
Bazam	:	A	rapid	method	for	read	extraction	

and	realignment	of	high	throughput	

sequencing	data	

Simon	P	Sadedin1,2,	Alicia	Oshlack1,3	

	

1Bioinformatics,	Murdoch	Children’s	Research	Institute,	Royal	Children's	Hospital,	

Flemington	Road,	Parkville,	Victoria	3052	Australia	

2Victorian	Clinical	Genetics	Services,	Royal	Children's	Hospital,	Flemington	Road,	Parkville,	

Victoria	3052	Australia	

3Department	of	BioScience,	University	of	Melbourne,	Parkville	3050,	Australia	

Corresponding	authors:	SS	simon.sadedin@mcri.edu.au,	AO	alicia.oshlack@mcri.edu.au	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/433003doi: bioRxiv preprint

https://doi.org/10.1101/433003
http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract	
Background:		As	costs	of	high	throughput	sequencing	have	fallen,	we	are	seeing	vast	

quantities	of	short	read	genomic	data	being	generated.	Often,	the	data	is	exchanged	and	

stored	as	aligned	reads,	which	provides	high	compression	and	convenient	access	for	many	

analyses.	However,	aligned	data	becomes	outdated	as	new	reference	genomes	and	

alignment	methods	become	available.	Moreover,	some	applications	cannot	utilise	pre-

aligned	reads	at	all,	necessitating	conversion	back	to	raw	format	(FASTQ)	before	they	can	

be	used.	In	both	cases,	the	process	of	extraction	and	realignment	is	expensive	and	time	

consuming.	

Findings:	We	describe	Bazam,	a	tool	that	efficiently	extracts	the	original	paired	FASTQ	

from	reads	stored	in	aligned	form	(BAM	or	CRAM	format).	Bazam	extracts	reads	in	a	format	

that	directly	allows	realignment	with	popular	aligners	with	high	concurrency.	Through	

eliminating	steps	and	increasing	the	accessible	concurrency,	Bazam	facilitates	up	to	a	90%	

reduction	in	the	time	required	for	realignment	compared	to	standard	methods.	Bazam	can	

support	selective	extraction	of	read	pairs	from	focused	genomic	regions,	further	increasing	

efficiency	for	targeted	analyses.	Bazam	is	additionally	suitable	as	a	base	for	other	

applications	that	require	efficient	paired	read	information,	such	as	quality	control,	

structural	variant	calling	and	alignment	comparison.	

Conclusions:	Bazam	offers	significant	improvements	for	users	needing	to	realign	genomic	

data.	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/433003doi: bioRxiv preprint

https://doi.org/10.1101/433003
http://creativecommons.org/licenses/by-nc-nd/4.0/

Background	

The	wide	scale	adoption	of	high	throughput	genomic	sequencing	instruments	over	the	last	

ten	years	has	generated	vast	quantities	of	genomic	data	with	enormous	potential	for	future	

use.	Genomic	data	is	often	stored	and	exchanged	as	aligned	reads	in	coordinate-sorted	

BAM	or	CRAM	format.	This	format	is	common	because	many	applications	(such	as	viewing	

the	alignment	or	routine	variant	calling)	can	utilise	it	directly.	Storage	in	aligned	form,	

however,	has	the	significant	disadvantage	that	the	data	is	tied	to	the	reference	genome	and	

alignment	method	used.	Many	results	are	highly	sensitive	to	these	parameters,	and	

combined	data	sets	typically	cannot	be	analysed	together	at	all	unless	these	parameters	are	

identical.	Consequently,	to	make	optimal	use	of	data,	users	often	need	to	realign	the	data	to	

a	recent	genome	build	and	reference.	This	is	resulting	in	a	widespread	and	growing	need	

for	the	capability	to	efficiently	realign	genomic	data.	

Realignment	of	paired	reads	from	aligned	data	is	however	both	computationally	expensive	

and	inconvenient	using	standard	methods.	The	challenges	arise	because	aligners	must	

access	both	reads	of	a	pair	simultaneously	in	order	to	optimally	align	them.	While	both	

reads	are	usually	stored	in	an	alignment	file,	in	a	coordinate	sorted	file	a	significant	fraction	

may	be	distant	from	each	other.	In	these	cases,	an	expensive	random	lookup	is	necessary	to	

read	the	mate	information	so	that	both	reads	of	the	pair	can	be	written	to	the	output	

together.	Consequently,	the	standard	practice	for	realignment	involves	first	extracting	all	

the	reads,	and	then	sorting	them	by	read	name	on	disk	prior	to	realignment.	While	this	

makes	extraction	feasible,	the	process	is	lengthy	and	requires	substantial	resources	due	to	

the	intermediate	steps.	Interestingly,	Picard	Tools	[1]	offers	an	alternative	method	to	

extract	read	pairs,	in	the	form	of	SamToFastq,	which	avoids	the	need	for	these	intermediate	

steps	in	extracting	read	pairs.	However,	this	method	is	not	widely	used	in	the	community.		

