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ABSTRACT 
 
The development of single-cell technologies provides the opportunity to identify 

new cellular states and reconstruct novel cell-to-cell relationships.  Applications 

range from understanding the transcriptional and epigenetic processes involved 

in metazoan development to characterizing distinct cells types in heterogeneous 

populations like cancers or immune cells.  However, analysis of the data is 

impeded by its unknown intrinsic biological and technical variability together with 

its sparseness; these factors complicate the identification of true biological 

signals amidst artifact and noise. Here we show that, across technologies, 

roughly 95% of the eigenvalues derived from each single-cell data set can be 

described by universal distributions predicted by Random Matrix Theory. 

Interestingly, 5% of the spectrum shows deviations from these distributions and 

present a phenomenon known as eigenvector localization, where information 
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tightly concentrates in groups of cells.  Some of the localized eigenvectors reflect 

underlying biological signal, and some are simply a consequence of the sparsity 

of single cell data; roughly 3% is artifactual.  Based on the universal distributions 

and a technique for detecting sparsity induced localization, we present a strategy 

to identify the residual 2% of directions that encode biological information and 

thereby denoise single-cell data. We demonstrate the effectiveness of this 

approach by comparing with standard single-cell data analysis techniques in a 

variety of examples with marked cell populations. 

 
 
INTRODUCTION 
 
Single-cell technologies offer the opportunity to identify previously unreported cell 

types and cellular states and explore the relationship between new and known 

cell states (1-7).  However, there exist several significant biological and technical 

challenges that complicate the analysis. The first challenge relates to the lack of 

a complete quantitative understanding of the different sorts of noise.  Almost 

identical cells have an intrinsic cell-to-cell variability and, within a cell, there are 

spatial and temporal fluctuations.  Moreover, different technologies show biases 

at the level of detection, amplifying, and sequencing genomic material that 

significantly vary across different genomic loci. Estimating noise, and 

distinguishing between biological and technical sources, is paramount for any 

further analysis: without reliable estimates of noise it is difficult to distinguish 

states or identify potential variations of a single state.  A second complicating 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/426239doi: bioRxiv preprint 

https://doi.org/10.1101/426239
http://creativecommons.org/licenses/by/4.0/


factor for single-cell analysis is the sparsity of data associated to the very low 

amounts of genomic material amplified. 

 

Several computational and statistical approaches have been designed to address 

some of these challenges (4, 8-13). For instance, imputation methods try to infer 

the “true” expression for missing values from the sample data by empirically 

modeling the underlying distributions, for instance, using negative binomial plus 

zero inflation (drop-out) for single-cell data.  These techniques usually assume 

that values are generated by the same distribution (identically independent 

distributed variables or i.i.d.).  However, we currently do not have predictive 

quantitative models of gene expression and so it is not clear what is the correct 

distribution or why the i.i.d. assumption should hold.  Given the lack of a 

quantitative microscopic description of cell transcription, we would ideally like to 

have a statistical description of the noise in single-cell data that does not rely on 

specific details of the underlying distributions of expression.  

 

Historically, a similar problem occurred in the 1950s in nuclear physics, when the 

lack of quantitative models of complex nuclei precluded accurate predictions of 

their energy levels. However, simple theoretical models based on experimental 

data showed that some observables, such as the distance between two 

consecutive energy levels, followed universal distributions that could be derived 

from random Hermitian matrices (14-16). These distributions were subsequently 

identified in a variety of complex systems, as quantum versions of chaotic 
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systems (17), and even in patterns of zeros of Riemann zeta functions (18, 19). 

Further work showed that many random matrix statistics present a universal 

behavior, akin to the central limit theorem, where specific details of the 

underlying distribution generating the entries of the matrix become irrelevant (20, 

21).  In the context of PCA problems with where the ratio of the rows and 

columns converges to a constant as both dimensions go to infinity, as arises in 

the single-cell setting, the study of the asymptotics of random matrices led to 

development of techniques for sparse PCA.  These methods are intended to 

correct for bias in empirical eigenvalues and eigenvectors in PCA and enhance 

interpretability of the results (22, 23). 

 

We propose here to apply these asymptotics to identify universal statistical 

features of noise that are insensitive to the specific details of a complex system 

(i.e., the cell and the single-cell measurement technologies). It has recently been 

shown that universality of the eigenvalues of random matrices depend only on 

the asymptotic behavior (subexponential) or the finiteness of the first few 

moments of the distribution generating the matrix, without requirement of being 

identically distributed random variables (24-26).  These hypotheses hold in all 

distributions commonly used to describe single-cell data.  Similar strong results 

have been observed in the distribution of eigenvectors: eigenvector of a random 

matrix show a phenomenon called de-localization, being distributed randomly in 

a high dimensional sphere.  These universal characterizations provide the basis 

of a test: Deviations from universal eigenvalue distributions (20, 27) or the 
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appearance of localized eigenvectors indicate the presence of a signal that can 

be further analyzed.   

 

However, this test can be confounded by sparsity.  Specifically, we show that the 

intrinsic sparsity of single-cell data can introduce deviations from the universal 

random matrix eigenvalue distribution.  Nonetheless, we observe that these 

deviations can be easily identified by the presence of localized eigenvectors that 

survive permutation of the data.  We combine the universal random matrix 

statistics with corrections for sparsity to identify the biological signal in single-cell 

data.  By studying a variety single-cell transcriptomic experiments, we show that 

the spectrum of a normalized Wishart matrix generated from the data follows a 

Marchenko-Pastur (MP) distribution with a small fraction of outliers eigenvalues 

and localized eigenvectors.  Thus, we can use the associated edge statistics 

(Tracy-Widom) and localized eigenvectors to generate a low rank approximation 

of the data, increasing the power for identifying potential interesting biological 

signals.  Our direct approach is substantially simpler and more efficient than 

sparse PCA (22, 23), explicitly handles sparsity of the data matrix (without any 

assumptions about the distribution of missing elements), and leads directly to an 

estimate of the rank of the underlying signal.  We show that this procedure is 

better able to capture marked single-cell clusters than alternative techniques, 

across a variety of data sets. 
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RESULTS 
  
Quasi-universality of single-cell sequencing data.  

