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Abstract

Single cell RNA sequencing (scRNA-seq) technology has undergone rapid development in recent years,
bringing with it new challenges in data processing and analysis. This has led to an explosion of tailored
analysis methods for scRNA-seq to address various biological questions. However, the current lack of
gold-standard benchmarking datasets makes it difficult for researchers to evaluate the performance of the
many methods. Here, we designed and carried out a realistic benchmark experiment that included
mixtures of single cells or ‘pseudo-cells’ created by sampling admixtures of cells or RNA from 3 distinct
cancer cell lines. Altogether we generated 10 datasets using a combination of droplet and plate-based
scRNA-seq protocols, with varying data quality, population heterogeneity and noise levels. Using these
benchmark datasets, we compared different protocols, evaluated the spike-in standard and multiple data
analysis methods for tasks ranging from normalization and imputation, to clustering, trajectory analysis
and data integration. Evaluation of methods across multiple datasets revealed some that performed well
in general and others that suited specific situations. Our dataset and analysis provide a comprehensive
comparison framework for benchmarking most popular scRNA-seq analysis tasks.
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The rapid development of transcriptomic technology for single cell analysis has created a need for
systematic benchmarking in order to understand the strengths and weaknesses of different platforms and
computational methods. To date, there have been several comparison studies of different protocols and
computational methods for single cell RNA sequencing (scRNA-seq). Svensson et al. [47] compared the
quality of many publicly available datasets using spike-in controls, together with in-house data generated
using mouse embryonic stem cells and human brain total RNA. Another recent study by Tung et al. [49]
focused on the assessment of batch variation in scRNA-seq data and highlighted the importance of
experimental designs that avoid confounding of biological and technical effects. In addition to protocol
comparisons, several studies have assessed the performance of different scRNA-seq data analysis methods
for tasks including normalization [4], feature selection [54], differential gene expression analysis [45],
clustering [6, 7] and trajectory analysis [42]. These studies compare methods using either experimental
data where cell type labels are available or simulated datasets. Such ground truth is however imperfect,
and simulations rely on assumptions that may not reflect the true nature of scRNA-seq data.

Considering the heterogeneity between scRNA-seq datasets in terms of the number of clusters (cell
types/states) and the presence of various technical artifacts, we set out to design a realistic gold-standard
scRNA-seq control experiment that combines ground truth with varying levels of biological complexity.
Two strategies are commonly employed to create such gold-standard gene expression datasets. The first
uses small collections of exogenous spike-in controls (such as ERCCs [19]) that vary in expression in a
predictable way, which have been widely adopted in scRNA-seq studies [47]. The second involves either
the dilution of RNA from a reference sample or mixing of RNA or cells from two or more samples to
induce systematic genome-wide changes. An early example of an scRNA-seq control dataset was
presented in Brennecke et al. [3] and involved a dilution series to explore sensitivity of the Smart-seq
protocol. Grün et al. [8] generated a benchmark dataset using single mouse embryonic stem cells (mESC)
together with bulk RNA extracted from the same population, diluted to single cell equivalent amounts to
quantify biological and technical variability. A limitation of these experiments is their lack of biological
heterogeneity which makes them less useful for comparing analysis methods. Mixture designs, in which
RNA or cells are mixed in different proportions to generate biological heterogeneity with in-built truth
have been successfully used to benchmark microarray [5], RNA-seq [44] and scRNA-seq data [49].

To combine the strengths of these approaches, we designed a series of experiments using mixtures of
either cells or mRNA from 3 cancer cell lines and included a dilution series to simulate variations in the
mRNA content of different cells as well as ERCC spike-in controls wherever possible. Data were
generated across four single-cell platforms (CEL-seq2, 10X Chromium, Drop-seq and SORT-seq). Our
scRNA-seq mixology design simulates varying levels of biological noise, and contains known population
structure to allow benchmarking of different analysis tools.

In this article we specifically highlight data processing, quality control, normalization and imputation,
clustering, trajectory analysis and data integration to showcase the broad range of tasks that our unique
collection of datasets allows us to benchmark. Our analyses across multiple datasets allows evaluation of
the generalizability of different methods to help inform best practice in data analysis.

Results

scRNA-seq mixology provides ground truth for benchmarking

As summarised in Supplementary Table 1, the scRNA-seq benchmarking experiment spanned 2
plate-based and 2 droplet-based protocols and involved 3 different experimental designs with replicates,
yielding 10 datasets in total. Our experiment used the 3 human lung adenocarcinoma cell lines H2228,
H1975 and HCC827, included either mixtures of RNA or single cells from these cell lines. For the single
cell designs, the 3 cell lines were mixed equally and processed by 10X Chromium, Drop-seq [31] and
CEL-seq2 [13] (referred to as sc 10X, sc Drop-seq and sc CEL-seq2 respectively). For the ‘pseudo cell’
designs, we used plate-based protocols to mix and dilute samples in 2 different ways. For the first, we
created 9-cell mixtures from the 3 cell lines by sorting different combinations of cells and generating
libraries using CEL-seq2. The material after pooling from 384 wells were sub-sampled to either 1/9 or
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1/3 of the total mixture to simulate cells with varying mRNA content and using different PCR product
clean up ratios (sample:beads) ranging from 0.7:1 to 0.9:1. These data are referred to as cellmix1 to
cellmix4 (Supplementary Figure 1B; Supplementary Table 1). We also sorted wells with 90 cells to
provide a pseudo bulk reference for each mixture (referred to as cellmix5). The second design created
‘pseudo cells’ by mixing bulk mRNA obtained from each cell line, which were diluted to create single cell
equivalents (ranging from 3.75, 7.5, 15 and 30 pg per well) to again create controlled variations in mRNA
content. Data were generated for this RNA mixture design using CEL-seq2 and SORT-seq [33] (referred
to as RNAmix CEL-seq2 and RNAmix Sort-seq, Supplementary Figure 1A; Supplementary Table 1).