This	is	likely	because	SamToFastq	is	poorly	optimised	for	memory	use,	making	it	

impractical	for	use	with	large	data	sets.	Additionally,	Picard	Tools	cannot	target	a	specific	

locus,	and	can	only	emit	a	single	output	stream,	causing	the	process	to	be	bottlenecked	by	

the	maximum	throughput	of	a	single	downstream	process	(such	as	alignment).	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/433003doi: bioRxiv preprint

https://doi.org/10.1101/433003
http://creativecommons.org/licenses/by-nc-nd/4.0/

Here	we	introduce	Bazam,	an	alternative	to	SamToFastq	that	optimises	memory	use,	while	

offering	increased	parallelism	and	other	additional	features.	Bazam	increases	parallelism	

by	splitting	the	output	streams	into	multiple	paths	for	separate	realignment.	Using	this	

technique,	a	single	source	alignment	can	be	realigned	using	an	unlimited	number	of	

parallel	aligners,	significantly	accelerating	the	process	when	a	computational	cluster	or	

cloud	computing	resource	is	available.	

	

Figure	1	Different	configurations	for	using	Bazam.			(A)	Simple	realignment	from	one	reference	genome	to	
another	without	intermediate	storage	or	steps.	(B)	Extraction	of	filtered	reads	such	as	those	overlapping	a	
specific	locus.	Reads	can	be	streamed	to	downstream	tools	directly,	or	stored	in	FASTQ	format	for	further	
processing.	(C)	Sharded	realignment	allows	for	many	copies	of	the	aligner	to	run	on	different	subsets	of	the	
data,	greatly	speeding	up	realignment.	

	

Bazam

BAM /
CRAM
File

Downstream
Tool

Bazam

Bazam

Bazam

Bazam

BWA

BWA

BWA

BWA

BWA

BazamBAM /
CRAM
File

Downstream
Tool

Merge

C) Sharded Realignment

B) Extraction of filtered reads

Filter, for example
to Locus

Streaming

Streaming

read pairs

Read pairs

Bazam
BAM /
CRAM
File

BAM
File

BWA

A) Basic Realignment

Reference BReference A

Streaming

Read pairs

Reference A

Reference B

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/433003doi: bioRxiv preprint

https://doi.org/10.1101/433003
http://creativecommons.org/licenses/by-nc-nd/4.0/

While	realignment	is	a	key	application,	Bazam	also	offers	utility	for	any	other	application	

relying	on	detailed	read-pair	information.	Example	applications	include	quality	control	and	

structural	variant	calling.	Bazam	offers	two	additional	features	of	particular	interest:	read	

position	tagging,	and	localised	extraction.	Read	position	tagging	renames	reads	as	they	are	

streamed	to	include	the	original	alignment	position	in	the	name	of	each	read.	This	feature	

allows	ready	comparison	between	new	and	old	alignment	positions	after	realignment.	

Localised	extraction	allows	realignment	to	be	limited	to	reads	overlapping	specified	

genomic	coordinates.	Like	realignment,	this	can	be	achieved	using	standard	tools.	

However,	these	tools	do	not	emit	both	reads	of	a	pair	if	only	one	overlaps	a	region	of	

interest,	and	are	therefore	unsuitable	for	applications	that	require	both	of	the	reads.	

Here	we	describe	the	implementation	of	Bazam,	and	demonstrate	that	it	increases	

efficiency	without	compromising	accuracy.	

Methods	

Pairing	of	Reads	

The	primary	challenge	in	extracting	paired	reads	from	BAM	and	CRAM	files	arises	from	the	

predominant	choice	of	coordinate	sorted	ordering	for	their	storage.	This	format	is	used	

because	it	places	all	the	reads	aligned	to	a	given	genomic	locus	in	close	physical	proximity	

within	the	file,	maximising	efficiency	for	any	analysis	focused	on	short	range	variation	

(such	as	SNV	and	indel	calling,	or	visualisation	in	genome	browsers).	However,	coordinate	

ordering	is	highly	suboptimal	for	realignment,	because	a	small	but	significant	fraction	of	

reads	are	located	a	large	genomic	distance	from	their	mate.	Consequently,	a	simple	linear	

scan	cannot	readily	extract	both	a	read	and	its	mate	in	many	cases.	One	possibility	is	to	

retrieve	each	mate	as	needed	using	a	random	seek	within	the	file	to	the	location	of	its	mate.	

