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Abstract

The availability of genome-wide maps of enhancer-promoter interactions (EPIs) has made
it possible to use machine learning approaches to extract and interpret features that determine
these interactions in different biological contexts. Multiple methods have claimed to accomplish
the task of predicting enhancer-promoter interactions based on corresponding genomic features,
but this problem is actually still far from being solved. In our analysis, we show that individual
enhancer and promoter regions have widely different marginal interaction probabilities, e.g.
propensities, which can lead to overfitting and memorization when random cross-validation is
employed. Further even when a proper cross-validation scheme is adopted, a simple propensity-
based model can still achieve a competitive performance without capturing any information
about the EPI mechanism.

Introduction

Eukaryotic gene regulation is a highly complex process that involves the interaction of distal cis-
regulatory elements, like enhancers, with the promoters of their target genes involving multi-protein
complexes. The current state of the art to assay such enhancer-promoter interactions (EPIs) is to
perform high-throughput chromatin conformation capture (Hi-C), which is an expensive technology
requiring large numbers of cells. Therefore, there is a great interest in whether computational ap-
proaches can predict EPIs from other assays or genomic annotations, including from DNA sequences
alone. In recent years there has been a proliferation of methods that claim to accomplish this task
[1, 2, 3]. Since these methods are not able to make truly novel predictions (i.e., performance in an
unseen biological context is poor), the focus has been on interpreting the models themselves [1].
The hope is that analyzing which models work best and which features are predictive may give us
some insight into the mechanistic aspects of EPIs.

Unfortunately, in our analysis we show that for the gold standard of EPIs used in several
previous studies, it is possible to achieve a very good performance without learning anything about
what drives specific interactions. Instead, the models learn to predict the interaction ”propensity” of
individual sequence elements, which is defined as the marginal probability that a particular sequence
element interacts with any other in a given gold standard. The final interaction probability can be
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computed as a function of individual propensities giving very good performance while not capturing
any information about the mechanisms of individual interactions.

Results

We analyze the datasets compiled originally by the authors of TargetFinder which claimed to
predict EPIs from various chromatin features [1]. The same standard was later used by multiple
studies to claim that it is possible to make predictions with high accuracy using sequence features
alone [2, 3]. This standard is heavily imbalanced in the sense that there are many promoters and
enhancer for which have only positive or only negative interactions. We refer to the marginal
probability that a given promoter or enhancer sequence participates in a positive interaction as
its interaction propensity. For the TargetFinder gold standard these range from 0 to 1. We then
evaluate how well we can recapitulate the gold standard given only the propensities and find that if
the propensities are known exactly we can achieve > 99% accuracy (AUC=1) on all cell-lines with
simple multiplication.

Of course, the analysis just described doesn’t account for the effect of cross validation, and the
machine learning models from [1, 2, 3] were trained using 10-fold random holdout cross validation.
Cross validation in our setting has a two fold effect. Instead of having the exact dataset-wide
propensities we now have only estimates, and, more importantly, since some promoters and en-
hancers are never seen, their propensities are unknown (and just set to the average). In this 10-fold
cross-validation framework we combine the propensities using two different methods: a simple mul-
tiplication and Gaussian Process classification. While the product assumes that propensities are
independent, the Gaussian process can fully account for all dependencies and empirically gives
better performance. But we emphasize that it is still a trivial approach designed only to estimate
individual propensities for interaction.

Nevertheless this náıve method still achieves excellent performance with all AUCs above 0.93. In
fact, our results are competitive with the models that use the full set of features, performing nearly
as well to sequence-only PEP and only slightly worse than chromatin-feature based TargetFinder.
Thus, our simple propensity model is capable of achieving performance akin to that of complex
models while using no features. The only information our model uses are the individual region
propensity estimates and the ability to match regions across the train and test split.
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Figure 1: Comparing propensity based model to other machine learning methods using random holdout. Per-
formance of PEP and TargetFinder is as reported in [2]. Propensity based model simply computes the propensity for each
enhancer and promoter based on the training set. If the particular enhancer or promoter has not been observed it is assigned
a the average propensity. The final EPI predictions are then generated either by simple propensity multiplication (product) or
by a Gaussian Process classification with the two propensities as input (optimal).
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One issue with this analysis is that neither the original TargetFinder and PEP methods nor
this propensity based analysis was done using strict cross-validation, where a set of promoters and
enhancers is entirely held out of the training. Instead the methods use random cross-validation,
where only pairs are held out. In this setting it is indeed possible for a machine learning approach
to memorize the propensities of individual regions and our analysis here simply gives a lower bound
on the performance that should be achievable from memorization alone.