The three designs incorporate ground truth in various ways. For the single cell mixture datasets, the
ground truth is the cell line identity which can be determined for each cell based on known genetic
variation. The single cell mixtures were also generated using three different technologies, allowing
cross-platform comparisons and testing of data integration methods. The ‘pseudo cell’ datasets contain
more clusters than the single cell datasets, and these clusters are more similar to each other, giving a
continuous structure that simulates what may be expected in cell differentiation studies, where cells are
transitioning between states. For the cell and RNA mixtures, the composition of cells/RNA that make
up each ‘pseudo cell’ are known, which serves as our ground truth. Moreover, the RNA mixture dataset
contains technical replication and a dilution series, which is ideal for benchmarking normalization and
imputation methods that are intended to deal with such technical variability. The data characteristics
and analysis tasks each experimental design is best suited to benchmark are summarized in
Supplementary Table 2.

Quality control metrics allow comparisons between platforms

By comparing a range of quality control metrics collected across datasets using scPipe [48], we observed
that the data from all platforms were of consistently high quality in terms of their exon mapping rates
and the total unique molecular identifier (UMI) counts per cell (Supplementary Figure 2A-C). After
normalization, the Principal Component Analysis (PCA) plots from three representative datasets show
that our 9-cell mixture and RNA mixture datasets successfully recapitulate the expected population
structure induced by our design (Figure 11C). Comparison of the three single cell datasets shows that
the 10X platform outperforms the others in almost all aspects, regardless of the variation in sequencing
depth (Supplementary Figure 2D). The UMI counts for CEL-seq2 were less than that observed for 10X,
but consistent among single cell, 9-cell mixture and RNA mixture datasets, suggesting the robustness of
the protocol. The data quality for SORT-seq was slightly lower than for CEL-seq2, which is likely due to
technical artifacts encountered during sample pooling. The difference in data quality between the 9-cell
mixture datasets highlights the importance of choosing the right clean up ratio, as decreasing the ratio
decreased the yield and complexity of the PCR library and reduced the UMI count per cell
(Supplementary Figure 2D).

Intron mapping rates vary between platforms and conditions

As the proportion of reads that mapped to introns has not been explored in detail in previous studies, we
investigated the intron mapping rates across all datasets and platforms (Figure 1E). Interestingly, we
found substantial differences in the percentage of reads mapping to intron regions in datasets generated
from different protocols and experimental designs. The single cell datasets, although prepared from the
same batch of cells, exhibit substantial variability in intron mapping proportions between the three
protocols, with 10X showing a much lower proportion of intron reads. In contrast, Drop-seq had the
highest proportion of reads mapping to introns. The clean up ratio after PCR alters the fragment length
in the final sequencing library, with smaller fragment size resulting from increased clean up ratios.
Interestingly, the clean up ratio also affected the intron mapping rate, with intron signal decreasing as
the fragment size decreased, which is caused by the clean up ratio.
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Figure 1. Overview of our scRNA-seq mixology experimental design. (A) The three different
designs that used three distinct cell lines are shown from left to right. 1) Single cells from each line
were combined in equal proportions and scRNA-seq was performed using the CEL-seq2 (sc CEL-seq2),
Drop-seq (sc Drop-seq) and 10X Chromium protocols (sc 10x). 2) ‘Pseudo cells’ were created by sorting
different combinations of 9-cells from the three cell lines into 384-well plates and subsequently diluting
them to obtain single cell equivalent amounts of RNA (cellmix1 to cellmix4). 90-cell mixtures were also
include to create pseudo bulk references for each mixture (cellmix5). 3) ‘Pseudo cells’ were created by
mixing RNA obtained from bulk samples from the three cell lines in different proportions and diluting the
samples to vary the mRNA amount from 3.75pg to 30pg (RNAmix CEL-seq2, RNAmix Sort-seq). (B)
Several quality control metrics, including the number of genes detected and the number of UMI counts
per cell are shown in a heatmap, together with other data characteristics such as population heterogeneity
and the average biological coefficient of variation (BCV) obtained from an edgeR analysis. Additional
quality control metrics are shown in Supplementary Figure 2. (C) PCA plots from representative datasets
for each design (normalized using scran) highlight the structure present in each experiment. The single
cell design is simplest, with 3 distinct groups related to cell line identity, while the 9-cell and RNA
mixtures are more complex with more groups (34 or 7 respectively). This in-built truth can be used to
benchmark different analysis methods. (D) Scatter plot of ERCC counts versus total UMI counts per
cell, colour coded by the different RNA amounts. (E) The intron mapping rate across all datasets.