This	strategy	is	highly	inefficient,	however,	because	reads	are	stored	within	BAM	and	

CRAM	files	in	a	block	format	such	that	extracting	a	single	read	requires	decoding	some	or	

all	of	the	other	reads	from	the	same	block.	In	practice,	such	a	random	seek	strategy	slows	

down	read	extraction	by	several	orders	of	magnitude.	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/433003doi: bioRxiv preprint

https://doi.org/10.1101/433003
http://creativecommons.org/licenses/by-nc-nd/4.0/

Bazam	retains	the	efficient	linear	scan	of	standard	methods.	However,	instead	of	

performing	random	lookup	of	each	mate,	Bazam	stores	each	read	in	memory	until	the	mate	

is	encountered	naturally.	For	the	majority	of	pairs,	both	reads	derive	from	the	same	

biological	fragment,	which	is	typically	closely	matched	to	the	reference	genome	and	

therefore	a	short	distance	on	the	genome.	In	these	cases,	the	mate	for	a	read	is	encountered	

soon	after	the	read	itself,	so	that	the	first	read	needs	to	be	only	briefly	stored	in	memory.	

Reads	aligned	at	a	greater	distance	from	their	mate	must	be	buffered	for	significantly	

longer.	Consequently,	Bazam	requires	enough	memory	to	run	such	that	it	can	store	these	

reads	until	their	mates	are	encountered	by	the	linear	scan.	To	reduce	the	memory	load,	

Bazam	does	not	store	the	full	read	data	structure	in	memory	when	the	desired	output	is	in	

FASTQ	format.	Instead,	Bazam	stores	only	data	essential	to	the	FASTQ	output.	Bazam	

additionally	encodes	the	in-memory	reads	to	compress	the	data	and	reduce	memory	load.	

The	worst	case	scenario	is	represented	by	a	small	proportion	of	reads	where	the	mate	

aligns	to	a	different	reference	contig	(or	chromosome).	These	reads	may	represent	real	

structural	variation	within	the	sample,	but	can	also	be	generated	artefactually	in	the	

preparation	of	sequencing	libraries.	In	these	cases	the	mate	does	not	resolve	at	all	until	its	

chromosome	is	encountered	by	the	linear	scan.	Accordingly,	Bazam	requires	enough	

memory	to	store	this	small	proportion	of	reads	for	the	full	duration	of	the	extraction.	

By	buffering	reads,	Bazam	trades	memory	for	speed.	The	peak	memory	required	depends	

on	the	coverage	depth	of	the	alignment,	the	typical	span	between	paired	reads	(the	insert	

size	distribution)	and	also	on	the	number	of	reads	whose	mates	align	to	different	contigs.	

We	observe	on	typical	human	whole	genome	data	sequenced	at	30x	mean	coverage	depth,	

that	Bazam	requires	approximately	16	-	32GB	of	RAM.	For	cancer	genomes	or	other	

scenarios	with	many	genomic	rearrangements	this	could	potentially	increase.	However,	for	

many	common	scenarios	the	memory	requirement	of	Bazam	remains	well	within	the	

limitations	of	the	resources	available	in	most	modern	computing	systems.	

Parallelism	and	Sharding	

As	computational	performance	is	one	of	the	main	goals	of	Bazam,	it	is	designed	with	a	high	

level	of	parallelism	internally	so	that	system	input/output	(I/O)	is	never	blocked.	This	is	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/433003doi: bioRxiv preprint

https://doi.org/10.1101/433003
http://creativecommons.org/licenses/by-nc-nd/4.0/

achieved	by	using	separate	threads	for	reading	the	input	alignment	file,	writing	the	output,	

and	a	pool	of	threads	to	index	and	buffer	each	read	so	that	it	can	be	paired	with	its	mate.	To	

further	ensure	that	performance	of	Bazam	can	be	scaled,	read	pairs	can	be	split	into	

multiple	streams,	which	is	referred	to	as	"sharding".	In	sharded	mode,	several	copies	of	

Bazam	are	run,	with	each	copy	emitting	a	different	subset	of	the	reads.	Bazam	utilises	the	

unique	read	name	assigned	to	each	read	pair	to	ensure	that	the	output	streams	receive	

mutually	exclusive	subsets.	Specifically,	the	name	of	each	read	is	used	to	generate	a	hash	

code	and	the	modulus	of	this	hash	code	with	the	total	number	of	shards	is	used	to	decide	

whether	a	read	is	processed	by	a	given	Bazam	instance.	Many	copies	of	Bazam	can	then	run	

on	the	same	alignment	file	simultaneously,	with	each	one	outputting	a	unique	read	subset.	