A standard technique for studying high dimensional data is dimensionality 

reduction via Principal Component Analysis (PCA) or versions thereof.  PCA 

estimates the sample covariance and can be used to generate a low dimensional 

representation by projecting into the eigenvectors associated with the 

eigenvalues capturing most of the variance (principal components).  We 

observed that the distribution of separation between the square root of two 

consecutive eigenvalues of the sample covariance matrix in different single-cell 

RNASeq experiments (28-33) resembles the Wigner surmise distribution 

conjectured by Wigner in 1955 (16) in the study of the difference between 

resonant peaks in slow neutron scattering (Figure 1A, and Supplementary Figure 

1). This observation prompted us to investigate the connection between Random 

Matrix Theory (RMT) and the spectra of single-cell data, guided by the 

hypothesis that departures from random matrix distributions indicate interesting 

potential biological signals. Figure 1B shows an example, in red the non-

parametric Marchenko-Pastur distribution (MP) of density of eigenvalues, the 

associated RMT distribution, that fits well most of the eigenvalues (see Methods). 

The same results can be observed across many other single-cell datasets 

(Supplementary Figure 2, Methods).  Deviations from RMT can also be found by 

analyzing the larger eigenvalues in relations to the expected Tracy-Widom 

distribution (TW). We observed that across single-cell datasets this deviations 

amount to 5% of eigenvalues (Figure 1C).   

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/426239doi: bioRxiv preprint 

https://doi.org/10.1101/426239
http://creativecommons.org/licenses/by/4.0/


 

We further investigated the potential leading causes explaining these deviations. 

After randomizing the data by shuffling the cell expression values in each gene 

independently to erase any potential signal in the sample covariance matrix, we 

found that only ~2% of eigenvalues could be associated with potential biological 

signal (Figure 1C). 

 

Sparsity Induced Eigenvector Localization  

One of the key features of single-cell data is its sparsity. We investigated if 

sparsity could induce deviations from universality.  By introducing zeros in a 

random matrix with entries generated with Gaussian or Poisson distributions, we 

observed that the mean and the median of the highest eigenvalue have 

significant deviations from the RMT Tracy-Widom distribution (Figure 2A, 

Supplementary Figure 3). A similar phenomenon has been reported in the case 

of Wigner matrices (Hermitian matrices) in the context of Sparse Random Matrix 

Ensembles, a generalization of RMT with random matrices with a significant 

fraction of zero entries (24, 34-36).  Numerical experiments strongly suggest that 

if the number of non-zero values per column is larger than an undetermined 

constant, there is phase transition where the density distribution of eigenvalues 

deviates from MP and that eigenvectors become localized. The deviations from 

the non-sparse RMT distributions have been associated to the phenomenon of 

Anderson localization: whereas in non-sparse random matrices eigenvector are 

randomly distributed in a sphere (Haar measure in orthogonal groups), in sparse 
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matrices eigenvectors are localized along particular directions. We observe that 

this transition also occurs in the Wishart/covariance ensemble at some value of 

non-zero entries per row. In the case of medium sparsity (fraction of non-zero 

values p > N-1/3 , where N is the size of the matrix) it was recently reported (37) 

that the highest eigenvalue distribution could be approximated by a rescaled and 

shifted Tracy-Widom distribution.  However, little is known below that bound, and 

nothing is known when sparsity varies in columns.  We discovered that this 

phenomenon can be also observed in real data; it can be detected by removing 

the potential biological signal by permuting the cell expression values in each 

gene independently.  Figure 2B shows examples of the coordinate distribution of 

localized and delocalized vectors.  Localization can be identified as deviations in 

the square of the components of eigenvectors from the expected distribution 

(Beta, that approximates to Gaussian in high dimensions, as in the single-cell 

data), by the Shannon entropy, or by the Inverse participation ratio (IPR) 

(Supplementary Figure 4, Methods). To show this behavior, we randomized a 

95% sparse cell-gene expression matrix corresponding to 6,573 human PBMC 

cells from reference (38) and analyzed the statistics of its eigenvalues and 

eigenvectors.  Although the bulk of the eigenvalue density seems to follow a MP 

distribution, it is easily seen that deviations on the upper edge appear that are 

not consistent with the expected Tracy-Widom distribution and moreover that 

localization of corresponding eigenvectors occurs (Figure 2C, Supplementary 

Figures 5 and 6).  The localization phenomenon due to sparsity generates 

artifacts that could potentially be interpreted as true signal in standard application 
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of PCA.  For instance, outlier points can be detected in the highest components 

of sparse random data (Figure 2D).  Another effect of sparsity is the artifactual 

generation of an “elbow” in randomized data sparse data (Figure 2E).  These 

effects can be suppressed by eliminating the localized vectors, generating a 

more homogeneous distribution in the lower dimensional representation 

reflecting the random nature of the data. 

 

Simulations and comparison with alternative approaches 

We now proceed to evaluate the performance of the use of sparsity induced 

localization correction and random matrix statistics for the identification of 

potential relevant biological signals (Figure 3). We first perform two sets of 

simulations: a single-cell RNA sequencing simulation of six cell populations using 

Splatter (39) (see Methods) and seven Gaussian clusters with small mean to 

variance ratio in each dimension. Figures 3A and 3B show t-SNE representations 

of the data before and after the RMT procedure and panel C the associated MP 

statistics. Panels 3D, 3E and 3F represents the before, after and MP statistics of 

a set of seven Gaussian clusters. The first example illustrates the challenge of 

identifying structures based on t-SNE plots before performing the RMT procedure 

(Figure 3A); in contrast, after the procedure we see clearly separated clusters 

(Figure 3B). The test based on the MP statistics correctly identifies the six 

components associated with the six simulated clusters. The second Gaussian 

simulation correspond to a regime where the identification of clusters could be 

challenging due to low difference in means compared to the variance (Figure 
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3D).  Again, the RM procedures clearly identified the cluster structure (Figure 3E, 

3F). 

