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Abstract 

 

A signature feature of the neocortex is the dense network of horizontal connections (HCs) through 

which pyramidal neurons (PNs) exchange "contextual" information.  In primary visual cortex (V1), HCs 

are thought to facilitate boundary detection, a crucial operation for object recognition, but how HCs 

modulate PN responses to boundary cues within their classical receptive fields (CRF) remains unknown.  

We began by “asking” natural images, through a structured data collection and ground truth labeling 

process, what function a V1 cell should use to compute boundary probability from aligned edge cues 

within and outside its CRF.  The “answer” was an asymmetric 2-D sigmoidal function, whose nonlinear 

form provides the first normative account for the “multiplicative” center-flanker interactions 

previously reported in V1 neurons (Kapadia et al. 1995, 2000; Polat et al. 1998).  Using a detailed 

compartmental model, we then show that this boundary-detecting classical-contextual interaction 

function can be computed with near perfect accuracy by NMDAR-dependent spatial synaptic 

interactions within PN dendrites – the site where classical and contextual inputs first converge in the 

cortex.  In additional simulations, we show that local interneuron circuitry activated by HCs can 

powerfully leverage the nonlinear spatial computing capabilities of PN dendrites, providing the cortex 

with a highly flexible substrate for integration of classical and contextual information.  
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Significance Statement 

 

In addition to the driver inputs that establish their classical receptive fields, cortical pyramidal neurons 

(PN) receive a much larger number of "contextual" inputs from other PNs through a dense plexus of 

horizontal connections (HCs). However by what mechanisms, and for what behavioral purposes, HC’s 

modulate PN responses remains unclear. We pursued these questions in the context of object 

boundary detection in visual cortex, by combining an analysis of natural boundary statistics with 

detailed modeling PNs and local circuits. We found that nonlinear synaptic interactions in PN dendrites 

are ideally suited to solve the boundary detection problem. We propose that PN dendrites provide the 

core computing substrate through which cortical neurons modulate each other's responses depending 

on context. 
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Introduction 

 

In the primary visual cortex, the main feedforward pathway rises vertically from the input layer (L4) to 

the next stage of processing in layer 2/3 (Jennifer S. Lund, Angelucci, & Bressloff, 2003).  These "driver" 

inputs establish the L2/3 pyramidal neurons (PNs) classical receptive fields, but account for only a small 

fraction of the excitatory contacts innervating those cells (<10%) (Binzegger, Douglas, & Martin, 2004).  

A much larger number of contacts (>60%) (Binzegger et al., 2004; Stepanyants, Martinez, Ferecskó, & 

Kisvárday, 2009) arises from the massive network of horizontal connections (HCs) through which 

cortical PNs exchange contextual information (Angelucci et al., 2002; Bosking, Zhang, Schofield, & 

Fitzpatrick, 1997; Boucsein, 2011; Chisum, Mooser, & Fitzpatrick, 2003; McGuire, Gilbert, Rivlin, & 

Wiesel, 1991; Rockland & Lund, 1982).  Despite their large numbers and undoubted importance, 

relatively little is known regarding the HC’s contributions to behavior, the functional form(s) of the 

classical-contextual interactions they give rise to, or the biophysical mechanisms that underlie their 

modulatory effects. 

 

Object boundary detection provides an attractive framework for studying classical-contextual 

interactions in visual cortex, given that object contours are known to contain essential information for 

recognition (Biederman, 1987; Field, Hayes, & Hess, 1993), and neurons in the first visual cortical area 

already show strong boundary-related contextual modulation effects(C.-C. Chen & Tyler, 2001; Chisum 

et al., 2003; Kapadia, Ito, Gilbert, & Westheimer, 1995; Kapadia, Westheimer, & Gilbert, 2000; Nelson 

& Frost, 1985; Polat, Mizobe, Pettet, Kasamatsu, & Norcia, 1998) (Figure 1a).  With the aim to link this 

behaviorally relevant computation to underlying neural mechanisms, we followed a “normative” 

approach (Barlow, 1961; Laughlin, 1989; Olshausen & Field, 1996), founded on two mild assumptions: 
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(1) that the goal of some V1 neurons is to detect object boundaries in natural scenes; and (2) that 

those neurons have access through their intracortical connections to certain boundary cues both 

within and outside their CRFs.  Committing to these assumptions allowed us to interrogate natural 

images in a systematic way, and in so doing to determine what function a neuron should use to 

compute boundary probability from the available cues.  This natural image-derived “classical-

contextual interaction function” (CC-IF) served two purposes: (1) it helped put existing 

neurophysiological data on firmer theoretical ground, by providing “reasons” for nonlinear receptive 

field interactions that have been previously observed, and (2) it helped constrain the search for 

underlying neural mechanisms, by pointing to a specific function that V1 circuitry may need to 

compute, subject to the usual constraints of efficacy, biological plausibility, and parsimony. 

 

The three main stages of the work were as follows.  First, to characterize the computing problem faced 

by a putative boundary-detecting neuron in V1, we collected oriented filter responses on and off 

object boundaries in human-labeled natural images.  From this data we constructed the first (that we 

know of) natural image-derived CC-IF that captures how the contrast levels of aligned boundary 

elements within and outside a neuron's classical receptive field should be combined to determine 

object boundary probability.  As described below, the CC-IF, which we found to have an asymmetric 2-

D sigmoidal form, provides the first natural image-based explanation for three hallmark features of 

boundary related classical-contextual interactions previously reported in the neurophysiological 

literature (Kapadia et al., 1995, 2000; Polat et al. 1998). 

 

Second, we noticed that the asymmetric 2-D sigmoidal form of the boundary-detecting CC-IF  is 

qualitatively similar in form to the nonlinear 2-D input-output functions resulting from NMDAR-
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dependent spatial interactions between synapses targeting proximal vs. distal sites on a PN thin 

dendrite (Behabadi, Polsky, Jadi, Schiller, & Mel, 2012) (Figure 1b).  We therefore attempted to fit the 

input-output behavior of a detailed neuron model to the natural image-derived CC-IF, as a test of the 

hypothesis that PN dendrites could be the neural substrate where boundary-related CC-IFs are 

computed in V1.   We show that nearly perfect fits could be achieved, supporting the idea that 

nonlinear synaptic integration effects in PN dendrites could contribute to classical-contextual 

processing in V1. 