This	arrangement	both	reduces	the	peak	memory	load	and	increases	parallelism,	as	each	

shard	can	be	streamed	into	different	instance	of	the	aligner.	With	a	computational	cluster	

or	cloud	computing	facilities,	almost	unlimited	parallelism	is	achievable	with	this	method.	

Sharding	can	also	be	utilised	to	downsample	data	to	lower	coverage,	by	omitting	one	or	

more	output	streams	from	alignment.	

Software	Implementation	

Bazam	is	implemented	using	Groovy,	a	modern	language	derived	from	Java	and	which	

shares	most	properties	with	Java	including	platform	independence	and	very	high	

performance.	Bazam	uses	HTSJDK	(https://github.com/samtools/htsjdk)	for	the	

underlying	BAM	and	CRAM	parsing	operations.	To	enable	high	concurrency,	Bazam	

employs	actor-based	concurrency	based	the	GPars	framework	(http://www.gpars.org/).	

Results	

Efficiency	of	Realignment	

To	test	the	efficiency	of	Bazam	we	applied	it	to	a	public	whole	genome	data	set	(NA12878,	

30x	mean	coverage)	released	as	part	of	the	Genome	in	a	Bottle	project	[2].	First,	we	

realigned	the	data	set	from	GRCh37	to	GRCh38	using	both	Bazam	and	using	the	standard	

approach	without	Bazam.	The	standard	approach	consists	of	first	sorting	reads	using	

samtools	bamshuf,	then	extracting	them	using	samtools	bam2fq,	and	finally	realigning	

using	BWA	mem	[3],	and	re-sorting	the	output	BAM	file	using	samtools	sort.	To	avoid	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/433003doi: bioRxiv preprint

https://doi.org/10.1101/433003
http://creativecommons.org/licenses/by-nc-nd/4.0/

directly	storing	intermediate	files,	this	process	was	constructed	using	Unix	pipes.	However,	

we	note	that	the	intermediate	sorting	stages	still	write	intermediate	files,	resulting	in	

substantial	storage	requirements.	We	refer	to	this	process	as	Sort-Extract-Realign	(SER).	In	

this	process	we	used	16	cores	in	total	as	we	observed	empirically	that	on	our	test	systems,	

relatively	little	improvement	in	performance	was	gained	by	adding	additional	cores.	Picard	

SamToFastq	was	run	using	32GB	of	RAM	and	given	16	processor	cores.	However	in	this	

configuration	it	failed	to	complete	as	it	exceeded	the	allocated	memory	early	in	the	process.	

When	increased	memory	was	given,	anomalies	within	the	data	set	caused	it	to	abort	the	

process,	preventing	detailed	measurement	of	its	performance.	The	Bazam	process	

consisted	of	Bazam	directly	streaming	reads	into	BWA	mem,	followed	by	re-sorting	with	

samtools	sort.	

When	using	a	single	instance	of	BWA,	Bazam	decreased	the	overall	time	by	18.3%	and	the	

storage	required	by	75.9%.	In	this	case,	the	process	was	limited	primarily	by	the	speed	of	

alignment	rather	than	Bazam's	ability	to	process	reads.	When	run	in	sharded	mode,	

however,	Bazam	was	able	to	split	reads	between	10	copies	of	BWA,	resulting	in	a	time	

saving	of	91%,	while	still	reducing	the	storage	needed	by	63.8%.	