ERCC spike-ins correlate with technical noise in the RNA mixture dataset

ERCC spike-in sequences have been widely used in scRNA-seq experiments to estimate technical noise,
and the assumption that the biological variation of endogenous mRNAs does not affect ERCC spike-ins
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has been argued in previous studies. Considering that measuring the RNA abundance of single cells is
difficult, we designed the RNA mixture experiment to have 4 different RNA amounts (3.75, 7.5, 15 and
30 pg) to create controlled variation in mRNA content. This dataset shows comparable quality control
metrics to real single cell datasets, including the number of genes detected and the number of total UMI
counts per cells (Supplementary Figure 2B-C). Under the assumption that the total UMI count for each
cell is influenced by the mixture design, the RNA amount and technical noise which represents variations
in capture efficiency for each sample, 3 different linear mixed models were proposed and compared
(Supplementary Table 3). Model I used the mixture information as a covariate and included a random
intercept for each RNA amount, so that samples with different RNA amounts have different intercept
values. Model II expanded upon Model I by adding ERCC spike-in counts as a further covariate and
assuming fixed effects, with the coefficients in the linear model not changing with different RNA
amounts. Model III assumes random coefficients for ERCC spike-in counts, which allows for a distinct
slope for the different RNA amounts. According to the AIC and p-value from model comparison using
ANOVA, the addition of ERCC spike-in counts (Model II) greatly improved the model fit, while the
random slope assumption of the ERCC spike-in counts (Model III) was unnecessary. Examination of the
scatter plot of total UMI counts versus the ERCC spike-in counts show this clearly, with consistent
slopes for different RNA amounts (Figure 1D). This relationship suggests that the ERCCs correlate with
the variation of total count in the RNA mixture data given the same RNA amount. The ERCC counts
have similar distributions among samples that have different RNA amounts, which invalidates the
common assumption that ERCC spike-ins are less likely to be sampled when the amount of endogenous
mRNA in a cell is high [47].

Comparison of normalization and imputation methods

Normalization is an important step in the analysis of scRNA-seq data, with the general goal of removing
technical noise while retaining biological signal. Imputation on the other hand recovers missing data due
to dropout events, which are excess zero counts caused by the limited capture efficiency of scRNA-seq
protocols. We evaluated 12 normalization and imputation methods, with methods designed for bulk
RNA-seq such as TMM [39], CPM [38] and DESeq [29], and methods designed for scRNA-seq, including
ZINB-WaVE [37], scone [4], kNN smooth [52], BASiCS [50], SCnorm [1], Linnorm [55], scran [30],
SAVER [16] and DrImpute [23]. Performance was evaluated using 2 metrics: the Pearson correlation
coefficient of normalized gene expression among technical replicates for the RNA mixture data, and the
silhouette width of clusters for all 3 designs. The silhouette width was calculated based on the PCA
results obtained for each method. Example PCA plots for 3 methods (scran with DrImpute imputation,
BASiCS and kNN smooth) applied to the RNA mixture data show dramatic differences between methods
(Figure 2A). Methods such as kNN smooth failed to recover the designed population structure. In
general, the gene expression correlation of technical replicates was lower for smaller amounts of RNA,
due to the higher drop-out frequency (Figure 2B). Imputation methods such as kNN smooth, SAVER
and DrImpute all systematically improved the correlations between technical replicates and reduced the
differences in correlations between RNA amounts when compared to different normalizations alone. This
clearly demonstrates that imputation can remove noise due to drop-out events as intended. A large
diversity was seen in silhouette width among different methods in different datasets. We found scran and
Linnorm to have good normalization performance among all datasets, and normalization when combined
with imputation gave the best performance (Figure 2C). The kNN smooth method outperformed other
methods in the single cell datasets but its performance degraded in the other datasets which had more
complex population structure (Supplementary Figure 3). The reason for this may be because kNN
smooth averages the UMI counts for each cell with its nearest neighbors iteratively, which guarantees a
reduction in noise, but may introduce new biases when the kNN search is influenced by technical
variation (i.e. if the neighbor of a cell is not biologically relevant but technically relevant, such as cells
coming from the same batch or having the same library size). ZINB-WaVE on the other hand was able
to preserve the biological structures of the mixtures, but had much lower correlations among technical
replicates after normalization.
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Figure 2. Comparisons of normalization and imputation methods using multiple mixture
datasets (A) Example PCA plots after normalization and imputation by different methods using
the RNAmix CEL-seq2 dataset. (B) Pearson correlation coefficients of technical replicates in the
RNAmix CEL-seq2 dataset after normalization and imputation by different methods. (C) Silhouette
widths calculated using the known cell/mixture groups after different normalization and imputation
methods, using the datasets cellmix3, RNAmix CEL-seq2 and sc CEL-seq2. The distance is normalized
against the baseline silhouette width obtained from the raw unnormalized read counts.
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Comparison of clustering methods