 

Third, we carried out prospective simulations to assess the generality and expressive power of this 

dendrite-based spatial/analog computing mechanism.  This was essential since the exact form of the 

boundary-related CC-IF we collected is tied to specific assumptions about (1) the inputs available to the 

pyramidal neuron – in our case, two aligned contour elements, one within, and the other outside the 

cell’s CRF), and (2) the task the neuron is supposed to perform based on those inputs – which in our 

case was calculating boundary probability.  Since either of these assumptions could have been 

different, leading to a different CC-IF, it is critical to identify sources of flexibility in the cortex that 

could allow HCs to produce a wide variety of classical-contextual interactions.  To this end we used 

compartmental models to explore the spectrum of CC interactions achievable through variations in 

single neuron and circuit-level parameters.  We conclude that PN dendrites, forming the core of the 

cortical circuit, provide a powerful computing substrate through which HCs can flexibly modulate 

neural responses depending on context. 
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Material and Methods 

 

Natural image labeling 

 

The pair-difference filter was directly inherited from an earlier study (Zhou & Mel, 2008) with all 

parameters unchanged. Image patches were selected based on their PD filter response centered at 

regularly spaced values {0, 0.1, 0.2 … 1.0} along each of the two filter dimensions, with a bin width +/-

0.005. Image patches were collected until each of the 121 bins contained at least 30, but no more than 

100 patches. The image patches were displayed in a 21-inch monitor when shown to the labeling 

participants through a MATLAB program. The patches were shown with a red box, representing the 

center receptive field (CRF) and the center dot as shown in Figure 2.2b. The labeler was told to follow 

the following rules to evaluate the existence of a contour within the center receptive field (given as 

printed instructions to them):  

(1) an object contour was present in the red box. 

(2) the contour entered one end of the box and exited the other while always remaining within 

the box. 

(3) the contour was unoccluded at the box center, indicated by the red dot.  

The labeler also received instructions to give scores in the following way: 

(1) No contour 

(2) Not likely a contour - some structured elements were seem within the CRF but not likely 

forming a contour going through it 

(3) Likely a contour - contour seen but either occluded at the center of the CRF, or is not aligned 

with the orientation of the CRF 

(4) Almost certainly a contour – contour seen but occluded at non-center positions or is slightly 

curvy. 

(5) Surely a contour with aligned orientation 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 7, 2018. ; https://doi.org/10.1101/436956doi: bioRxiv preprint 

https://doi.org/10.1101/436956


 

 

7 

 

The labeler pressed 1-5 on the keyboard to score each patch and the data were recorded 

automatically. The patches were shown in pseudorandom order. If the labeler made a mistake they 

could stop the program by pressing esc and get back to the last patch they labeled to change their 

score. Each experimental session lasted for about an hour, during which the labeler was able to label 

600-1,000 different patches. A total of 16,000 labels were collected to generate figure 2.2c. 

 

Compartmental simulation: 

 

Simulation were run within the NEURON simulation environment (version 7.5 standard distribution). 

Unless otherwise specified, the compartmental model, biophysical parameters and ion channel 

parameters regarding the NMDAR AMPAR and GABA-A were the same as in two earlier studies 

((Behabadi et al., 2012) Table 1 and (M. Jadi et al., 2012) Table 2). A 3D-reconstructed layer 3 

pyramidal neuron morphology ((Amatrudo et al., 2012), cell name “Jul16IR2b-V1”, source from 

Neuromorpho.org) was used in producing the fitting results in figure 3. For the rest of the paper 

results, a layer 5 PN morphology from prior studies (“j4”) was used (Behabadi et al., 2012), which made 

it easy to compare to the prior results. A Gaussian current was injected at the soma with a mean 

current of 1.0 nA and standard deviation of 0.75 nA. Under this condition the output was linearly 

correlated with the current flowing to the soma in range of 0-150 Hz. This was a proven-efficient way 

to remove the somatic nonlinearity. Neuron files are available upon request. 

 

In generating figure 3c, the x and y axis were elongated according to the relationship x’ = x1.5. The 

motivation was to model synaptic depression effects, in which the effect of the stimulus input with 

linearly increasing presynaptic frequency may only climb up sub-linearly. 

 

Spines were modeled as two cylindrical compartments. Unless otherwise specified, the morphology 

was as follows: neck, cylinder shape, with a height of 1 µm and a diameter of 0.05 µm; head, cylinder 

shape, with a height of 0.5 µm and a diameter of 0.5 µm. The two compartments were then attached 
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to a parent dendrite. In figure 2.5c, when simulating the “increased neck resistance” case, the diameter 

of the neck compartment is set to 0.025µm. Only excitatory synapses (AMPAR/NMDAR) were modeled 

with spine morphology. Inhibitory synapses (GABA-A) were modeled directly innervating the dendritic 

shaft without spines.  

 

All simulations were done with computational resources of the University of Southern California high 

performance computing center. 
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Results 

 

Deriving a contour-related CC-IF from human labeled natural images 

 

In studying the boundary-related responses of V1 neurons, a typical observation is that a cell's 

response to an oriented contour element inside its classical receptive field (CRF) is boosted (often 2-3 

fold) by aligned "flankers" lying outside the CRF, whereas the flankers produce little or no response on 

their own (C. C. Chen, Kasamatsu, Polat, & Norcia, 2001; Kapadia et al., 1995, 2000; Polat et al., 

1998)(Figure 1a). This nonlinear facilitatory interaction between center and flanker stimuli concords 

well with psychophysical effects (Kapadia et al., 2000; Polat & Sagi, 1994), but also seems intuitive, in 

that evidence for an object boundary within a cell's CRF ought to be "amplified" when corroborated by 

evidence from nearby locations. Our progress in understanding the biophysical mechanisms underlying 

this type of classical-contextual interaction has been hampered, though, by the lack of a method for 

quantitatively predicting the form of the CC-IF under different assumptions about a neuron's goal and 

available inputs. The ability to predict CC-IFs would be valuable in two ways: it would provide a 

reference to which a measured CC-IF could be compared, and a target towards which biophysical 

modeling efforts could be aimed. 