 

We now perform a comparison in terms of cell-phenotype cluster resolution with 

some published algorithms. For that purpose, we are using the data sets  (38) 

(human PBMC) and (40) (mouse cortex) described in the previous section. As 

explained in the previous section, these references together with the analysis 

done in (11) about (40) have cells already labeled in terms of phenotype. We 

claimed in previous section that our RMT method is able to clean system noise 

such that the cell-phenotype clusters are better resolved. This noise is partially 

generated due to the missing values in single-cell experiments. For that reason, 

we compare with the two main approaches in the field that address this question: 

imputation (MAGIC (8) and scImpute (10)) and zero-inflated dimensionality 

reduction (ZIFA (13) and ZIMB-WaVE (9)). For completeness, we also have 

compared with the raw data, with a selection of genes based on higher variance 

(top 300 genes) and with Seurat (41). The comparison is performed using the 

knowledge of cell phenotypes in refs. (11, 38, 40) and by computing the mean 

silhouette score in the reduced space; higher values would indicate a better (less 

noisy) cell-phenotype cluster resolution. In Figure 3G-3J we represent the mean 

silhouette score as a function of the reduced space number of dimensions 

(number of PCs) for 13 PBMC cell-phenotypes described in (11)(Figure 3G) and 

for 7 (Figure 3H), 15 (Figure 3I) and 26 (Figure 3J) marked mouse cortex cell 

populations described in (40). We have selected the 1,500 most signal-like genes 
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using RMT and we can observe how RMT outperforms other methods in the 

identification of known marked populations. Notice also how this becomes more 

dramatic as we increase the number of populations (Figures 3H to 3J, 

Supplementary Figures 7-9). Although this exercise is done with known 

populations in order to give a comparative quantitative measure, from Figures 

3G-3J we can also conclude that RMT method is a suitable one to better 

disentangle cell populations by noise removal and hence to find new potential 

cell populations. Moreover, it can also be noticed that the RMT method is 

increasingly better for higher number of PCs. This last feature is particularly 

important since in the future, due to the improvements in resolution and number 

of cells, the number of required dimensions (PCs) for an accurate analysis will 

grow. 

 

Application to diverse single-cell transcriptomic data sets 

In this section we present in detail the RMT analysis of the two marked single-cell 

data: 6,573 human PBMC cells from reference (38) (Figure 4, Supplementary 

figure 10) and 3,005 mouse cortex cells from reference (40) (Figure 5, 

Supplementary figure 11). Both data sets have the ground truth labels for each 

cell that explaining the different cell populations existing in both systems. In the 

case of reference (38) we have additionally used the results obtained in (11) 

where the authors analyze data in (38) and produce a larger number of labels 

(corresponding to more cell identities).  We ran the RMT algorithm that first 

eliminates the genes that introduce artifacts due to sparsity, then determines how 
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many PCs are pure noise based on the prediction from the universal MP 

distribution (Figures 4A and 5A, see Methods). Finally, by projecting in signal and 

in different regions of noise (see Methods) the algorithm determines how much 

each gene is responsible for signal or noise based on a chi-squared test for the 

variance (Figures 4B and 5B, see Methods). The panel C in Figures 4 and 5 

corresponds to the mean silhouette score as a function of the chi-squared test of 

variance. This is related with panel B where the chi-squared test for variance 

determines the number of genes mostly responsible for signal. The idea 

expressed in panel C is that, due to the fact that we already know the identity of 

cells in each data set and provided that cells cluster by (phenotypic) similitude, 

higher values of mean silhouette score implies a better (and hence cleaner) cell 

cluster resolution. Panels B and C together demonstrate the utility of the RMT 

approach: by selecting the genes that carry the biological signal we eliminate the 

noise of the system.  In panels D and E of Figures 3 and 4 we have performed a 

hierarchical clustering of the clean system and projected the clusters into a t-SNE 

plot in order to better visualize it. We also performed a comparison with the cell 

identities defined in references (11, 38, 40, 42) (D panels), confirming that we 

can recover the populations in these references and adding some more potential 

subpopulations (E panels). In particular, for the PBMC case we have found two 

subpopulations for dendritic cells that were not previously identified in the original 

work (38) and subsequent further refinements (11), that expressed markers 

identified in an independent study (43) (Supplementary Figure 16). In addition, 

we identified three for CD14 monocytic cells, two for B-activated cells and two for 
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T-activated cells (see Methods for the discussion of the differential expression 

analysis). 

 

Discussion 

In this manuscript, we demonstrate the effectiveness of tests based on (sparse) 

Random Matrix Theory for studying the spectrum of the covariance matrix of 

single-cell genomic data.  We show that while most of the spectrum follows the 

expectations from RMT (95%), deviations become apparent both in the 

distribution of density of eigenvalues and the maximum eigenvalue and in 

eigenvector localization. We further show that most of these effects are artifacts 

due to the sparsity of the data including sparsity induced localization; this 

accounts for 3% in average of the remaining eigenvalues. The final 2% of the 

eigenvalues could then be attributed to true biological signal. Eigenvector 

localization after eliminating the sparsity effects points to groups of cells where 

information tightly concentrates, indicating common transcriptional programs.  

Sparse Random Matrix Theory and associated eigenvector localization correction 

provides a powerful tool to identify this signal and produce a low rank 

representation of single-cell data that may be used for further interpretation. 

Additionally, we should point out that the universality we observed in 

Wishart/covariance matrices is also observable in the spectra of graph 

Laplacians (including sparse graphs (44)) and kernel random matrices (45), 

which are used in other single-cell analytic techniques, suggesting that the 

approach followed here could be applied more broadly. 
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Code for the algorithm and denoising pipeline is publicly available on 

https://rabadan.c2b2.columbia.edu/html/randomly/ . 
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FIGURE LEGENDS 
 
Figure 1.  Quasi-universality of single-cell sequencing data. A) The Wigner 
surmise distribution captures the spacing between eigenvalues of Wishart matrix 
across single-cell RNASeq experiments. B) Departures from random matrix 
universal distributions indicate interesting potential biological signals. In red is the 
non-parametric Marchenko-Pastur distribution. Deviations from universality can 
be found by analyzing the larger eigenvalues in relations to the expected Tracy-
Widom distribution. C) Departures from universality amount to near 5% of 
eigenvalues. However, most of these can be explained by the sparsity of data, 
suggesting that Sparse Random Matric Theory can provide a better model to 
understand single-cell sequencing data. Truly potential biological signal amounts 
to only ~2% of eigenvalues. 
 