The benchmark datasets we designed vary in population heterogeneity, ranging from low in the single
cell dataset to medium in the RNA mixture experiment, to high in the 9-cell mixtures. This allowed us
to assess clustering performance in a variety of settings. Six methods, including RaceID [9], RaceID2 [10],
RCA [25], Seurat [31], clusterExperiment [35] and SC3 [21], were evaluated using all benchmarking
datasets. We measured the performance of the different clustering methods by calculating the entropy of
cluster accuracy and cluster purity. The entropy of cluster accuracy is defined as the average of the true
cluster labels within each cluster computed for each method. A low entropy of cluster accuracy indicates
that the cells in a cluster identified by the method are homogeneous, which means that cells belonging to
the same cluster are likely to be assigned to the same cell type. Some methods over-cluster which will
produce low entropy of cluster accuracy; an extreme example would be if each cell is assigned its own
individual cluster, in which case the entropy of cluster accuracy would be zero. Therefore, we use a
second metric, entropy of cluster purity, to measure whether cells that have the same annotated group
will have a similar cluster specification as calculated by the clustering method. In contrast to the entropy
of cluster accuracy, the entropy of cluster purity lacks control of under-clustering and in an extreme case
it can be zero when all cells are assigned to the same cluster. These two metrics were used together, to
account for both under-clustering and over-clustering for each method (Figure 3A). We found good
correlation between these two metrics and the Adjusted Rand Index (ARI) [17], which is a commonly
used metric to evaluate the clustering performance by computing the similarity to the annotated clusters
(Supplementary Figure 4). Unlike the ARI which only measures similarity, these metrics can capture
both under-clustering and over-clustering and reveal more heterogeneity among different methods.

The results for 3 representative datasets are shown in Figure 3, with the remaining shown in
Supplementary Figure 4. No method uniformly outperformed others across all situations under default
settings. In general, SC3 and Seurat achieved a good balance between under-clustering and
over-clustering across all datasets, performing best when there was clear separation between cell types, as
was the case in the single cell datasets (Figure 3B). The accuracy of all methods was lowest in the 9-cell
mixture dataset (Figure 3D, these datasets also had the lowest ARI values as shown in Supplementary
Figure 4) due to the continuous population structure which gives low separation between different
clusters. RaceID2 had high accuracy, but produced many more clusters than other methods, suggesting
that it may be best suited to datasets where many small populations exist. On the other hand, RaceID
significantly underestimated the number of clusters, returning fewer clusters than the optimal number.
The clusterExperiment method failed to produce results for all RNA mixture and cell mixture datasets.

Comparison of trajectory analysis methods

Five methods, including Slingshot [46], Monocle2 [36], SLICER [53], TSCAN [18] and DPT [11] were
evaluated using the RNA mixture and cell mixture datasets. These datasets were chosen as they both
contain clear ‘pseudo’ trajectory paths from one pure cell line to another that are driven by controlled
variations in RNA amount. For simplicity, we chose H2228 as the root state of the trajectory
(Figure 4A). We evaluated the correlation between the pseudotime generated from each method and the
rank order of the path from H2228 to the other cell lines (Figure 4B) to examine whether each method
can position cells in the correct order. In addition, we calculated the coverage of the trajectory path
(Figure 4C), which is the percentage of cells that have been assigned to the correct path, and assesses the
sensitivity of the method. We randomly sampled highly variable genes as input, to assess the variation
and robustness of each method. Slingshot and Monocle2 showed robust results according to both metrics
and generated meaningful representations of the trajectory, while Slingshot sometimes gave an extra
trajectory path (Supplementary Figure 5). In contrast, SLICER places all cells in the correct path but
was unable to order them correctly or recover the expected structure induced by the mixture designs.

Despite the similar performance of Slingshot and Monocle2, their results differ in terms of the way
they position the cells. Slingshot does not perform dimensionality reduction itself and presents the result
as is, whereas Monocle2 uses DDR-tree for dimensionality reduction, and tends to place cells at the
nodes of the tree rather than in transition between two nodes (Figure 4A). For example, the RNA
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Figure 3. Comparison of scRNA-seq clustering methods. (A) An overview of the evaluation
approach. High entropy of cluster accuracy measures the degree of over-clustering, while high entropy of
cluster purity measures under-clustering. The clustering tree adopted from the package Clustree [56].
(B,C,D) Entropy of cluster purity versus entropy of cluster accuracy for representative single cell (sc 10X),
RNA mixture (RNAmix CEL-seq2) and cell mixture (cellmix3) experiments. The clustering results
for two methods, Seurat and RaceID2 were plotted for each design, with cells colour-coded by cluster
assignment. The value of n indicates the number of clusters found by each method.
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Figure 4. Comparison of scRNA-seq trajectory analysis methods. (A) The trajectory path
chosen for the RNA mixture dataset (top) and cell mixture dataset (bottom) along with visualizations
of the output from Slingshot, Monocle-DDRTree and SLICER. Cells are coloured by the proportion of
H2228 RNA present, which was chosen as the root of the trajectory. (B) Boxplot showing the Pearson
correlation coefficient between the calculated pseudotime and the ground-truth for each method, with
genes randomly sub-sampled to assess robustness. (C) The percentage of cells that are correctly assigned
to the trajectory, again with random sub-sampling of genes to assess robustness.

mixture dataset has 7 clusters by design which are equally distributed along the path between one pure
cell line and another. Monocle2 assigns most of the cells to the three terminal states, leaving only a few
in between, which does not reflect the designed structure. Indeed, this feature might fit real situations in
cell differentiation, where most cells are in defined cell states with only a small proportion in transition
between different groups. However, such an assumption may not always hold and care is therefore
needed when interpreting the results.