 

With this goal in mind, we turned to natural images to obtain an empirical CC-IF involving two aligned 

boundary elements, one inside and one outside the CRF of a virtual V1 neuron (by analogy with the 

stimulus configuration of Kapadia et al. 1995 – see Figure 1a). We first constructed a 3x5 pixel oriented 

edge filter (Figure 2a) loosely inspired by the receptive field structure of a canonical even-symmetric 

V1 "simple cell" (Hubel & Wiesel, 1962). The filter returns a value r ∈ [0,1] when applied at any 
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position/orientation in an image,  signifying the strength of the oriented luminance contrast at that 

site. Image patches (100x100 pixels) were collected at random from the Corel image database, and a 

CRF (dashed rectangle in Figure 2b), was placed (virtually) at the center of each image patch (i.e., was 

not actually drawn). Two filter values were computed for each patch: rcenter, measured within the 

virtual CRF, and rflanker from an aligned position just outside the CRF (Figure 2b).  Image patches were 

then sorted based on this pair of measured filter responses. An 11x11 grid of image bins was defined 

over the 2-D space of center-flanker response pairs. These bins were centered at regularly spaced 

values {0, 0.1, 0.2 … 1.0} along each of the two filter dimensions, with a bin width +/-0.005. Image 

patches were collected until each of the 121 bins contained a minimum of 30, but typically 100 image 

patches. A few of the image bins are illustrated schematically in Figure 2c. Image patches that did not 

fall into any bin were discarded. To collect responses from human labelers, patches in each of the 121 

bins were presented on a video monitor in pseudorandom order. Labelers were told to focus on a red 

box contained within the CRF (Figure 2b), and asked to assign a score ranging from 1 to 5 (without time 

pressure) indicating their level of confidence that all of the following were true: (1) an object contour 

was present in the red box; (2) the contour entered one end of the box and exited the other while 

always remaining within the box; and (3) the contour was unoccluded at the box center, indicated by 

the red dot in Figure 2d.  Scores were linearly converted to a [0,1] range and averaged within each bin, 

yielding a plot of ground truth "boundary probability" over the 2-D space of center-flanker score pairs 

(Figure 2e). 

 

The plot in Figure 2e illustrates three features typical of a CC-IF(Kapadia et al., 1995).  First, as the value 

of rcenter increases when rflanker is near zero, boundary probability rises to a modest level (40.5%).  In 

contrast, as the value of rflanker increases when rcenter is near zero, boundary probability remains low 
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(8.9%).  Despite this weak effect on its own, a strong flanker input more than doubles the gain of the 

response to the center input, leading to a boundary probability of 98.3% when both center and flanker 

filters are strongly activated. 

 

While other spatial configurations of two or more filters, or different filter designs, or different labeling 

criteria could have been used, it is notable that an arrangement of just two aligned filters used to sort 

image patches into bins, coupled with a simple definition of an object boundary, already allowed us to 

capture the hallmark features of a contour-related CC-IF.(Kapadia et al., 1995; Polat et al., 1998) 

 

Could PN dendrites be the site where the CC-IF is computed? 

 

What biophysical mechanisms might be capable of producing this peculiar type of functional 

interaction? The fact that horizontal and vertical inputs first converge on the basal and apical oblique 

dendrites of layer 2/3 PNs raises the question as to what role PN dendrites might play in nonlinearly 

integrating classical and contextual inputs.   A previous combined neurophysiological and modeling 

study (Behabadi et al., 2012) showed that NMDAR-dependent interactions between proximal and 

distal synapses on PN basal dendrites produce asymmetric 2-D sigmoidal interaction functions similar 

to the plot of Figure 2e (see also M. P. Jadi, Behabadi, Poleg-Polsky, Schiller, & Mel, 2014). This 

similarity led us to ask whether a spatially-biased projection pattern in which horizontal axons project 

closer to the soma where they can exert a more multiplicative effect, and vertical inputs from layer 4 

connect more distally (Figure 1b), could reproduce the boundary-related CC-IF we had extracted from 

natural images (Figure 2e). 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 7, 2018. ; https://doi.org/10.1101/436956doi: bioRxiv preprint 

https://doi.org/10.1101/436956


 

 

12 

 

To test this, we ran compartmental simulations of a PN stimulated by groups of 30 proximal and distal 

synapses (Figure 3a). Examples of simultaneous dendritic and somatic recordings are shown in Figure 

3b for 3 different input intensity combinations. Dendritic traces show either no active response (case 

1), intermittent slow dendritic spikes (case 2), or plateaus (case 3), with fast back-propagating somatic 

action potentials superimposed. We systematically varied proximal and distal input rates from 0 to 20 

Hz, and recorded the firing rate at the soma. The resulting 2-D neural response function (Figure 3c) 

closely matched the natural image-derived boundary probability plot shown in Figure 2e; the bold 

outer frames are identical in the two plots. All three hallmark features of a classical-contextual 

interaction were again present: the distal input alone drove the cell to fire at a moderate rate (11.02 

Hz). In contrast, the proximal input alone drove the cell to fire only weakly (3.16 Hz), but significantly 

boosted the gain of the response to the distal input when the two pathways were activated together 

(25.96 Hz at full activation).  Thus, we concluded that the analog nonlinear processing capabilities of 

PN dendrites are well suited to produce the asymmetric interaction between CRF and extra-classical 

inputs for purposes of boundary detection in natural images.   

 

On the nature and potential sources of the neural response asymmetry 

 

Could the asymmetry of the CC-IF be produced by a different (and especially a simpler) mechanism, not 

involving dendritic spatial integration?  A common abstraction of a neuron (or dendrite's) input-output 

function is a weighted sum of inputs followed by a sigmoidal nonlinearity, 

 

" = sigmoid	(,-.
.