Figure 2.  Sparse Random Matrices and Eigenvector Localization can 
model single-cell data. A) Deviations from Tracy Widom distributions can be 
easily appreciated in sparse matrices in the mean and the median of the highest 
eigenvalue at a function of fraction of non-zero values (p). In this case, the 100 
by 100 random matrices are drawn a mixture of a normal and a Dirac-delta at 
zero. Similar results are obtained with other sparse distributions (Poisson, 
Supplementary Figure 3), B) The deviations from Tracy-Widom have been 
associated to the phenomenon of eigenvector localization: while in non-sparse 
matrices eigenvector are randomly distributed in a sphere (Haar measure in 
orthogonal groups), in sparse matrices eigenvectors are localized along some 
directions. C) Localization can be identified as deviations in square of the 
components of eigenvectors  from the expected distribution that approximates 
Gaussian in high dimensions. D) The localization phenomenon due to sparsity 
generates artifacts as outliers that can bias the lower dimensional 
representations. Eliminating the localized vectors generates a more 
homogeneous distribution in the lower dimensional representation reflecting the 
random nature of the data. E) The effects of sparsity can also be appreciated in 
the classical elbow plots: sparsity can introduce an artifactual elbow in 
randomized data.   
 
Figure 3.  Simulations and comparison with alternative approaches for 
single-cell denoising. A) t-SNE representation of a six cell populations single-
cell simulation using Splatter (39), B) results after processing through the RMT 
procedure, C) Marchenko-Pastur prediction and identification of the relevant 
components.  D) t-SNE representation of a single-cell simulated of seven 
Gaussian cell populations, E) results after processing through the RMT 
procedure, F) Marchenko-Pastur prediction and identification of the relevant 
components. H) Mean Silhouette score for different methods as a function of the 
reduced space number of dimensions (number of PCs) for the case of 13 PBMC 
cell-phenotypes described in (11). I) Mean Silhouette score for different methods 
as a function of the reduced space number of dimensions (number of PCs) for 
the case of 7, 15 J) and 26 K) mouse cortex cell-phenotypes described in (40).  
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Figure 4. Application to PBMC single-cell expression. A) Marchenko-Pastur 
prediction and identification of relevant components. B) Study of the chi-squared 
test for the variance (normalized sample variance) in signal and noise gene 
projections. In the left subpanel the distributions correspond to a projection of 
genes into the 83 signal eigenvectors (corresponding to the 83 eigenvalues of 
panel (a)) and the projection into the 83 lowest and 83 largest Marchenko-Pastur 
eigenvectors. There is also a projection into 83 random vectors. Finally, the lines 
show how gamma-functions can fit the distributions discussed. The right 
subpanel shows the number of relevant genes in terms of the test above 
discussed together with a false discovery rate. The higher is the chi-squared test 
for variance the less genes are responsible for signal. C) Evolution of the mean 
Silhouette score as a function of the statistical test discussed in panel (b). The 
score grows at the beginning because genes responsible for noise are eliminated 
as the sample variance increases. At a certain threshold the score starts 
dropping because the number of genes is too small to define the cell clusters. 
Nullified case corresponds to genes projected into signal before selecting the 
signal-like genes (the RMT uses this case). D) Hierarchical clustering of the 
PBMC cells after using RMT method to eliminate noise and comparison with the 
cell populations found in (38) and (11). The number of genes signal-like selected 
is 1500. E) Visual representation of the previous panel through a t-SNE plot.  
  
 
Figure 5. Application to mouse cortex single-cell expression. A) Marchenko-
Pastur prediction and identification of relevant components. B) Study of the chi-
squared test for the variance (normalized sample variance) in signal and noise 
gene projections. In the left subpanel the distributions correspond to a projection 
of genes into the 103 signal eigenvectors (corresponding to the 103 eigenvalues 
of panel (a)) and the projection into the 103 lowest and 103 largest Marchenko-
Pastur eigenvectors. There is also a projection into 103 random vectors. Finally, 
the lines show how gamma-functions can fit the distributions discussed. The right 
subpanel shows the number of relevant genes in terms of the test above 
discussed together with a false discovery rate. The higher is the chi-squared test 
for variance the less genes are responsible for signal. C) Evolution of the mean 
Silhouette score as a function of the statistical test discussed in panel (b). The 
score grows at the beginning because genes responsible for noise are eliminated 
as the sample variance increases. At a certain threshold the score starts 
dropping because the number of genes is too small to define the cell clusters. 
Nullified case corresponds to genes projected into signal before selecting the 
signal-like genes (the RMT uses this case). D) Hierarchical clustering of the 
PBMC cells after using RMT method to eliminate noise and comparison with the 
cell populations found in (38) and (11). The number of genes signal-like selected 
is 1500. E) Visual representation of the previous panel through a t-SNE plot.  
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METHODS 

Introduction to eigenvalue statistics in covariance random matrices 

Given a N ´ P matrix X, each column is independently drawn from a distribution 

with mean zero and variance !, the corresponding Wishart matrix is defined as  

" =	
1

&
	''( 

The eigenvalues )*  and normalized eigenvectors +*	of the Wishart matrix where 

, = 1, 2,…0 are given by the following relation: 

"+* = )*+* 

If X happens to be a random matrix (a matrix whose entries xij are randomly 

sampled from a given distribution) then W becomes a random covariance matrix 

and the properties of its eigenvalues and eigenvectors are described by Random 

Matrix Theory (RMT). In the case of the random distribution being normal with 

mean 0 and variance 1, one can refer to this as a Wishart ensemble. One of the 

most interesting properties RMT is the so-called universality of the eigenvalue 

local and global statistics. The global statistics consist of the study of eigenvalue 

distribution of 1(0) number of eigenvalues. On the contrary, local statistics study 

the behavior of a small number of eigenvalues, like the distribution of distances 

between neighboring ordered eigenvalues, the distribution of the largest and 

smallest eigenvalues and the correlation functions. A property is called universal 

if it only depends on the symmetry properties that define the ensemble and not 

on specific details of the underlying probability distribution beyond the first few 
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moments. Universality properties arise both at the local and global scales in the 

limit 0 → ∞, &	 → ∞, 6 =
7

8
 fixed.  

 

The global statistics are determined by the calculation of the eigenvalue density 

or empirical density of states:  

9()) = 〈
1

0
;<() − )*)

7

*>?