	

Table	1:	Comparison	of	run	time,	memory	and	storage	space	between	Bazam	

and	a	conventional	process	for	realignment	

Tool	 Storage	

Used	

Memory	 Effective	

Cores	

Time	

Sort-Extract-Realign	 282GB	 20GB	 16	 13	hours,	15	minutes	

Picard	SamToFastq	 -	 >32GB	 16	 Did	not	complete	

Bazam	(no	sharding)	 68GB	 29GB	 16	 10	hours,	41	minutes	

Bazam	10-way	

sharding	

102GB	 20GB	 160	 1	hours,	11	minutes	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/433003doi: bioRxiv preprint

https://doi.org/10.1101/433003
http://creativecommons.org/licenses/by-nc-nd/4.0/

	

Accuracy	of	Realignment	

We	tested	the	fidelity	of	Bazam's	read	extraction	process	by	comparing	Bazam's	output	to	

the	expected	output	using	two	different	methods.	First,	we	converted	all	reads	from	the	

evaluation	data	set	to	FASTQ	format	using	the	SER	method.	Then,	we	aligned	these	reads	to	

GRCh37	using	BWA	mem,	and	re-extracted	to	FASTQ	format	using	Bazam.	Comparison	of	

the	two	FASTQ	data	sets	found	that	reads	were	identical,	showing	that	Bazam	reproduces	

FASTQ	with	perfect	fidelity.	

To	investigate	any	unexpected	effects	resulting	from	realignment	with	Bazam,	we	first	

realigned	the	SER-extracted	FASTQ	to	GRCh37,	to	create	an	updated	alignment	using	our	

local	alignment	configuration.	Next,	we	realigned	this	updated	alignment,	with	Bazam.	

These	steps	ensured	that	both	alignments	with	and	without	Bazam	used	identical	reference	

genomes	and	aligner	settings,	so	that	these	factors	did	not	cause	artefactual	differences.	

We	then	compared	the	alignments	with	each	other,	by	applying	Bazam's	read	position	

tagging	feature.	The	feature	alters	read	names	during	realignment	to	carry	the	original	

alignment	position.	In	this	way,	reads	in	the	new	alignment	could	be	readily	checked	

against	their	old	position	to	identify	reads	that	"moved".	

The	comparison	between	the	Bazam	and	updated	realignments	revealed	a	total	of	13.7m	

(1.7%)	reads	that	changed	position	after	Bazam	realignment.	We	hypothesised	based	on	

previous	studies	[4]	that	this	may	be	caused	by	ambiguously	positioned	reads	aligning	

differently	due	to	altered	input	order.	Consistent	with	this	hypothesis,	we	identified	that	of	

the	repositioned	reads,	92.8%	had	mapping	quality	of	30	or	less,	suggesting	their	

alignments	are	subject	to	significant	ambiguity.	We	investigated	the	moved	reads	that	had	

high	mapping	quality	and	observed	that	many	of	the	these	were	mapped	to	repeat	masker	

regions	(Supplementary	Table	1),	and	in	many	cases	were	in	fact	subject	to	ambiguity	

despite	receiving	high	mapping	quality	from	BWA.	Based	on	these	results,	we	concluded	

that	Bazam	realignment	has	minimal	effect	on	reads	with	unambiguous	mapping	positions,	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/433003doi: bioRxiv preprint

https://doi.org/10.1101/433003
http://creativecommons.org/licenses/by-nc-nd/4.0/

and	while	reads	with	ambiguous	positions	may	be	repositioned,	this	is	likely	due	to	known	

behavior	of	BWA,	rather	than	Bazam	itself.	

Application	to	Repeat	Expansion	Calling	

As	an	example	of	Bazam's	utility	for	aiding	downstream	analysis	tools	such	as	complex	

variant	calling	we	applied	Bazam	to	STRetch	[5],	a	method	for	detection	of	short	tandem	

repeat	expansions	(STRs)	in	genomic	data.	The	first	step	in	STRetch	selects	reads	aligning	

to	more	than	400,000	known	STR	repeat	regions	(as	well	as	any	unmapped	reads)	and	then	

realigns	these	reads	to	artificial	decoy	sequences	containing	short	tandem	repeats.	When	

run	on	pre-aligned	data,	STRetch	extracts	all	reads	within	800bp	of	each	known	STR	

region.	This	window	is	chosen	to	be	wide	enough	to	capture	both	reads	of	the	majority	of	

pairs	that	fall	into	the	STR	region.	Nonetheless,	some	pairs	are	mapped	widely	enough	

apart	that	they	may	be	missed.	We	replaced	this	implementation	with	Bazam's	local	

extraction	feature	and	tested	the	accuracy	and	efficiency.	