∙ 0.) 
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This conventional neural activation function produces a nonlinear interaction between its inputs 0. by 

virtue of the output nonlinearity, and can even produce an asymmetric nonlinear interaction by 

assigning different weights (-.) to each input.  Can such a model, properly parameterized, capture the 

type of asymmetric nonlinear interaction expressed by the natural image-derived CC-IF, eliminating the 

need to consider more complex dendritic integration mechanisms?  To address this question, we fit 

each iso-modulator slice of the CC-IF with logistic functions whose threshold, slope, and asymptote 

were allowed to vary arbitrarily (see Figure 4 caption for formula and parameters used).  As shown in 

Figure 4a, the best-fitting sigmoids (red curves) followed a progression wherein, as the threshold (i.e. x-

coordinate of the steepest point) moved leftward under the influence of an increasing modulatory 

input, both the maximum slope and amplitude of the sigmoidal curves increased.  These correlated 

changes in threshold, slope, and amplitude are summarized graphically by the upward-leftward shift 

and steepening of the black bars marking the maximum slopes moving from low to high modulation 

levels.  The same progressive increase in slope and amplitude was seen in the proximal-distal dendritic 

interaction function (Figure 4b; note the i/o curves are plotted over a greater range of inputs than in 

Figure 4a to more fully visualize the curves' sigmoidal form).  The existence of changes in slope and 

amplitude from curve to curve rules out that the CC-IF can be represented by a conventional sigmoidal 

activation function, for which the maximum slope and amplitude of the i/o curves remain unchanged 

across modulation levels (Figure 4c; this is true regardless of which input is considered the driver and 

which the modulator).  Based on these results, we conclude that the natural image-derived CC-IF has 

nonlinear structure that falls outside the representational scope of a conventional neural activation 

function. 

Having established that a conventional sigmoidal activation function lacks the fundamental 

asymmetric structure needed to represent the natural image-derived CC-IF, we next asked whether a 
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proximal-distal separation of driver and modulator pathways on PN dendrites is necessary to achieve 

the type of asymmetric nonlinear interaction seen in the CC-IF, or whether other types of asymmetries 

between the two input pathways can produce a similar type of interaction.  

While it would be impossible to consider all possible alternatives, we identified three types of 

differences between two pathways, other than dendritic location, that could potentially produce the 

type of amplitude+slope boosting interaction seen in the CC-IF.  We then ran simulations in which: (1) 

the classical and contextual synapses were co-mingled on the dendrite, thus eliminating their spatial 

asymmetry, (2) one of the pathways retained its original biophysical characteristics and was called the 

"Standard input"; and (3) the other pathway was altered in one of three ways: 

 

1. Increased peak synaptic conductance.  Rationale: Increasing the peak conductance of an input 

pathway effectively lowers its threshold for NMDAR activation, which could lead to an enhanced 

superlinear interaction between the two pathways; 

 

2. Reduced NMDA-AMPA ratio.  Rationale: by making one (e.g. the driver) pathway less superlinear 

on its own, it might benefit more from the nonlinear excitability boost provided by the modulatory 

pathway; 

 

3. Increased spine neck resistance.  Rationale: higher spine neck resistances amplify spine voltages, 

and are said to "encourage electrical interaction among coactive inputs" and "promote nonlinear 

dendritic processing" (Harnett, Makara, Spruston, Kath, & Magee, 2012). 
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The results of these manipulations are shown in Figure 5.  In each row, the surface plot at left shows 

the 2-D interaction with the "Standard" input (same in all 3 rows) plotted on the left abscissa and the 

"Altered" input plotted on the right abscissa.  The 2-D interaction surface is shown sliced along both 

cardinal directions in the middle and right plots of each row, and the maximum slope points of the 

slices are again marked by black bars.  While the interaction functions take on various forms, in none of 

the cases or for either direction of slicing do we observe conjoint amplitude+slope increases with 

increasing value of the modulator.  Based on these negative results, we conclude that the peculiar type 

of nonlinear interaction between two inputs that arises from a dendritic location asymmetry, which 

closely matches the nonlinear structure of the CC-IF, cannot be easily reproduced by simply modifying 

the relative excitability of one of the two pathways in the absence of a dendritic location asymmetry. 

 

Interneuron circuits provide additional flexibility for tailoring classical-contextual interactions 

 

Importantly,  the natural image-derived CC-IF (Figure 2e) that has guided our search for underlying 

mechanisms is just one of an essentially unlimited number of different interaction functions that could 

be needed in different cortical areas, which must process very different kinds of information, and in 

different animal species, which must perform well in very different kinds of environments.  We 

therefore set out to more fully explore the spectrum of CC-IFs that could be produced by varying 

anatomical and physiological parameters available to cortical neurons and circuits.  As a first step we 

generated dendritic interaction functions that deviated in various ways from the standard shown in 

Figure 3c (reproduced in Figure 6a over for larger range of inputs), achieved by: (1) reducing the 

separation distance of the classical and contextual inputs from 90 to 30µm (Figure 6b); (2) altering the 

NMDA conductance model to eliminate post-synaptic receptor saturation (Figure 6c); and (3) 
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increasing spine neck resistance from 100 MW to 500 MW.  In all three cases, unlike those in Figure 4, 

synapses in both the driver and modulator pathways were identical but for their dendritic location.  

The gallery of cases in Figure 6 illustrates that even when driver and modulator synapses have identical 

properties, different spatial biases in their projections to PN thin dendrites can produce CC-IF's that are 

widely varying in functional form. 

 

An additional source of flexibility that could be used by the cortex to tailor classical-contextual 

interactions lies in the parameters that govern how inhibitory interneurons activated by horizontal 

axons affect PNs both directly and indirectly.  We focused on the circuit motif shown in Figure 7a, a 

subset of the full interneuron circuit summarized in Pfeffer, Xue, He, Huang, & Scanziani (2013) and 

Tremblay, Lee, & Rudy (2016). Our reason for focusing on the SOM->PV->PN subcircuit stems from the 

fact that SOM interneurons are strongly activated by HCs (Adesnik, Bruns, Taniguchi, Huang, & 

Scanziani, 2012), and are therefore particularly relevant for understanding contextual modulation.  

Furthermore, SOM interneurons have the interesting property that they inhibit PN dendrites directly, 

but also inhibit PV interneurons, which leads to a disinhibition of PNs perisomatically.  The net effect of 

this arrangement is that activation of HCs produce a shift of inhibition away from the soma and 

towards the dendrites of their target PNs (Pfeffer et al., 2013).  What might be the functional role of 

this local PV-SOM circuit motif? 

 

Previous work has shown that excitatory (E) and inhibitory (I) synapses interact in complex ways in 

dendrites, depending on their absolute and relative locations.(Gidon & Segev, 2012; M. Jadi, Polsky, 

Schiller, & Mel, 2012; Koch, Poggio, & Torre, 1983; Vu & Krasne, 1992)  Extrapolating from the findings 

of (M. Jadi et al., 2012), who focused on proximal-distal E-I interactions in active dendrites, we 
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expected that increasing SOM activation by HCs should have two specific effects on a PN's dendritic 

input-output curves, namely: (1) a progressive increase in the threshold (i.e. right-shifting) of the cell’s 

dendritic i/o curves, caused by the increasing distal inhibition; and (2) a progressive increase in the 

effective gain of the cell's i/o curves, caused by the cell's gradual alleviation from proximal (i.e. 

perisomatic) inhibition.  As a “control” condition, the 2-D response surface produced by the 

compartmental model with no inhibition is shown in Figure 7b, and the corresponding 1-D slices are 

shown in Figure 7c (consisting of a subset of those in Figure 4b).  The response surface with intact 

SOM+PV inhibition is shown in Figure 7d, and the corresponding 1-D slices are shown in Figures 7e.  