〉 

which for the Wishart matrices converges in the limit 0 → ∞, &	 → ∞, 6 =
7

8
≤ 1 

to the so-called Marchenko-Pastur (MP) distribution: 

9B8()) =
1

2C6!D
E(FG − ))() − FH)

)
I[KL,KM] 

where  

F± = !D(1 ± E6)D 

If 0 → ∞, &	 → ∞, 6 =
7

8
> 1, then the Marchenko-Pastur (MP) distribution has a 

delta function centered at zero: 

9B8()) =
1

2C6!D
E(FG − ))() − FH)

)
I[KL,KM] + (1 −

1

6
)<(0) 

 

The parameter !  represents the variance of the probability distribution that 

generates each element in the random matrix ensemble. In Supplementary 

Figure 14 there is a graphical representation of the eigenvalue density with two 

regimes for the ordered eigenvalues: the bulk and edges (largest and smallest 

eigenvalues). The emergence of MP density is already a form of universality, 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/426239doi: bioRxiv preprint 

https://doi.org/10.1101/426239
http://creativecommons.org/licenses/by/4.0/


because the density of eigenvalues is asymptotically the same regardless of the 

details of the probability distribution of the individual matrix elements. If the first 

two moments are fixed to be 0 and 1 and the distribution has a sufficient number 

of finite moments, the universality property of the local statistics of the covariance 

matrix is satisfied without requiring that the entries of the underlying random 

matrix be i.i.d. (1, 2). 

The local statistics of eigenvalues are based on Wigner’s original observation 

concerning the distribution of the distances (gaps) between consecutive 

eigenvalues, colloquially known as the Wigner Surmise:  

&(S) ≈
CS

2
U
VH
W
X
YZ[
\S 

where S = ])̂ − )̂ H?_ `⁄  and ` is the mean spacing among eigenvalues.  

 

Local universality has been shown in two flavors (1-4): 

• Universality of local eigenvalue statistics:  

1. Bulk universality is the celebrated Wigner-Dyson-Gaudin-Mehta 

conjecture. It says that regardless of the probability distribution, the 

b-point correlation functions are described by the sine kernel: 

c d
)*
0
,
)̂

0
e =

sin C()* − )̂ )

C()* − )̂ )
 

Notice that the kernel does not factorize and therefore shows the 

strong correlation among eigenvalues. On the other hand, given 

that the distribution of gaps can be computed from the correlation 
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functions (5), bulk universality also explains the Wigner Surmise-

like universality. 

2. Largest eigenvalue universality: the behavior of the largest 

eigenvalue FG is such that  

&ijk()lKm < o) ≈ pq(0
D r⁄ (o − FG)) 

where pq in the Wishart case is a function known as the Tracy-

Widom distribution. A similar argument can be made for the 

smallest eigenvalue FH. 

• Eigenvector delocalization: this property implies that the norm of the 

eigenvectors +* is equally distributed among all their components a: 

s+*
(t)
s~

1

√0
 

 

 

Introduction to eigenvector localization  

Let us now consider the case of perturbed random matrices, i.e. matrices that 

contain a random part plus a perturbation that partially breaks the randomness in 

some direction. The spike model of Johnstone provides a simple example where 

a finite rank perturbation is added to a large random matrix (6). If the perturbation 

is below a certain critical value the largest eigenvalue follows the Tracy-Widom 

distribution of the unperturbed matrix. However, if the perturbation is larger than 

the critical value, the largest eigenvalue may separate from the bulk MP 

distribution and present Gaussian fluctuations (7). This is the so-called BBP 

(from Baik-Ben Arous-Peche) phase transition. Subsequent works, like (8), have 
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shown that there is no universality in the fluctuation pattern for eigenvalues that 

separate from the bulk—i.e. the parameters of the distribution of the fluctuation 

depends on the perturbation features.  A similar phase transition was found at 

the eigenvector level by (9). Eigenvectors associated with the eigenvalues out of 

the bulk get localized: the norm gets concentrated in a small number of 

coordinates containing information about the original perturbation. In Figure 2B 

(left panels), we show an example of localized and delocalized eigenvectors. The 

x-axis represents the order of the components, and the y-axis the squares of the 

components’ values V+*
(t)
[
D

. Notice that the eigenvectors are normalized, such 

that 

;V+*
(t)
[
D

= 1

7

t>?

 

The delocalized-localized phase transition is an example of the famous Anderson 

localization phase transition that was first observed in quantum disordered 

systems (10). It has been observed that, in the delocalized phase, the eigenvalue 

statistics are governed by RMT.  

 

Interestingly, the distribution of components for delocalized eigenvectors can be 

easily estimated by considering them as vectors on a unit sphere of dimension N-

1. The distribution of their components is then given by  

w(+) = (1 − +D)
7Hr
D  

that in case of large N approximates a Gaussian distribution with mean zero and 

1/N variance (see Figure 2B) 
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w(+)~
0

√2C
U
x
H7yZ

D z
 

This can be made more precise in terms of information theory, by noticing that 

delocalized eigenvectors do not carry any information, while localized vectors are 

correlated with the original perturbation. This insight proves very useful when 

attempting to distinguish between noise and signal in any complex system, 

biological systems in particular. The noise in the data will correspond to the part 

of the spectrum that can be described in terms of RMT.  

 

In Supplementary Figures 5A and 6A we implement a Shapiro-Wilk normality test 

on the coordinates of the eigenvector from two test datasets, allowing us to 

separate signal from noise. In addition, as a mean to confirm the results, we 

perform two alternative statistical tests. The first test is based on information 

theory and its results are shown in Supplementary Figures 5B and 6B. We have 

compared the Shannon entropy for each eigenvector with randomized data. The 

second test is based on applications to financial data (11) and the result can be 

seen in Supplementary Figures 5C and 6C. In this case we are calculating the 

inverse of the Inverse Participation Ratio (IPR): 

{&|* = ;V+*
(t)
[
X

7

t>?

	 

The inverse of the IPR quantifies the number of eigenvector components that 

contribute significantly. The results are equivalent to those obtained with the 

other statistical tests.  
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Sparse Random Matrix ensembles and sparsity induced localization  

Sparse Random Matrix Theory (sRMT) ensembles are a class of random 

matrices with a fraction of non-zero elements, p. In contrast to the RMT’s 

presented in the first section of the Methods, sRMT’s exhibit localized 

eigenvectors, a phenomenon that we call here sparsity induced localization.  