It is more natural to ask how well these models perform in a strict cross-validation setting where
an entire chromosome is held-out and propensity memorization is not possible. We consequently
reran both TargetFinder and PEP with chromosome holdout. The performance of both of these
methods decreases dramatically from what was reported (see Figure 2 circles for TargetFinder with
default parameters).

Both TargetFinder and PEP rely on boosted decision trees and the published hyper-parameters
were optimized using random cross validation. We thus re-optimize the hyper-parameters to max-
imize performance on chromosome holdout. We find that the re-optimized parameters correspond
to considerably lower model capacity (see Table 1) but do improve the chromosome hold-out per-
formance (see Figure 2 triangles) which is what would be expected if random holdout results in
memorization and overfitting. We find that re-optimized PEP achieves performance that is above
random and the re-optimized TargetFinder performance is reasonably good (median AUC is 0.82)
though still considerably lower than originally reported.
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Figure 2: AUC metrics under different parameter settings using chromosomes held-out cross-validation based
on IMR90 cell line. Models were trained with chromosome hold-out and each point stands for the test performance when
the corresponding single chromosome (chr1-chrX) is held out as the test set. TargetFinder was evaluated with original reported
parameters (circles) and parameters re-optimized for chromosome holdout performance (triangles). For PEP, only re-optimized
performance is shown since the original parameters lead to a near random performance.
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Figure 3: Same predictions as in Figure 2 evaluated for Area Under Precision Recall (AUPR)

At first glance, it appears that with proper cross validation both chromatin states and even
sequence-only features contain some signal that may be used to predict EPIs. In particular, Tar-
getFinder performance is quite good given that the EPI prediction has some minimal irreducible
error due to measurement noise in both features and labels. However, given our earlier observation
that propensities alone are highly predictive, the baseline level for this classification task is not in
facts AUC=0.5 but the AUC that can be achieved with a propensity only model. We thus apply a
propensity model in the stringent chromosome hold-out setting. In this setting the propensities are
not memorized but are predicted from the TargetFinder features using standard machine learning
methods.

The complete propensity based model is built in two layers (see Figure 4). In the first layer we
use Gradient Boosting trees to predict propensities of individual elements (promoters, enhancers,
and window regions). The single numerical result from the first layer is passed to the second layer
which uses Gaussian process classifier to integrate two (E, P) or three (E, P and W) propensity
values into a single interaction probability. In contrast to the TargetFinder model, this propensity
based model doesn’t allow for the actual features from the E, P and W regions to interact. What
are visible to the second layer are just the propensity values.
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Figure 4: Schematic diagram of propensity model. In the first layer the promoter, enhancer, and window (not shown) features
are used to build a propensity model using boosted decision trees. In the second layer the propensity values are combined into
a single interaction prediction using a Gaussian Process classifier

We find that using chromosome hold-out cross-validation, the propensity-only model achieves
performance that is very close to that of TargetFinder (Figure 5). Since in the propensity model
the individual features from different regions do not interact, this gives us a baseline performance
against which other models can be evaluated and we find that relative to this baseline the perfor-
mance gains achieved by TargetFinder are minimal. In order to characterize the contribution of
individual promoter, enhancer, or window regions to final performance, we also evaluate individual
propensities. In this setting we simply assign the interaction probability for any EPI pair as the
propensity of the individual promoter, enhance, or window element. We find that in this setting
window features are most predictive though on average the complete ”EPW” model is slightly bet-
ter. This finding is consistent with the importance of window features highlighted in the original
TargetFinder paper though our analysis demonstrates that the effect is almost entirely mediated
by the window propensity.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

0.6

0.8

1.0

GM12878 HeLa−S3 HUVEC IMR90 K562 NHEK
Cell line

A
U

C

Enhancer_propensity
Promoter_propensity
Window_propensity

TargetFinder_epw_propensity
TargetFinder_epw_optimized

Figure 5: AUC metrics of different EPI prediction strategies using chromosomes held-out cross-validation across all cell lines.
Enhancer propensity, promoter propensity or window propensity means that the model only passes enhancer, promoter or
window propensity to evaluate the test performance.
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Figure 6: AUPR metrics of different EPI prediction strategies using chromosomes held-out cross-validation across all cell lines.
Enhancer propensity, promoter propensity or window propensity means that the model only passes enhancer, promoter or
window propensity to evaluate the test performance.