 

Interestingly, when a modulatory input engages the interneuron subcircuit, leading to progressive 

threshold and gain increases in the dendritic input-output curves (as shown in Figure 7d,e), the net 

effect can be to produce (1) a more purely multiplicative scaling of the dendritic response curves, as 

evidenced by the more vertical alignment of the thresholds in Figure 7e compared to Figure 7c, along 

with (2) an expanded dynamic range from low to high modulation levels, as evidenced by the greater 

vertical spread of asymptotes in the red vs. blue slices.  The functions that map the modulation 

intensity to PV (perisomatic) and SOM (dendritic) inhibitory firing rates in this example are shown in 

Figure 7f, and a detailed analysis of the separate and combined effects of the SOM and PV inhibitory 

components can be found in Figure S1.  It is important to note that the two curves shown in Figure 7f 

were designed through trial and error to achieve a pure multiplicative effect, so that pure 

multiplicative modulation is by no means an inevitable outcome of this type of circuit, nor are the 

curves in Figure 7f likely to be unique in producing a multiplicative effect.  Rather, the example is 

intended to illustrate the flexibility that even a simple interneuron circuit adds to an already richly 

expressive classical-contextual modulation capability based on pure excitatory dendritic location 
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effects (Figure 4).  A final example shows that modulation of a PN's responses by a horizontal pathway 

is not restricted even to monotonic (i.e. facilitating or suppressive) effects: the SOM and PV activation 

curves shown in Figure 7g, modified relative to those in Figure 7f, lead to the non-monotonic 2-D 

interaction surface shown in Figure 7h.  This type of interaction function might be appropriate in cases 

where (1) a driver input provides evidence for a particular preferred feature within the cell's CRF (call it 

feature A), and (2) a contextual input provides contextual support for A up to a point, which increases 

the cell's responsiveness to its primary driver input; but after that point, begins to provide stronger 

contextual support for a (non-preferred) feature B, which eventually reduces the cell's responsiveness 

to its primary driver input. 

 

To summarize, we have shown that the boundary-related CC-IF derived from natural images has a 

functional form which is outside the representational scope of a conventional neural activation 

function, but is readily produced by NMDAR-dependent spatial interactions in PN dendrites – at the 

very site where classical and contextual signals first converge in the cortex.  Probing this mechanism in 

greater depth, we showed that variations in multiple synapse-related parameters, including spine neck 

resistance, peak synaptic conductance, degree of synaptic saturation, degree of synaptic facilitation, 

and NMDA-AMPA ratio, greatly expands the space of CC-IFs that can be produced by PN dendrites 

based on purely excitatory synaptic interactions.  Finally, we showed that the spectrum of realizable 

classical-contextual interaction functions is further enriched when local interneuron circuits are taken 

into consideration.  As examples, we showed activation curves for SOM and PV interneurons that lead 

to pure multiplicative modulation, and others that produce more complex, non-monotonic forms of 

modulation (Figure 7). 
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Discussion 

 

Our overarching goal in this work has been to gain insight into how the massive network of horizontal 

connections in the cortex provides a means for PNs to modulate each other's responsivity to their 

primary CRF driver inputs through the back and forth exchange of contextual information.  To gain 

traction, we focused on the problem of boundary detection, and on the mechanisms that V1 neurons 

may use to combine classical and contextual cues for this purpose. Why boundary detection, and why 

V1?  Detecting object boundaries is a core process in biological vision, and is a crucial precursor to 

rapid object recognition(Biederman, 1987; Potter, 1976).  As for V1, psychophysical and 

neurophysiological studies suggest V1 is heavily involved in the early stages of boundary processing 

(Adini, Sagi, & Tsodyks, 1997; Angelucci et al., 2002; C. C. Chen et al., 2001; Dresp, 1993; Field et al., 

1993; Grosof, Shapley, & Hawken, 1993; Grosof et al., 1993; Ito & Gilbert, 1999; Kapadia et al., 1995, 

2000; Levitt & Lund, 2002; W. Li & Gilbert, 2002; Mizobe, Polat, Pettet, & Kasamatsu, 2001; Polat & 

Sagi, 1994; Sceniak, Ringach, Hawken, & Shapley, 1999) and the network of horizontal axons, by linking 

cells with similar orientation preferences (Bosking et al., 1997; Gilbert & Wiesel, 1989) and co-linear or 

co-circular receptive fields (Chisum et al., 2003; Schmidt, Goebel, Löwel, & Singer, 1997) seems 

“designed” with long-range contour integration in mind. 

 

By way of motivating our approach, it is useful to consider what could and could not be learned from a 

conventional study of classical-contextual interactions in V1, such as the seminal study of Kapadia et al. 

(1995). In one of their key neurophysiological findings (whose results are schematized in Figure 1a), the 

authors showed that a ~40% of V1 neurons exhibit an asymmetric nonlinear "facilitatory" interaction 

between a stimulus in the CRF that acts as a driver and an aligned flanker in the extra-classical RF that 
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acts as a modulator (i.e. does not drive the cell by itself, but “multiplies” the cell's response to its driver 

input).  What their study could not answer were two questions that correspond to our main findings 

here: 

 

1) "What should be the interaction between the center and the flanker inputs?" 

 

2) "What biophysical mechanisms are capable of generating the appropriate classical-contextual 

interaction?" 

 

We discuss our efforts to answer each of these questions below. 

 

On the various uses of the natural image-derived CC-IF 

 

Our approach to answering question 1 flows from the fact that, if we are willing to assume a neuron's 

goal is to detect object boundaries, then through a mechanical ground-truth labeling process applied 

to natural images, we can determine precisely what function the neuron should use to detect 

boundaries based on a given set of cues.  The result of this process for the center and flanker cues 

shown in Figure 2b is the CC-IF shown in Figure 2e. 