The universality properties of  covariance sRMT have been studied in 

(12), (13) and (14). The local statistics of eigenvalues preserve the bulk and 

largest eigenvalue universalities. The main difference with non-sparse RMT is 

the global statistics (15) and the presence of localized eigenvectors (16, 17). 

Regarding the global statistics, there could be significant deviations from the 

original MP and Tracy-Widom distributions, depending on the fraction of non-zero 

values p (Figure 2A, 2C). In these figures we are using sparse ensembles from a 

mixture of Gaussian distribution, Dirac delta distribution centered at zero and 

Poisson distribution applied to the randomized dataset (18).  

 

The presence of localized eigenvectors is a very important feature. In the bottom 

panel of Figure 2C, the correlation between the MP deviations and the presence 

of localized eigenvectors is shown, by using the gaussianity test discussed 

above. In Supplementary Figures 4A and 4B, we evaluated the localization of 

eigenvectors using two other tests: Shannon entropy and IPR, previously 

described. The three tests show sparsity induced localization. This sparsity 

induced localization is not associated with any biologically relevant information. 

Sparsity induced localization can introduce artifacts as outliers in PCA and 
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artifactual elbow plots (Figure 2D, 2E and Supplementary 4C). We have also 

performed a comparison between the sparse dataset and the one after removing 

sparsity in Figures 2C, 2D and 2E applied to the randomized dataset (18).  

Colors distinguish between sparse and clean data. The same comparison has 

been performed for the original datasets (18) (Supplementary Figure 5) and (19) 

(Supplementary Figure 6). 

 

Algorithm description for denoising of single-cell data 

We outline three major steps in the denoising of single-cell data algorithm on the 

example of PBMC dataset by Kang et al. (18), and illustrate in the supplementary 

Figure 13. 

• Preprocessing 

The goal of preprocessing is to remove genes that create artifacts, due to the 

sparse nature of the data. Gene expression values for each cell were divided 

by the total number of transcripts and multiplied by 106. These values were 

then log2 transformed. After, the single-cell data matrix X is Z-score 

normalized, such that every gene has mean 0 and standard deviation 1. A 

randomized matrix is obtained via random permutation of cells for every gene 

independently, to destroy potential correlations. We project the expression of 

each gene onto the eigenvector basis of the randomized matrix. To assess 

normality, we evaluated several related methods: Kolmogorov-Smirnov, 

Anderson-Darling, and the Shapiro-Wilk test, all providing similar results. In 

this manuscript, we use the Shapiro-Wilk statistics comparing to genes that 
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express less than certain number of transcripts (in this manuscript, 7 

transcripts by default) (see Supplementary Figure 13(a)). Genes that have 

Shapiro-Wilk statistic higher than the minimum statistic of the sparse genes 

with less that 7 transcripts are considered to be abnormal and are removed 

from the further analysis. Alternatively, as the p-value is a monotonic function 

of the Shapiro-Wilk statistic, one can impose an equivalent cut-off on p-value, 

correcting for multiple hypotheses. 

• Marchenko-Pastur parameter estimation 

After the identification and removal of abnormal genes, Wishart matrix of the 

preprocessed data is constructed, and a full set of eigenvalues and 

eigenvectors is computed using standard Singular Value Decomposition 

(SVD) algorithms. Full set of eigenvalues of the Wishart matrix are required to 

estimate the parameters of the MP distribution. Gradient descent iterative 

search is implemented to find an optimal fit of the MP distribution with 

eigenvalues of the randomized matrix as an initial step in the iterative 

process.  Eigenvalues that fit MP distribution are considered to be consistent 

with the noise (see Supplementary Figure 13(b)). Eigenvalues above Tracy-

Widom critical eigenvalue are considered to be associated with biological 

signal. 

• Gene Selection 

To select genes that are the most consistent with biological signal, we 

analyze the variance of every gene projected onto signal eigenvectors and 

compare it to the largest variance that can be attributed to noise. We project 
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genes onto four subsets of equal size of the eigenvectors of the Wishart 

matrix in question: signal eigenvectors that correspond to the eigenvalues 

above Tracy-Widom critical eigenvalue; eigenvectors right below the critical 

eigenvalue of Tracy-Widom distribution; eigenvectors of lower spectrum of 

MP distribution; and equal number of eigenvectors in the middle of MP 

distribution spectrum.  

Our goal is to infer the maximum and minimum variance that genes can have 

due to noise. We select the most variant genes across signal eigenvectors 

versus noise eigenvectors. Note that these genes are different from the most 

variant genes across all the eigenvectors in general.  

Eigenvectors in the middle of MP distribution spectrum, are considered to be 

the most compatible with noise. Variance distibution of the genes projected 

onto these eigenvectors can be modeled using standard }D  distribution. 

Variance distribution of genes projected onto the eigenvectors corresponding 

to the set of largest eigenvalues of the MP distribution has standard deviation 

larger than that of }D distribution. Variance distribution of genes projected 

onto the eigenvectors corresponding to the set of lowest eigenvalues of the 

MP distribution has standard deviation smaller than that of }D distribution. 

These variance distributions can be modelled using Gamma distributions. We 

estimate the parameters of the Gamma distributions and }D distribution using 

standard maximum likelihood estimation procedure. To select genes, we 

compare variance of genes across signal eigenvectors and right spectrum of 

MP distribution (see Supplementary Figure 13(c)). We establish False 
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Discovery Rate FDR (0.001 by default). Genes that have a ratio of variance 

across subset of MP eigenvectors right below the Tracy-Widom cut-off 

(largest variance associated with noise) and across subset of signal 

eigenvectors below the FDR are selected.  

As a result of the denoising algorithm, the eigenvalues compatible with noise are  

nullified and genes that have variance across signal eigenvectors compatible  

with noise are removed (controlled by free parameter FDR). 

 

Datasets  

In Figures 2C, 4 we are using Kang et al.  (18) GSE96583 with their labels and a 

second set of labels (those referred as control by the authors) from Butler et al. 

(20). For Figure 5, we used Zeisel et al. dataset GSE60361 and annotation from 

(19). 