Comparison of data integration methods

Whilst combining scRNA-seq data between studies is an attractive way to increase cell number and
ensure reproducible results, there are many challenges such as the high drop-out rate, large technical
noise introduced by library preparation and difference in sequencing depth. Several methods have been
proposed to solve this problem, but havn’t been compared by a well-designed benchmark dataset. Since
the single cell and RNA mixture data were generated using multiple protocols, we used these datasets to
compare these state-of-art methods including MNN [12], Scanorama [14], scMerge [28], ZINB-WaVE [37],
Seurat [43] and MINT [40]. As expected, when naively combining the independent datasets (single cells
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Figure 5. Comparisons of data integration methods for batch effect correction for the three
single cell experiments and the RNA mixture experiments. (A,E) PCA sample plot when the
protocols are naively combined, highlighting a technical effect (all common 13,575 genes are considered).
(B-C, F-G) PCA on the most variable genes (861 for single cells and 1,136 for RNA mixtures) for
MNN and Scanorama (see Supplementary Figure 6 for the other methods that were assessed). (D, H)
Silhouette coefficients calculated on either the batch information or known sample group for the methods
that output a batch-corrected data matrix; if effective at removing the technical effect, the coefficient
should be low for the batch information and high for the cell groups as biological variation is retained.

Figure 5A, RNA mixtures Figure 5E) the largest source of variability was technical (related to single cell
protocol) rather than biological (related to cell line/mixture group), resulting in a strong batch effect
(Supplementary Figure 6A,D). For each design, we applied several integrative methods developed for
combining independent batches of experiments. Recently proposed methods such as MNN, Scanorama,
scMerge and ZINB-WaVE generate batch-corrected data which can then be analyzed using other
downstream analysis tools. Diagonal Canonical Correlation Analysis combined with Dynamic Time
Warping from Seurat and MINT [40] output a low-dimensional representation of the data. MINT
includes an embedded gene selection procedure whilst projecting the data into a lower dimensional space
(Supplementary Table 4). Dimension reduction of the results from different methods via PCA,
t-SNE [51] for Seurat or resulting components (ZINB-WaVe, MINT ) show variations in their ability to
handle batch effects that depends on the complexity of the data. We assessed performance both
graphically (Figure 5B,C, F, G and Supplementary Figure 6) and numerically by calculating the
silhouette coefficient according to protocol and known cell line/mixture group information (Figure 5D,
H). To reduce computational time, all methods with the exception of scMerge and MINT were run on
the most highly variable genes (861 for single cells and 1,136 for RNA mixtures, 10,000 genes for
Scanorama). For the single cell design, most methods perform comparably well and are effective at
removing or adjusting for differences between protocols. For the RNA mixture design that includes a
larger number of groups (7) and a smaller number of cells per group, most methods, with the exception
of MNN and MINT, were unable to successfully remove technical variation from the data. In most
studies where cell types are unknown, data integration is followed by clustering analysis and differential
expression analysis to identify marker genes. Therefore, choosing the most appropriate integrative
method to either correct or adjust for technical variation is crucial for downstream analysis.
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Discussion

We designed and generated a comprehensive scRNA-seq benchmarking dataset with varying levels of
biological noise and in-built ground truth via population structure that ranges from simple to complex.
These datasets incorporate various mixture designs processed using multiple single cell technologies to
facilitate comparisons of both protocols and methods. Although our comparison shows the 10X
Chromium platform to produce the highest quality data, both Drop-seq and CEL-seq2 are very flexible
protocols, with various parameters that can be optimized and tuned. When fully optimized or under
different conditions, these protocols may well be comparable to 10X. These datasets allowed us to study
the intrinsic properties of scRNA-seq data and scRNA-seq protocols, such as the systematic differences
in intron reads between protocols, which has been underexplored in previous studies. As new methods
such as RNA velocity [24] and pipelines such as zUMIs [34] start to incorporate intron reads into their
analysis, it is important for researchers to be aware of protocol-specific biases that may influence intron
abundance and potentially confound analyses that take place across different scRNA-seq platforms.
Moreover, these data show that ERCCs are sampled independently of endogenous mRNA, which casts
doubt on the common assumption that ERCC spike-ins are less likely to be sampled in cells with more
endogenous mRNA. ERCC spike-ins can therefore be used to measure technical noise which is
orthogonal to biological variation.
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Figure 6. Summary of results from methods comparisons using scRNA-mixology datasets.
Methods are ranked by overall performance in each category. The correlation between performance and
data characteristics shows whether the result of a method is likely to be influenced by that characteristic.
For example, the performance of kNN smooth changes a lot in the presence of variations in data quality,
while Seurat has good performance in different situations. Results have been scaled and standardized to
use the same colour scale.

To demonstrate the broad utility of these data, we performed systematic methods comparisons for 4
key tasks; normalization and imputation, clustering, trajectory analysis and data integration. The
performance of methods varied across different datasets, with no clear winners in all situations, however,
consistently satisfactory results were observed for scran, Linnorm, DrImpute and SAVER for
normalization and imputation; Seurat and SC3 for clustering; Monocle2 and Slingshot for trajectory
analysis and MNN for data integration. Interestingly, the various ensemble methods, which combine
results from multiple algorithms in a bid to improve performance, did not always outperform individual
methods. While the ensemble method SC3 for clustering generally gave good performance, the
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clusterExperiment method was less reliable and the ensemble method for normalization, scone also gave
mixed results on different datasets. Having multiple benchmark datasets with different numbers of cell
groups and varying levels of biological noise allowed us to objectively assess performance with different
data characteristics. As summarized in Figure 6, performance could be correlated to biological variation,
population heterogeneity and data quality, with some methods more sensitive to these characteristics
than others, indicating that they might best suit particular cases rather than general use. As an
example, the trajectory methods Monocle2 and Slingshot have similar overall performance, but Slingshot
is more sensitive to the population structure than Monocle2, which means the latter may be better in
more general situations. Data integration for scRNA-seq is still an emerging field, with limited
systematic benchmarking performed to date. The varying complexity of our datasets provides an
excellent resource for further methods development.