 

Having the natural image-derived CC-IF in hand provides two major benefits.  First, the CC-IF creates a 

solid link between a classical-contextual interaction of a type that has been reported in the 

neurophysiological literature (Kapadia et al., 1995) and a specific natural sensory classification problem 

that the function helps to solve.  This is the first normative account for a classical-contextual 
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interaction in the cortex that we are aware of.  Second, in relation to question (2) above, the CC-IF 

provides a well-founded target towards which biophysical modeling efforts can be aimed; this is how 

the CC-IF was used in the initial fitting exercise of Figure 3.  Furthermore, the natural image-derived 

CC-IF contains sufficient detail and structure that it can help distinguish among competing mechanistic 

models; this is how the CC-IF was used in the analyses of Figures 4 and 5. 

 

The CC-IF can be looked at in a third way: as a crude "algorithm" for detecting object boundaries, since 

it effectively scores every location in an image for boundary probability based on the responses of two 

aligned oriented filters.  We would not expect the algorithm to perform well, given that it receives 

input from just two of a large number of filters in the neighborhood that could provide information 

about the presence or absence of an object boundary.  (In contrast, full blown models of contour 

detection in V1 typically include inputs from many filters (Z. Li, 1998; Loxley & Bettencourt, 2011; 

Pettet, McKee, & Grzywacz, 1998; Ursino & La Cara, 2004; Yen & Finkel, 1998)).  Nonetheless, when 

applied to natural images as a nonlinear filter in its own right, the CC-IF should at least show some 

capability for boundary detection.  To verify this, we processed images with the local edge filter shown 

in Figure 2a, collected rcenter and rflanker values at each image location at 8 orientations and in the two 

complementary configurations shown in Figure 8a (in red and blue).  We then used the two center-

flanker value pairs as inputs to the CC-IF, and the scores obtained were averaged to yield a composite 

boundary probability measure at each location/orientation.  Boundary images were generated by 

plotting the maximum boundary probability across all 8 orientations at each pixel.  Examples of 

original, local edge, and boundary images are shown in Figure 8b-d.  Higher probability is indicated by 

darker pixels. In comparison to local edge images, boundary images emphasized longer, well-formed 

object contours while suppressing textures, resulting in images that more closely resemble line 
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drawings.  These images in effect represent how neurons that compute the CC-IF would "see" the 

world. 

 

Relationship to previous studies of object boundary statistics 

 

Ours is not the first analysis of natural image statistics pertaining to object boundaries: Geisler et al. 

(2001) collected co-occurrence statistics of local boundary elements in natural images, and showed 

that they predict human contour grouping performance. While the image statistics collected by Geisler 

et al. also relate to object boundaries, the type of data they collected and their uses of that data are 

different.  First, they began with a different premise: they assumed local boundary elements had 

already been detected. They then collected statistics such as (1) the probability that a second boundary 

element is found at all possible offsets in position and orientation relative to a first boundary element, 

and (2) the log likelihood ratio comparing the probability that a second boundary element at a given 

offset in position and orientation is part of the same or different object as a first boundary element. In 

contrast, our focus has been on the problem of discriminating object boundaries from non-boundaries 

at a given location based on a particular configuration of cues.  This difference in objective is reflected 

in the different ways the natural image data is represented: our data is represented by a function, the 

CC-IF, which describes how two scalar oriented contrast measurements should be used to compute 

boundary probability at a location.  The grouping statistics collected by Geisler et al. are represented as 

scalar values linking pairs of locations/orientations.  In terms of its application, Geisler et al. used their 

data to explain human psychophysical phenomena, whereas we have used our data to help constrain 

neural models.  In a study similar to that of Geisler et al., Sigman et al. (2001) also histogrammed the 

co-occurrence probabilities of pre-detected boundary elements at all position/orientation offsets from 
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a reference boundary location.  Their results were again expressed in terms of scalar values relating 

pairs of offset boundary elements. While interesting, their main conclusion – that boundary elements 

in natural images tend to lie on common circles – is not directly informative as to the computation 

needed to detect boundaries in the first place, nor to the neural mechanisms that may carry out those 

computations. 

 

Relationship to previous V1-inspired models of contour detection 

 

Several V1-inspired models of contour detection have appeared in the literature (Z. Li, 1998; Loxley & 

Bettencourt, 2011; Pettet et al., 1998; Ursino & La Cara, 2004; Yen & Finkel, 1998), with one of two 

objectives (or both): (1) to explain human contour detection performance as a function of various 

stimulus parameters (e.g., element spacing, contour length, open vs. closed contours, density of 

distractors, etc.) (Z. Li, 1998; Pettet et al., 1998; Yen & Finkel, 1998), or (2) to perform well at detecting 

contours in noisy artificial and natural images (Z. Li, 1998; Loxley & Bettencourt, 2011; Ursino & La 

Cara, 2004). In all cases, these models were assembled using “off the shelf” neurally-inspired 

components and operations, including weighted sums, sigmoids, thresholds, divisive normalization and 

winner-take-all operations, etc.   The core elements and operations that find their way into such 

models can generally be traced back to the earliest days of neural modeling (Rosenblatt, 1962; 

Rumelhart, Hinton, & McClelland, 1986), when a high premium was placed on the use of simple 

mathematical (or logical) operations.  This long-established tradition explains the continued 

widespread use of weighted sums to represent synaptic summation, as well as the strong preference 

for nonlinearities produced by compact algebraic expressions. 
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In contrast to previous cortically-inspired models of boundary detection, the core computing operation 

of our model (represented by the CC-IF) was not assumed to take on any particular form, let alone a 

commonly used or mathematically compact one, but rather was derived from natural image data 

under the normative assumptions that object boundary detection was the task, and certain specific 

measurements were available to the neuron to solve the task.  Interestingly, one of our key findings is 

that that core operation represented by the CC-IF is not readily expressible in the conventional neural 

vernacular, or with compact mathematical expressions of any kind.  This challenge motivated our 

second main activity, which was to search for neural mechanisms capable of producing the 

unconventional type of nonlinear interaction we uncovered.  Thus, proceeding from normative 

assumptions actively pushed us away from the simple mathematical operations used in most previous 

cortical models. 