 

For Figure 1C, we are using the following datasets: 

- Count matrix for the SMART-Seq2 data set (21) was obtained under the 

GEO accession number GSE81682. 

- Count matrices for CelSeq and CelSeq2 data sets were obtained from 

accession numbers GSE81076 and GSE86469 correspondingly.  

- Count matrix for Fluidigm C1 technology was obtained from accession 

number GSE86469. 

- Hi-C data was obtained from accession number GSE84290.  

- Data for the ATAC-seq data was obtained under the accession number 
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GSE65360. 
 

- Raw Nuq-seq data was obtained from the Gene Expression Omnibus 

with accession number GSE84371. 

- Data for bulk RNAseq GBM was obtained from TCGA firehose portal 

(illuminahiseq_rnaseqv2-RSEM_genes(MD5), 

http://firebrowse.org/?cohort=GBM&download_dialog=true). 

- For the 10x platform and human PBMC dataset, the data was obtained  

from 10x genomics (https://support.10xgenomics.com/single-cell-gene-
expression/datasets/2.1.0/t_4k). 
 

For Supplementary Figure 1, we are using the following datasets: 
 

- Murine embryonic stem cell (mESC) differentiation was obtained from 
  

the NCBI Gene Expression Omnibus (GEO) database, with accession 
 

number GSE94883. 
 

- High grade glioma dataset was taken from GSE103224. 

- Kang et al. (18). 

- Pancreas islet single-cells dataset GSE84133. 

For Supplementary Figure 13, we are using Kang et al. dataset. 

 

Wishart matrix statistics simulations  

Single-cell RNAseq simulated dataset (Figure 3A) was generated using the 

Splatter R package. A mean expression level for each gene is simulated using a 

gamma distribution. The negative binomial distribution is used to generate a 

count for each cell based on these means, with a fixed dispersion parameter. 
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The simulation was done for 985 cells with 14472 genes for Library size 

(Location, Scale, Norm) 6 groups of cells with the following proportions (0.1, 0.2, 

0.3, 0.2, 0.1, 0.1). The following Splatter parameters were used: Mean (Rate, 

Shape): (0.79, 9.58): (10, 0.69, False). Exprs outliers (Probability, Location, 

Scale): (0.02, 4.62, 0.91), Diff expr(Probability, Down Prob, Location, Scale): 

(0.1, 0.5, 0.1, 0.4), BCV (Common DISP, DOF): (0.19, 38.8), Dropout (Midpoint, 

shape) : (-0.085, -1.14), Paths (From, Length, Skew, Non-linear, Sigma Factor) : 

(0, 100, 0.5, 0.1, 0.8). 

 

The simulation dataset in figure 3D was done by drawing random gene 

expression values from a multivariate normal distribution for 7 overlapping 

clusters with 50 cells per cluster, 100 signal genes and 2000 genes in total. 

Constant mean expressions for signal genes across 7 clusters were set to be 

[0.7, 1.7 …, 6.7]. 

 

Comparison to other techniques  

When comparing with other methods, we are normalizing the data using  

~j�D(1 + Ä&Å) for ZIFA (22), and scImpute (23). ZIMB-WaVE (24) does not need 

any normalization. For Seurat (25), we are using normalization.method = 

"LogNormalize" with scale.factor = 10000 and finding variable genes using 

x.low.cutoff = 0.0125, x.high.cutoff = 13, y.cutoff = -10.5. For scImpute, after 

comparing several combinations, we have decided to use parameters k = 11 and 

t = 0.5 for the case of dataset (19).  For the dataset (18), we are using k=13 and t 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/426239doi: bioRxiv preprint 

https://doi.org/10.1101/426239
http://creativecommons.org/licenses/by/4.0/


= 0.5.  MAGIC (26) uses its own normalization and we are using the following 

parameters: number of PCA dimensions = 20, k = 10 and k_a = 30 (authors 

recommend 3 times k). 

 

For Figures 3G, 3H, 3I, 3J, we have calculated first 80 principal components for 

the dataset  (18) and first 100 for the dataset (19). With ZIFA and ZIMB-WaVE, 

we have calculated only the first 15 components, because they simply take more 

than 3 days to run or give errors. In the y-axis of these figures, we are computing 

the mean silhouette coefficient (27) for each cell. The silhouette coefficient for a 

specific cell is given by: 

S =
k − F

max	(F, k)
 

where the F is the mean distance between a cell and all the other cells of the 

same class (the class is  defined by the phenotype labels provided in (18-20)). 

Parameter k is the mean distance between a cell and all other cells in the next 

nearest cluster. 

 

For Supplementary Figures 7, 8 and 9, we are using t-SNE representation on top 

of a PCA reduction, where we have selected the optimal number of principal 

components according to Figures 3G, 3H, 3I, 3J. 

 

Clustering  

The hierarchical Ward clustering method was used in Figures 4D and 5D. 
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t-SNE representation  

The t-SNE representation were obtained using the default parameters, which are: 

Learning rate = 1000, Perplexity = 30 and Early exaggeration = 12. 

 

Performance 

The most computationally intensive part of our approach relates to the 

identification of the full set of eigenvectors and eigenvalues. We compared 

different off-the-shelf SVD approaches (28) (Supplementary Figure 15). Arpack 

implementation of standard SVD scales as 1(0 × & × Ü), where 0 is the number 

of cells, & is number of genes and Ü is the number of dimensions. One can see 

that the computational complexity scales as 1(0D) in our case. One can take 

advantage of the randomized implementations of SVD (28) that scale as 

1(0 × & × log(Ü) + (0 + &) × ÜD) , provided one avoids computing all the 

dimensions and restricts to a small number Ü. In that case, one can scale linearly 

with the number of cells 1(0). Sparse SVD does not provide additional benefits 

in our scenario, since we sacrifice the sparse inputs, by imposing a Z-score 

normalization.  MP curve fitting converges in a couple of iterations on average 

and does not present computation burden.  

 

Differential expression analysis of PBMC dataset 

In Figure 4D and 4E, we are showing new potential subpopulations of PBMC 

cells. Here, we provide a list of the most differentiated genes for the following 

populations: 
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• Dendritic cells: 

1. Dendritic 1: CCL22, FSCN1, LAMP3, IDO1, RAMP1, DAPP1, 

GRP137B, CLIC2, DUSP5. 

