1 but lower relative amount of Lactobacillus in jejunal microbiota 

436 was noted.

437 Several studies has been shown C. perfringens challenge decreased the population of 

438 Lactobacillus in ileum [20, 51]. Lactobacilli are known as lactic acid producing bacteria and 

439 shown to have protection at intestinal barrier by competition with pathogens. They are also able 
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440 to induce immunomodulation and ferment carbohydrates into lactic acids that lower the pH of 

441 the intestinal environment to inhibit growth of acid-sensitive pathogenic bacteria [52, 53]. 

442 Therefore, suppression of lactobacilli is regularly considered beneficial to growth and 

443 colonization of enteric pathogen. This study first demonstrated the decrement of lactobacilli in 

444 jejunum following challenge of C. perfringens alone and in conjunction with Eimeria. The 

445 change of this taxon following the NE severity indicates that decrement of Lactobacillus may 

446 play a role in the development of NE. In addition, the increased abundance of Escherichia 

447 Shigella was also observed after the challenge of C. perfringens and co-infection with C. 

448 perfringens and Eimeria. This genus includes enteric pathogens, which can colonize in the 

449 intestines of both humans and chickens, consequently triggering specific diseases [54]. Some 

450 studies indicated that the increment of Escherichia Shigella in ileum was correlate with NE [55, 

451 56]. Nevertheless, our study found that C. perfringens challenge could increase the abundance of 

452 Escherichia Shigella but the increment was not in accordance with NE occurrence. Furthermore, 

453 the reduction of this taxa abundance was noticed in lauric acid supplementing group which has 

454 higher number of NE cases. Those finding reflected a contradiction for this genus participating in 

455 NE development. Last but not least, a reduced abundance of Weissella in the jejunum of NE 

456 afflicted chickens was also noted. Another study reported similar result in cecal micorbiota after 

457 C. perfringens challenge [18]. Weissella are lactic acid bacteria and belong to the family of the 

458 Leuconostocaceae. They harbor probiotic properties and can generate several products with 

459 prebiotic potential [57]. It may interact with C. perfringens as other lactic acid bacteria, but its 

460 role in NE development is unclear. More studies will be needed to elucidate the relationship 

461 between Weissella and NE.
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462 In current study, significant overgrowth of Clostridium sensu stricto 1 was associated with NE 

463 and the infection of Eimeria precedent to challenge of C. perfringens exerted synergistic effects 

464 on the overrepresentation. This correlation was consistently demonstrated by analyses of 

465 metagenomeSeq, STAMP, and LEfSe. The STAMP and LEfSe further showed C. perfringens 

466 was significantly overrepresented in NE groups. However, such significance was not identified 

467 by metagenomeSeq when C. perfringens was targeted. This result indicates that, in addition to C. 

468 perfringens, other bacteria under the same genus of Clostridium sensu stricto 1 also played a role 

469 in contributing to the development of disease. The Clostridium genus is well-classified into 19 

470 clusters by phylogenetic analysis [58]. Clostridium sensu stricto are grouped around the type 

471 species Clostridium butyricum and belong to the Clostridium cluster 1within the Clostridiaceae 

472 family [59]. Clostridium sensu stricto 1 contains C. perfringens and other real Clostridium 

473 species. Their members are generally perceived as pathogenic [60] as well as interpreted as an 

474 indicator of a less healthy microbiota [61]. This suggestion coincides with our finding that C. 

475 perfringens challenge on its own is not capable of causing significant abundance of Clostridium 

476 sensu stricto 1 and unable to produce more NE case observed. Future research is recommended 

477 to clarify the role of other members of Clostridium sensu stricto 1 in the pathogenesis of NE.

478 Single infection of Eimeria could not produce NE in the present study. The treatment reduced 

479 the relative abundance of Clostridium sensu stricto 1 and Lactobacillus, but significantly 

480 increased Weissella and Staphylococcus in jejunal microbiota. Eimeria infection has been shown 

481 to provide nutrients for C. perfringens to grow and cause physical damage to gut epithelium, thus 

482 facilitating the colonization and proliferation of C. perfringens [8, 62, 63]. However, the 

483 inoculation of Eimeria into normal chickens did not elicit overgrowth of Clostridium sensu 

484 stricto 1 and C. perfringens except challenging with exogenous C. perfringens. In contrast, 
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485 challenge of C. perfringens alone and in conjunction with Eimeria both promote proliferation of 

486 Clostridium sensu stricto 1 and NE case. This indicates that the amount of commensal C. 

487 perfringens in the jejunum under Eimeria infection is not sufficient to reach the significant 

488 abundance of Clostridium sensu stricto 1 or C. perfringens, subsequently promoting the 