 

Dendrites provide a parsimonious neural implementation of the CC-IF 

 

One of our key findings is the close match between the image-derived CC-IF and the neural response 

function arising from NMDAR dependent proximal-distal synaptic interactions in PN dendrites. This 

match supports the prediction that PN basal and apical oblique dendrites contribute to contextual 

processing in V1, and perhaps elsewhere in the cortex, by providing a flexible analog computing 

substrate in which behaviorally-relevant nonlinear interactions between horizontal, vertical and 

potentially other input pathways can take place.   

  

This prediction has three main preconditions: (1) appropriate physiological machinery; (2) appropriate 

anatomical connectivity; and (3) sufficient flexibility to support the tremendous range of computing 
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capabilities that the cortex is evidently capable of providing (i.e. including multiple types of sensory 

processing, motor control, language, planning, emotion, etc.).  Regarding the appropriate physiological 

machinery, a previous study carried out in brain slices established that NMDAR-dependent proximal-

distal interactions in PN dendrites are capable of providing the type of asymmetric pathway interaction 

needed to fit the image-derived CC-IF (Behabadi et al., 2012; reviewed in M. P. Jadi et al., 2014).  

Regarding the appropriate anatomical connectivity, the first requirement is that classical (vertical) and 

contextual (horizontal) axons should target at least some of the same dendrites of PNs.  Existing data 

strongly supports this: both horizontal and vertical axons terminate on PN dendrites throughout 

cortical layer 2-3  (Binzegger et al., 2004; Chisum & Fitzpatrick, 2004; Jennifer S. Lund et al., 2003; 

Yoshimura, Sato, Imamura, & Watanabe, 2000).The more demanding requirement is that horizontal 

and vertical axons project to PN dendrites with different spatial biases, especially along the proximal-

distal extents of individual basal or apical oblique dendrites.  Very little connectivity data is currently 

available at this sub-dendrite scale, though several observations, taken together, suggest that within-

dendrite biases of this kind are biologically feasible: (1) the axonal projections of inhibitory neurons 

show famously strong spatial biases at the sub-dendrite scale (Bloss et al., 2016; DeFelipe, Ballesteros-

Yáñez, Inda, & Muñoz, 2006; Karube, Kubota, & Kawaguchi, 2004; Tremblay et al., 2016); (2) excitatory 

pathways have well known spatial biases of other kinds, for example, they can selectively target 

dendrites in specific layers or parts of layers (Harris & Shepherd, 2015; J. S. Lund, 1988; Petreanu, Mao, 

Sternson, & Svoboda, 2009); (3) excitatory axons are subject to activity-dependent clustering, 

producing a tendency for co-activated axons to form contacts on nearby spines (DeBello et al., 2014; 

Iacaruso, Gasler, & Hofer, 2017; Lee, Soares, Thivierge, & Béïque, 2016; van Bommel & Mikhaylova, 

2016, 2016; Weber et al., 2016); (4) individual excitatory axons can show strongly biased projections at 

the sub-dendrite scale (Bloss et al., 2018; Morgan, Berger, Wetzel, & Lichtman, 2016) (5) proximal vs. 
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distal synapses can be subject to different plasticity rules, which could lead to a spatial sorting-out of 

functionally distinct input pathways (Froemke, Poo, & Dan, 2005; Gordon, Gribble, Syrett, & Granato, 

2012; Sandler, Shulman, & Schiller, 2016); and (6) differences in EPSP rise times suggest horizontal vs. 

vertical axons (Yoshimura et al., 2000) and near vs. far horizontal connections onto pyramidal neurons 

(Schnepel, Kumar, Zohar, Aertsen, & Boucsein, 2014) do, on average, terminate at different distances 

from the soma. 

 

Regarding the flexibility to produce a rich spectrum of CC-IFs in the cortex, as our compartmental 

simulations show, on top of the inherent spatial processing capabilities of PN dendrites, allowing 

variations in multiple synapse-related parameters, including spine neck resistance, peak synaptic 

conductance, degree of synaptic saturation, degree of synaptic facilitation, and NMDA-AMPA ratio, 

significantly expands the space of CC-IFs that can be produced by PN dendrites – even when limited to 

purely excitatory synaptic interactions.  The spectrum of realizable CC-IFs is then greatly expanded 

when the parameters of local interneuron circuits are brought into play. 

 

To summarize, PN dendrites have the appropriate capabilities, are located at the appropriate place, 

and are part of a circuit with the appropriate flexibility to contribute centrally to the integration of 

classical and contextual signals in V1, and potentially other cortical areas.  Whether this powerful and 

flexible computing resource is used in the cortex for contextual processing remains an open question, 

but one that is answerable with currently available experimental techniques. 
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Figure 1. Classical contextual interactions in V1: phenomenon and proposed conceptual circuit.  

a. Schematic of key result of Kapadia et al. (1995).  Cell recorded in monkey V1 showed modest 

response (~20Hz) to bar stimulus in CRF (dashed box); ~no response to flanking bar stimulus in 

surround,  but strongly boosted response when flanking bar was paired with the CRF stimulus.   

b. Circuit model potentially accounting for the “multiplicative” classical-contextual interaction in 

a. Driver input representing the CRF stimulus rises vertically from layer 4, terminating with a 

distal bias on basal dendrite of a layer 2/3 PN. Horizontal input from neighboring V1 cell 

representing the flanker stimulus terminates on same PN dendrite with a proximal bias.  From 

Behabadi et al (2012), the proximal modulator is expected to multiplicatively boost the dendrite’s 

response to the driver input. 
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Figure 2. Measurement of a classical-contextual interaction function (CC-IF) from human-

labeled natural images. a. Schematic of oriented edge filter. The filter response was obtained by 

computing pairwise differences PDs for five pixel pairs, each separated by an unsampled pixel. 