Our comparison is subject to a number of limitations such as the relatively small cell numbers and
the linear mixture settings, which may not be a realistic model for developmental trajectories where
regulatory gene expression may be non-linear and non-systemic. Also methods are mostly compared
under default settings, which may not give optimal performance across all datasets.

Our benchmarking study serves as a demonstration of the different types of comparisons that can be
performed using the comprehensive designs. Therefore, rather than performing an exhaustive comparison
of all the methods available for every task, we have chosen to demonstrate a breadth of applications
across key analysis tasks. These data can also be used to test the performance of different methods for
data preprocessing (alignment, UMI deduplication, gene-level quantification), dimension reduction (PCA,
t-SNE, UMAP) and differential expression analysis. They could also be used to explore any interactions
between different methods (such as normalization and clustering) and performance, although the number
of combinations, even with a few methods selected for each task would quickly become very large. Our
benchmarking dataset will benefit future package developers as it allows new methods to be evaluated on
the same standards, avoiding ambiguity caused by cherry-picking evaluation datasets. We hope that this
study will reinvigorate interest in the important area of benchmark data generation and analysis,
providing new insights into current best practice and guide the development of better scRNA-seq
algorithms in the future to ensure the biological insights derived from single cell technology stand the
test of time.

Methods

Study design

Three human lung adenocarcinoma cell lines HCC827, H1975 and H2228 were cultured separately and
the same batch was processed in three different ways (Figure 1). Firstly, single cells from each cell line
were mixed in equal proportions, with libraries generated using three different protocols: CEL-seq2,
Drop-seq with Dolomite equipment and 10X Chromium.

Secondly, single cells were sorted from the three cell lines into 384-well plates, with an equal number
of cells per well in different combinations. For most of the wells, we sorted 9 cells in total, with different
combinations of three cell lines distributed in“pseudo trajectory” paths (Supplementary Figure 1B),
where the major trajectory is similar to the RNA mixture design while the minor trajectory is the
combination that only contains two cell lines instead of three, which is similar in design our previous
study [15]. For the major trajectory, we also included the population control for each combination, which
includes 90 cells in total (i.e a large sample) instead of 9, while maintaining the cell combinations from
the different cell lines. Apart from the trajectory design, we also varied the cell numbers and qualities to
study the data characteristics in these configurations. We include 9 replicates with 3 cells in total with
one cell from each cell line, to simulate “small cells”. 20 cells with low integrity identified by PI staining.
The 9-cell wells were sub-sampled after pooling to get single cell equivalents of RNA, with three
replicates in 1/9 and one in 1/3. We applied different clean up ratios to the three replicates after library
generation to induce batch effects of a purely technical nature and study how clean up affects the data.

Thirdly, the RNA were extracted in bulk for each cell line and the RNA was mixed in 7 different
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proportions and diluted to single cell equivalent amounts (Supplementary Figure 1)A). In total, there are
8 mixtures in the plate layout with 49 replicates of each mixture. The mix1 and mix2 samples have the
same proportions of the three cell lines (H2228:H1975:HCC827 1

3 : 1
3 : 1

3 ) but were prepared separately in
order to assess the variation introduced during the RNA dilution and mixture step. In addition to the
RNA mixtures, we also designed a dilution series in the same plate to create variations in the amount of
RNA added. The amounts ranged from 3.75pg to 30pg (Figure 2 A2) and were intended to simulate
differences in cell size. In total, each mixture will have 4 different RNA starting amounts with replicate
numbers per mixture of 6:14:14:14 for the 3.75:7.5:15:30 pg group respectively.

Cell culture and mRNA extraction

The human lung adenocarcinoma cell lines H2228, H1975 and HCC827 were retrieved from ATCC
(https://www.atcc.org/) and cultured in Roswell Park Memorial Institute (RPMI) 1640 medium with
10% fetal calf serum (FCS) and 1% Penicillin-Streptomycin. The cells were grown independently at 37◦C
with 5% carbon dioxide until near 100% confluency.

For the three cell lines, cells were dissociated into single cell suspensions in FACS buffer and sorted
for the 9-cell-mixture and single cell experiment (see below for sorting strategy). The remaining cells
were centrifuged and frozen at -80◦C for later RNA extraction. RNA was extracted using a Qiagen RNA
miniprep kit. The amount of RNA was quantified using both Invitrogen Qubit fluorometric quantitation
and an Agilent 4200 bioanalyzer to get an accurate estimation. The extracted RNA was then diluted to
60 ng/µl and then mixed in different proportions, according to the study design. The different mixtures
were further diluted to create an RNA series that ranged from 3.75pg to 30pg that was dispensed into
CEL-seq2 and SORT-seq primer plates using a Nanodrop II dispenser. Prepared RNA mixture plates
were sealed and immediately frozen upside down at -80◦C.