489 occurrence of NE. Therefore, it is reasonable to suggest that the quantity of Clostridium sensu 

490 stricto 1 or C. perfringens in jejunum is critical for the onset of proliferation. A recent study used 

491 commensal C. perfringens, the isolate from normal chicken, to challenge broiler and reproduce 

492 NE in conjunction with infection of E. maxima [64]. This result also highlighted that not the 

493 specific C. perfringens strain but the exogenous addition of C. perfringens played the key in 

494 achieving the consequence. Accordingly, the methodology to inhibit overgrowth of Clostridium 

495 sensu stricto 1 or C. perfringens in small intestines will be the straightforward strategy to prevent 

496 NE.

497 Recent studies have been shown that cecal microbiota had a prominent role in feed efficiency [65] 

498 and received increasing attention in terms of diseases [66] and metabolism [67]. In this study, the 

499 result of PCoA and PCA demonstrated that microbial communities in the jejunum were different 

500 from those in the cecum. Side by side treatments of C. perfringens and Eimeria promoted 

501 microbial shifts with biological significance in the jejunum but minimal fluctuations in taxa 

502 abundance in the cecum. Comparatively, jejunal microbiota was more significant than cecal 

503 microbiota to address characteristic gut microbiota contributory to NE by means of 

504 metagenomeSeq and LEfSe analysis. The reason might be that cecal microbiota is demonstrated 

505 more diverse than other intestinal sections [68] and inhibits higher amounts of microbes (1010-

506 1011 CFU/g) than those in the jejunum (108-109 CFU/g) [69]. Those may provide the buffer 

507 effect on microbial changes in cecal microbiota. Besides, preferential colonization of C. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/434449doi: bioRxiv preprint 

https://doi.org/10.1101/434449
http://creativecommons.org/licenses/by/4.0/


42

508 perfringens on mucosa of the small intestine [33] may also contribute to less amount of C. 

509 perfringens into cecum, hence adverse to elicit significant changes in cecal microbiota.

510 Medium-chain fatty acids (MCFAs) such as lauric acid are a family of saturated 6- to 12-

511 carbon fatty acids from plants and documented beneficial effects on intestinal health and 

512 microbial growth inhibition [70-72]. The mechanism for their bactericidal activity is not fully 

513 understood. Relative studies showed that they could act as nonionic surfactants to become 

514 incorporated into the bacterial cell membrane, as well as diffuse through cell membranes and 

515 create pores, changing membrane permeability and leading to cell death [73-75]. In this work, 

516 lauric acid attracted interest due to its inexpensiveness and natural properties, including strong 

517 antibacterial effects against C. perfringens and no inhibitory effect on Eimeria infection [76]. 

518 Based on Timbermont’s study, lauric acid was most effective in inhibiting the growth of C. 

519 perfringens strain in vitro. Given a supplementary dose of 0.4 kg/ton in feed caused a significant 

520 decrease in NE incidence (from 50% down to 25%) compared with the infected, untreated 

521 control group [29]. This study followed the dose and used experimental grade product of lauric 

522 acid to evaluate the effects on NE incidence and intestinal microbiota. However, the addition of 

523 lauric acid did not reduce the incidence of NE. For intestinal microbiota, lauric acid neither 

524 exerted the inhibitory effect against proliferation of C. perfringens nor elevated the level of 

525 beneficial bacteria, such as Lactobacillus and Bifidobacterium. But, the relative abundance of 

526 Escherichia Shigella was decreased without affecting the incidence. Since lauric acid has 

527 different grade of products, such as experimental or food grade, the contradictory result may 

528 attribute to the influence of different formula on the absorptive efficiency of this compound. 

529 MCFAs are hydrophobic and partly absorbed through the stomach mucosa. Hence, their 
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530 triacylglycerols are considered as a desirable formula for feed additive because they can be 

531 absorbed intact into intestinal epithelial enterocytes via this form [77].

532 In summary, significant overgrowth of Clostridium sensu stricto 1 in jejunum was recognized 

533 as the major microbiota contributory to NE. In addition to C. perfringens, other member within 

534 Clostridium sensu stricto 1 was also found to participate in disease development. The decrement 

535 of Lactobacillus following the NE severity indicated that lactobacilli also participate in the 

536 progress of disease. These taxa showed counteractive effects in their functions as well as in the 

537 bacterial abundance, attempting to maintain the homeostasis of jejunal microbiota in chickens. 

538 Therefore, manipulations to inhibit multiplication of Clostridium sensu stricto 1 and C. 

539 perfringens and to rehabilitate the dominant Lactobacillus population in the jejunum should be 

540 the niche for developing effective strategies to prevent NE. 
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