2. Dendritic 2: FCER1A, CLEC10A, CD36, CD9, AMICA1, CTSH. 

• CD14 Mono cells: 

1. Mono 1: FRP1, PDLIM7, HPSE. 

2. Mono2: CD9, TGFBI, LILRB4. These genes are associated with 

cells adhesion pathways. 

3. Mono3: PLA2G7, CTSL, CCL2, CXCL3, CXCL2, C5AR1, MGST1. 

• Activated B-cells: 

1. B-activated 1: MIR155HG, TVP23A, NMe1, PYCR1, MRTO4, MYC, 

SRM, DCTPP1, EBNA1BP2, FABP5. 

2. B-activated 2: CD44 (downregulated), PRDX4, CCT2. 

• Activated T-cells: 

1. T-activated 1: CD44, CCR7, GIMAP4, CD247, SELL, CLEC2D. 

2. T-activated 2: CD44 (downregulated), NR4A2, 2FAND2A, PRR7, 

SNGM15, CD69, CLK1. 
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Legends of Supplementary Figures 

Supplementary Figure 1. Distribution of spacing between the square root of 
consecutive Wishart matrix eigenvalues across experiments, and comparison 
with Wigner surmise. 
 
Supplementary Figure 2. Distribution of density of eigenvalues for the Wishart 
matrix across experiments and comparison with Marchenko-Pastur distribution. 
 
Supplementary Figure 3. Sparsity introduces changes in the distribution of the 
highest eigenvalue of the Wishart ensemble. This figure shows the deviations 
from Tracy-Widom when the fraction of nonzero values (p) goes to zero in a 
normal (top) and a Poisson distribution (bottom). As in the normal case, strong 
deviations from Tracy-Widom are observed when the Poisson parameter is small 
(lambda < 1). 
 
Supplementary Figure 4. A)  Calculation of Shannon Entropy for the 
randomized Kang et al. (18) dataset. This is another way of expressing the same 
phenomenon in Figure 2C. When the system is sparse (blue) there are 
eigenvectors whose entropy decreases. That is a sign of information contained in 
these eigenvectors. B) Calculation of the Inverse participation ratio (IPR) for the 
randomized Kang et al. (18) dataset. The participation ratio indicates the number 
of cell covariates that take part for each eigenvector. When sparsity is non-
negligible in the random system (blue), there are eigenvectors which have fewer 
cell covariates. C) t-SNE representation of the randomized Kang et al. (18)  
dataset. This shows the non-linear representation of the Figure 1D. The sparsity 
creates privileged directions in the space as it can be seen in the right panel. 
 
Supplementary Figure 5. A) Localization properties of the eigenvectors in a 
single-cell dataset of PBMC cells (18). The blue line represents the system 
dominated by sparsity and the red line corresponds to the system after removing 
sparsity. B) Calculation of the Shannon entropy for the eigenvectors of the PBMC 
(18) dataset. The blue (red) line corresponds to the system before (after) 
cleaning the sparsity. For completeness, a comparison with the non-sparse 
randomized dataset (green line) is plotted. C) Calculation of the inverse 
participation ratio (IPR) for the same dataset.  
 
Supplementary Figure 6. A) Localization properties of the eigenvectors in a 
single-cell dataset of mouse cortex cells (19).The blue line represents the system 
dominated by sparsity and the red line corresponds to the system after removing 
sparsity. The localization in the smallest eigenvector is due to the presence of 
low-expressed cells (these cells could be eliminated from the analysis). B) 
Calculation of the Shannon entropy for the eigenvectors of the mouse cortex 
cells (19) dataset. The blue (red) line corresponds to the system before (after) 
cleaning the sparsity. For completeness, a comparison with the non-sparse 
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randomized dataset (green line) is plotted. C) Calculation of the inverse 
participation ratio (IPR) for the same dataset.  
 
Supplementary Figure 7. Comparison of the t-SNE representation for the 
different methods and algorithms used in Figure 3I. This case corresponds to 15 
different mouse cortex cell-phenotypes described in (19).  
 
Supplementary Figure 8. Comparison of the t-SNE representation for the 
different public algorithms used in Figure 3H. This case corresponds to 7 
different mouse cortex cell-phenotypes described in (19). 
 
Supplementary Figure 9. Comparison of the t-SNE representation for the 
different public algorithms used in Figure 3G. This case corresponds to 13 
different PBMC cell-phenotypes sequenced in (18) and  described in (20).  
 
Supplementary Figure 10. For the case of  (18) dataset, comparison of some 
statistics before and after cleaning the sparsity A) Number of genes per cell. B) 
Number of transcripts per gene. C) Number of cells expressing a gene. D) Ratio 
of cells expressing each gene versus the average gene expression. 
 
Supplementary Figure 11. For the case of (19) dataset, comparison of some 
statistics before and after cleaning the sparsity A) Number of genes per cell. B) 
Number of transcripts per gene. C) Number of cells expressing a gene. D) Ratio 
of cells expressing each gene versus the average gene expression. 
 
Supplementary Figure 12. Schematic representation of the computational 
pipeline. 
 
Supplementary Figure 13: Implementation of three steps of the algorithm for 
denoising of single-cell data on the example of the dataset by (18) A) Shapiro 
normality test vs genes sorted by the total number of transcripts. B) Selection of 
the subset of eigenvalues that correspond to the MP distribution. C) Sample 
variance of genes projected onto signal eigenvectors, eigenvectors 
corresponding to largest eigenvalues of MP distribution, lowest eigenvalues of 
MP distribution and middle part of MP distribution. 
 
Supplementary Figure 14. Schematic representation of the Marchenko-Pastur 
distribution. 
 
Supplementary Figure 15. Performance of different SVD implementations on a 
laptop.  
 
Supplementary Figure 16. Comparison of dendritic cell populations found using 
RMT with populations found in paper (29). On the left panel, we show RMT cell-
population clusters by color, the dashed rectangle focuses on the three dendritic 
cell populations. On the right panels, we plot the dendritic cell marker genes 
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identified in Villani et al. (29). Based on this comparison, the DC1 population from 
Villani et al. (29) corresponds to RMT Dendritic 2, whereas DC3 and DC4 are 
grouped in Dendritic 1. Finally, DC5/6 correspond to RMT pDC cells. 
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