Each PD was passed through a sigmoidal nonlinearity, given by x/(0.2+x) for x�0, and x/(0.2-x) 

for x<0, and the results were summed. Sign indicated edge polarity. b. Sample image patch 

shown with the CRF of a virtual V1 neuron superimposed (dashed box).  Each patch was 

characterized by responses of two aligned filters rcenter within the CRF, and rflanker just outside the 

CRF. c. Image patches were drawn at random from a natural image database and binned 

based on rcenter and rflanker values, forming a 2-dimensional space of bins. Only 3 of the 11 bins 

are shown along each axis. d. Human labelers were asked to judge whether an object contour 

was present in the red box that entered one end, exited the other, remained always within the 

box, and was unoccluded at the center.  Scores were assigned as follows: 1 = “definitely no”, 2 

= “probably no”, 3 = “can’t decide”, 4 = “probably yes”, 5 = “definitely yes”.  Examples of patches 

that received each label are shown. e. Boundary probability within each image bin was plotted 

as a function of rcenter and rflanker.  
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Figure 3. Responses of a biophysically-detailed compartmental model of a layer 2-3 PN in 

response to two spatially-separated excitatory inputs delivered to a basal dendrite. Model 

neuron was from  macaque V1 (see methods for detail).  a. Two excitatory input “pathways”, 

each consisting of 30 identical excitatory spine synapses, were placed in clusters at 60 and 120 

µm from the soma. Each spine contained both an NMDA and an AMPA-type conductance (see 

Methods), and was stimulated by a regular spike train (with random phase) with frequency 

ranging from 0-20 Hz. Voltage was recorded at the soma and in the stimulated dendrite 90 µm 

from the soma. b. Dendritic and somatic recordings for 3 representative cases: (1) 17.5 Hz 

proximal and 2.5 Hz distal simulation. (2) 2.5 Hz proximal and 17.5 Hz distal; and (3) both 

proximal and distal at 17.5 Hz.  All traces started from -70 mV. c. Firing rates were averaged 

over 10 1-second runs. Bold outer frame is identical to that in Figure 2e. 
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Figure 4. Nonlinear structure of the image-derived CC-IF compared to a dendritic proximal-

distal interaction function, and a conventional sigmoidal neural activation function. a. Each CC-

IF slice (blue) was fit by a logistic function (red) with variable threshold, slope, amplitude, and y-

offset. Steepest slope of each fit is marked by an asterisk; black bars at lowest and highest 

modulation levels help visualize progression of threshold and slope values. Progression of 

inflection points has a significant non-zero slope (two sided test, p<0.01) b. Same as a but for 

responses of compartmental model with a distal driver and proximal modulatory input.  Slices 

are plotted over a larger range of inputs than in a for better visualization of the sigmoidal form. 

c. Progression of i/o curves of a conventional sigmoidal activation function with two inputs; peak 

slopes remain constant regardless of “modulation” level. 
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Figure 5. Analysis of dendritic response asymmetries due to differences other than spatial bias. 

In all cases, both Standard and Altered inputs were located 60 µm from the soma.  Only one 

synaptic parameter was changed in the Altered input; Standard input was always the same. a. 

Peak synaptic conductance was increased 3-fold in the Altered input. Panel a1 shows the 2-D 

response surface; panels a2 and a3 show slice views of the same data.  Black bars again show 

steepest points of individual i/o curves.  Dashed arrow shows direction of increasing modulatory 

level. b. Same as a but Altered input has NMDA/AMPA ratio lowered from 2 to 0.1 Total 

conductance was increased to produce roughly the same amount of activation compared to the 

Standard input. c. Same as a but Altered input had spine neck resistance increased 3.5 fold to 

~500MΩ.  
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Figure 6. Variations in dendritic response functions resulting from changes in parameters of the 

compartmental model. a. 2-D response surface for a standard seed condition (proximal-distal 

separation = 90 µm, spine neck resistance = 100 MΩ, synaptic peak conductance = 2 nS, and 

synaptic saturation “cap” was 100% (meaning that a single presynaptic release event saturated 

all available channels at the synapse; a cap of 200% meant that through repeated stimulation, 

temporal facilitation could produce up to twice the base conductance; a cap of ¥ meant synapse 

did not saturate at any rate.  b.  Spatial separation of the two inputs was reduced to 30 µm. c. 

Synaptic saturation cap was set to ¥. d. Spine neck resistance was set to ~500 MΩ. 
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Figure 7. Dendritic spatial processing capabilities can be leveraged by local inhibitory circuits. 

a. Conceptual model modified from Figure 1b to include a SOM->PV interneuron circuit. SOM 

interneuron inhibits PN dendrite distally; PV interneuron inhibits PN perisomatic region, and is 

inhibited by SOM interneuron. SOM neuron is driven by horizontally offset modulator. b. 

Dendritic response function with pure excitatory spatial interaction, similar to Figure 3c with 

input range extended. c. Slices of  surface in b (only even numbered lines are shown.) d, e. 

Same as b and c but with inhibitory effects included. Progression of i/o curves follows a 

relatively pure multiplicative scaling (as evidenced by aligned thresholds) with increased 

dynamic range. f. Activation curves of PV (green) and SOM (blue) interneurons used for the 

simulation shown in d and e. g, h. An alternative set of PV and SOM activation curves, 

providing an example of a non-monotonic modulatory effect. 
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Figure 8. Applying the CC-IF as a nonlinear image filter. a. Two pairs (red and blue) of center 

and flanker edge filters in configurations like that shown in Figure 2b were evaluated at every 

pixel at 8 orientations (illustrated here for the horizontal orientation).  Each pair of filter values 

was run through the CC-IF, and the results from the two configurations were averaged at each 

pixel/orientation.  The contour response at each pixel was the maximum across all 8 

orientations.  b. Original images. c. Local edge images.  Maximum edge score across all 

orientations at each pixel is indicated by the darkness of the pixel.  d. Contour image.  As for 

local edges, darker pixels indicated stronger contours. Contour images emphasized spatially-

extended object contours and suppressed textures. 
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Figure S1. Elaboration of simulation run of Figure 7b-e leading to multiplicative scaling of i/o 

curves through combined effects of SOM and PV inhibition (and disinhibition).  Each row shows 

circuit modeled; slices of 2-D response surface; and progressions of amplitude and threshold of 

best-fitting logistic function across modulation levels.  a. Excitation only circuit, same as figure 

7b. Amplitudes increase and thresholds decrease for increasing modulation levels.  b. Circuit 

with disinhibition caused by inhibition of PV neuron by SOM neuron.  Main effect is to increase 

dynamic range of response amplitudes as PV interneuron is progressively shut down.  c. Circuit 

now including only dendritic inhibition by SOM interneuron. Main effect is threshold increase 

(and therefore gradual alignment of thresholds) across modulatory levels. d. Circuit combining 

both the dynamic range increase from b and threshold alignment from c.  Effect is now a 

relatively pure multiplicative scaling of i/o curves over a large dynamic range, as in Figure 7d-e. 
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