Cell sorting and single cell RNA sequencing

For CEL-seq2, single cells were flow sorted into chilled 384-well PCR plates containing 1.2µl of
primer/ERCC mix using a BD FACSAria III flow cytometer. Sorted plates were sealed and immediately
frozen upside down at -80◦C. These plates, together with the RNA mixture plates, were taken from
-80◦C and processed using an adapted CEL-Seq2 protocol with the following variations. The second
strand synthesis was performed using NEBNext Second Strand Synthesis module in a final reaction
volume of 8 µl and NucleoMag NGS Clean-up and Size select magnetic beads were used for all DNA
purification and size selection steps. For the 9-cell-mixture plates, clean up of the PCR product was
performed with 2×0.7-0.9 bead/DNA ratio. For the single cell and RNA mixture plates, two different
clean up ratios for the PCR product were used (0.8 followed by 0.9). The choice of clean up ratio was
optimized from the QC results of the 9-cell-mixture data and the SORT-seq protocols.

The 9-cell-mixture plates were sorted according to the plate design. Each well contained 9 cells in
total in different combinations, and was processed using our adapted CEL-seq2 protocol described above
with variations in the pooling step. After the second strand synthesis, materials from the 9-cell-mixtures
and 90-cell population controls were pooled separately into different tubes and the volumes were
measured. Then for the 9-cell-mixture sample, 3×1/9 and 1×1/3 of the total pooled material were taken
and these four samples were processed separately in the following step. At the PCR product clean up
stage, the clean up ratios for the 3×1/9 samples were 0.7, 0.8 and 0.9 respectively, and 0.7 for the 1/3
9-cell-mixture sample and the 90-cell population controls.

The SORT-seq protocol is similar to CEL-seq2 but uses oil to prevent evaporation. This allows
reductions in the reaction volume which can be dispensed using the Nanodrop II liquid handling
platform (GC biotech). In summary, 2.0µl vapor-lock oil was added to each well of the plate, followed by
0.1µl of primer/ERCC mix. The reaction volume for RT and first strand synthesis are 0.075µl and
0.568µl respectively. The composition of the various mixes was the same as for CEL-seq2. The sample
pooling was achieved by centrifuging the plates upside down into a container covered with parafilm and
carefully separating the oil from the other materials. The PCR clean up ratio used for SORT-seq was 0.8
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followed by 0.9. We experienced significant sample loss during sample pooling such that only 60% of the
total volumes were recovered, which is lower compared to the CEL-seq2 protocol (90%).

For the 10X and Drop-seq protocols, cells were PI stained and 120,000 live cells were sorted for each
cell line by FACS to acquire an accurate equal mixture of live cells from the three cell lines. This mixture
was equally split into three parts, where one part was then processed by the Chromium 10X single cell
platform using the manufacturer’s (10X Genomics) protocol. The second part was processed by
Dolomite Drop-seq with standard Drop-seq protocols [22]. The third part was sorted in a 384-well plate
and processed using the standard CEL-seq2 protocol, with a PCR clean up ratio of 0.8 followed by 0.9.
All samples, including Drop-seq, 10X and CEL/SORT-seq, were sequenced on an Illumina Nextseq 500.

Data preprocessing and quality control

scPipe was used for data preprocessing and quality control to generate a UMI-deduped gene count
matrix per dataset. In general all data was aligned using Rsubread [26] to the GRCh38 human genome
and its associated annotations, with ERCC spike-in sequences added as special chromosomes. For 10X,
we processed the 4,000 most enriched cell barcodes, with comp=3 used in the function
scPipe::detect outliers for quality control to remove poor quality cells. For CEL-seq2 and
SORT-seq, we used the known cell barcode sequences for cell barcode demultiplexing and comp=2 was
used in the function scPipe::detect outliers for quality control. The biological variation for each
dataset were represented by BCV, calculated by edgeR::estimateGLMCommonDisp, using the known
population structure in the design matrix. For the single cell datasets, the population structure is the
cell line identity, while for the mixture data, the population structure is the mixture combination. The
background contamination was high for Drop-seq, so we first ran scPipe::detect outliers with
comp=3 to remove outlier cells and then ran it again with comp=2 to remove the background noise which
consists of droplets that did not contain beads. The quality control metrics, including intron reads for
each cell, were generated during cell barcode demultiplexing by the function scPipe::detect outliers.
Intron reads are defined as any read that map to the gene body but do not overlap an annotated exon.

Analysis of ERCC spike-in counts

For the RNA mixture dataset, the log2 transformed total UMI counts, total ERCC spike-in counts and
RNA amounts were used as input for linear mixed models. The function lme4::lmer was used to fit the
model [2]. Model I was formulated with UMI count ∼ mix + (1 | mRNA amount), where UMI count is
the total UMI count for each cell, mix is the mixture number as a factor and mRNA amount is the amount
of RNA encoded as a factor. Model I was extended to include ERCC spike-in counts as a covariate in
Models II and III. Model II incorporated spike-in counts as a fixed-effect term using the formula
UMI count ∼ mix + ERCC count + (1 | mRNA amount). In Model III, spike-in counts were included
as a random-effect that can change according to different RNA amounts: UMI count ∼ mix +

(ERCC count | mRNA amount). Models II and III were compared against Model I using anova. Akaike
information criterion (AIC) and p-values are given in Supplementary Table 3.