Conclusion

In summary we demonstrate two things: firstly, random cross-validation employed for EPI predic-
tion on the TargetFinder dataset obscures an important problem. Since the individual enhancer
and promoter regions have widely different marginal interaction probabilities (referred to as inter-
action propensities), it is possible for machine learning methods to simply memorize these values
and this alone is enough to produce a good classification performance. Our second point is that the
same issue that is able to produce dramatic overfitting on random cross-validation is still at play
even when proper cross-validation is performed. This is a general feature of any interaction predic-
tion task where the marginal interaction probabilities are different from baseline. We emphasize
that for such imbalanced datasets it is critical to establish the baseline predictive performance of a
propensity based model. Subsequently, models that are computed on the entire feature set can be
compared against that baseline. Unfortunately, for the TargetFinder dataset the propensity based
model gives a very good performance leaving little room for improvement.
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TargetFinder EP optimized TargetFinder EEP optimized TargetFinder EPW optimized
chr1 20,2 50,2 200,2
chr2 100,3 200,3 200,5
chr3 100,5 500,3 500,2
chr4 100,5 1000,2 500,6
chr5 50,5 100,2 100,2
chr6 100,2 50,4 100,3
chr7 50,3 200,2 100,5
chr8 1000,2 20,6 500,2
chr9 50,2 50,5 200,2
chr10 50,4 20,5 50,6
chr11 20,5 200,4 200,3
chr12 200,2 200,3 100,5
chr13 50,6 100,4 200,3
chr14 4000,4 50,5 500,5
chr15 50,4 50,3 50,4
chr16 200,3 100,6 50,6
chr17 20,6 100,2 100,6
chr18 100,5 50,4 200,2
chr19 20,2 20,2 20,5
chr20 2000,4 1000,4 500,5
chr21 500,4 50,3 4000,2
chr22 500,2 100,5 500,2
chrX 100,6 4000,4 200,3

Table 1: The optimized parameters for the Gradient Boosting Trees using each chromosome as the held-out test set when
running each single TargetFinder model. The default parameters for the Gradient Boosting Trees in TargetFinder models are
n estimators = 4000 and max depth = 5. The first number in each entry represents the number of estimators and the second
number denotes the depth. In aggregate the re-optimized parameters correspond to models with lower capacity.

Methods

Data

We downloaded the TargetFinder data and script from the referened github repository (https://
github.com/shwhalen/targetfinder) and followed the guide to rerun the computations and set up
runs to optimize parameters in the chromosome held-out setting by grid search. The number
of estimators is selected from [20, 50, 100, 200, 500, 1000, 2000, 4000] and the depth of the
trees ranges from 2 to 6. We downloaded the PEP data and script from the github repository
(https://github.com/ma-compbio/PEP) and also optimized the chromosome held-out performance
by grid search. The number of estimators is selected from [20, 50, 100, 200, 500, 1000, 1500, 2000]
and the depth of the trees is picked up from [2, 3, 4, 5, 10, 15].

Propensity model

Using the re-optimized parameters we observed at that of the available TargetFinder settings (EPW,
EP, and EEP) EPW achieves the best and for our propensity model we use all three features sets,
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which are enhancer features, promoter features and window features. In the first layer, we adopted
Gradient Boosting trees to generate propensity values for each category of features. In order to
constrain the complexity of the model, three Gradient Boosting classifiers share the same parameters
and we optimized the number of estimators within the set [20, 50, 100, 200, 500, 1000] and the
depth of tress within the set [2, 3, 4, 5, 6]. We utilized Gaussian Process classifier with the default
RBF kernel and we didn’t optimize on the hyper-parameters of the RBF kernel. We trained the
propensity model in a heuristic manner. We trained the first layer with enhancer feature xE,train,
promoter feature xP,train, or window feature xW,train and the interaction labels ytrain. Then we
fed the predicted propensities pE,train, pP,train and pW,train on this train set and ytrain into the
Gaussian Process Classifier (GP). Because of the scale of the data, we only subsampled 1,000 pairs
to train the GP.
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