When	run	using	the	default	read	extraction	method	on	the	same	whole	genome	sample,	

STRetch	took	6	hours	and	7	minutes.	The	unsharded	Bazam	method	reduced	the	time	

required	to	2	hours	and	27	minutes.	This	improvement	is	achieved	partly	by	avoiding	

intermediate	FASTQ	extraction,	but	also	by	eliminating	the	additional	window	required	for	

scanning	of	candidate	STR	reads.	Bazam	makes	the	expanded	window	unnecessary	because	

it	guarantees	to	output	both	reads	of	a	pair,	even	if	only	one	overlaps	the	extraction	

window,	demonstrating	the	utility	of	the	localised	extraction	feature.	When	run	using	

sharded	mode	with	6	copies	of	BWA,	STRetch	finished	in	1	hour	and	24	minutes.	STRetch	

primarily	derives	its	sensitivity	from	its	ability	to	align	reads	from	STR	regions	to	the	decoy	

sequences.	Hence	we	compared	STRetch	performance	between	Bazam	and	standard	

alignment	methods	by	counting	the	reads	that	were	aligned	to	each	decoy	sequence.	We	

found	that	Bazam	was	able	to	align	3.4%	more	reads	to	the	decoy	sequences	than	the	

standard	alignment	process.	Therefore	we	conclude	that	alignment	using	Bazam	increases	

both	speed	and	accuracy	in	the	case	of	STRetch.	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/433003doi: bioRxiv preprint

https://doi.org/10.1101/433003
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wider	Applications	

While	we	have	primarily	developed	Bazam	with	realignment	in	mind,	any	application	

where	paired	reads	are	needed	can	benefit.	In	particular,	we	note	that	many	algorithms	for	

complex	and	structural	variant	calling	are	highly	dependent	on	read	pair	information	and	

hence	could	benefit	from	building	on	this	method.	Quality	control	statistics	derived	from	

read	pair	information	can	also	be	calculated	more	efficiently	using	Bazam	than	standard	

methods.	Finally,	the	ability	to	tag	read	names	with	previous	alignment	information	is	also	

useful	for	benchmarking	and	comparing	alignment	software.	

Conclusion	

Bazam	offers	a	simple,	yet	effective	tool	that	enables	a	significant	increase	in	efficiency	and	

decrease	in	time	required	to	realign	existing	genomic	data.	This	has	widespread	practical	

utility	as	the	need	to	reprocess	data	onto	new	genome	builds	with	updated	alignment	

software	is	becoming	increasingly	prevalent.	Bazam	also	has	many	other	potential	uses	for	

applications	where	full	read	pair	information	is	needed,	especially	where	extraction	from	

localised	regions	of	the	genome	is	of	interest.	Bazam	is	open	source	software	and	is	

available	at	https://github.com/ssadedin/bazam.	

Acknowledgements	
We	wish	to	thanks	Cas	Simons	for	helpful	discussions	about	workflows	and	comments	on	
the	manuscript.	We	wish	to	thank	Harriet	Dashnow	for	comments	and	explanations	
regarding	STRetch	output	and	software.	

	
	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/433003doi: bioRxiv preprint

https://doi.org/10.1101/433003
http://creativecommons.org/licenses/by-nc-nd/4.0/

References	
1.	Picard:	A	set	of	Java	command	line	tools	for	manipulating	high-throughput	
sequencing	data	(HTS)	data	and	formats	[http://broadinstitute.github.io/picard]	

2.	Zook	JM,	Chapman	B,	Wang	J,	Mittelman	D,	Hofmann	O,	Hide	W,	Salit	M:	Integrating	
human	sequence	data	sets	provides	a	resource	of	benchmark	SNP	and	indel	
genotype	calls.	Nat	Biotechnol	2014,	32:246–51.	

3.	Li	H,	Durbin	R:	Fast	and	accurate	short	read	alignment	with	Burrows-Wheeler	
transform.	Bioinformatics	2009,	25:1754–60.	

4.	Firtina	C,	Alkan	C:	On	genomic	repeats	and	reproducibility.	Bioinformatics	2016,	
32:2243–2247.	

5.	Dashnow	H,	Lek	M,	Phipson	B,	Halman	A,	Davis	M,	Lamont	P,	Clayton	J,	Laing	N,	
MacArthur	D,	Oshlack	A:	STRetch:	detecting	and	discovering	pathogenic	short	tandem	
repeats	expansions.	Genome	Biol	2018,	19.	

	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 4, 2018. ; https://doi.org/10.1101/433003doi: bioRxiv preprint

https://doi.org/10.1101/433003
http://creativecommons.org/licenses/by-nc-nd/4.0/