Data normalization and imputation

The raw counts were used as input to each algorithm, and all methods were blind to the RNA mixture
proportions and RNA amounts. To have a fair comparison, the normalized counts from algorithms such
as BASiCS [50] and SCnorm [1] do not generate values on a log-scale were further log2 transformed after
an offset of 1 was added to the counts. We used edgeR [38] to calculate count-per-million (CPM) and
TMM (trimmed mean of M -values) values. The current version of BASiCS requires spike-in genes, so we
didn’t apply it to our datasets generated by 10X or Drop-seq which both lacked ERCC spike-ins. For
scone [4], we used housekeeping genes obtained from the Single Cell Housekeeping Genes website [27] as
negative controls, set the maximum number of unwanted variation components to 3 for the removal of
unwanted variation method (RUV) and ignored QC metrics. For other methods, we used their default
parameters.
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The Pearson correlation coefficient was calculated using gene expression after normalization or
imputation for samples with the same RNA mixture proportion and the same mRNA amount, as these
samples are technical replicates and any differences in gene expression should be contributed by technical
noise. We performed PCA using normalized counts and calculated the silhouette width on the first two
PCs to assess whether normalization was able to preserve the known structure. For any clustering of n
samples (here a cluster refers to a particular mixture or a cell line), the silhouette width of sample i is
defined as

sil(i) ≡ b(i)− a(i)

max(a(i), b(i))
∈ [−1, 1] (1)

where a(i) denotes the average distance (Euclidean distance over the first two PCs of expression
measures) between the ith sample and all other samples in the cluster to which i belongs to, and b(i) is
calculated as below: for all other clusters C,

b(i) = minCd(i, C) (2)

where d(i, C) denotes the average distance (the same as described above) of i to all observations to C.
Methods with better performance have higher silhouette width. The function silhouette from the
package cluster [32] was used to calculate the silhouette width.

Data analysis using scran (1.7.0), DrImpute (1.0) and SCnorm (1.1) was performed with default
settings. For the RNA mixture data, kNN smooth (1.0) was run with k = 8 (increasing the number of k
significantly increases the correlation with technical replicates but destroys the biological information).
We used k = 2 for ZINB-WaVE (1.1.5) normalization although varying the value of k did not change our
results. BASiCS (1.1.29) was run with 20,000 MCMC iterations, 1,000 warm up iterations and a
thinning parameter of 10.

Clustering

Our comparison of clustering methods used all mixture datasets apart from cellmix5 (which is the
population control). To obtain truth for the single cell datasets, sc CEL-seq2, sc 10x and sc Drop-seq,
we used Demuxlet [20], which exploits the genetic differences between the three different cell lines to
determine the most likely identity of each cell. The predicted cell identities in each dataset corresponded
largely to clusters seen when visualizing the data. Six methods, including clusterExperiment (1.99.2),
RaceID (1.0), RaceID2 (1.0), RCA (1.0), SC3 (1.7.7) and Seurat (2.3.0) were compared. Each method is
used as specified by the authors in its accompanying documentation. This includes any normalization
and filtering steps. Furthermore, any parameters required were left as their defaults or chosen as
described in the documentation.

In order to compare the performance of the clustering methods, we looked at two measures: entropy of
cluster accuracy, Haccuracy, and cluster purity, Hpurity. With M and N represent the cluster assignment
generated from clustering methods and annotation (ground truth), we defined these measures as follows:

Haccuracy = −
∑M

i=1

∑Ni

j=1 p(xj)log(p(xj))

M
(3)

Hpurity = −
∑N

i=1

∑Mi

j=1 p(xj)log(p(xj))

N
(4)

For the Haccuracy, M denotes the cluster generated from a method, and Ni is the real clusters in ith
generated cluster. Similarly, in the Hpurity the N denotes the real clusters while Mi is the generated
cluster for ith real cluster.
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Trajectory analysis

The comparison of trajectory analysis methods used all 9-cell mixture datasets (cellmix1 to cellmix4)
and the RNA mixture dataset generated by the CEL-seq2 and Sort-seq protocols. For each dataset, the
gene count matrix is normalized using the method in scran in cases where the method does not have an
explicit normalization step. The top 1,000 most highly variable genes were selected using the trendVar

and decomposeVar functions in scran, then 500 genes were randomly selected as the input features,
repeated 10 times to assess the stability of the method. Five methods, including Slingshot (0.1.2),
Monocle2 (2.6.1), SLICER (0.2.0), TSCAN (1.16.0) and DPT (0.6.0) were compared on the above
dataset. Slingshot requires the dimensionally reduced matrix and cluster assignment as input. Similar to
the approach described in their paper, we used PCA (scater::runPCA) for dimensionality reduction and
k-means clustering was performed on the first two PCs, then the first two PCs and the clustering results
were used as input for Slingshot. DDR-Tree, a scalable reversed graph embedding algorithm, was used
for monocle2 for dimensionality reduction and tree construction. SLICER applies locally linear inference
to extract features and reduce dimensions. To make it easier for comparison, the pure H2228 cells were
selected as the root cells or root state when generating the trajectory and computing pseudotime. Then
for the branching structure generated by each method, we searched for the best match to the two
branches: H2228 to H1975 and H2228 to HCC827 and calculated the percentage of overlap of cells
between the real path and the branch calculated by each method. Although we sampled genes to assess
the robustness of the method, for the representative plot in Figure 4 we used the 1,000 most variable
genes in the analysis.

Data integration

Data integration methods main characteristics are described in Supplemental Table 4 using the R
packages zinbwave(1.2.0), scran(1.8.2) for MNN, Seurat(2.3.4) for Diagonal Canonical Correlation
Analysis (CCA) and scMerge(0.1.8). PCA and MINT analyses were performed using
mixOmics(6.3.2) [41] and Scanorama (0.1) using the python library from Hie et al. (2018) [14].

We calculated the silhouette width to compare the clustering performance of the different methods to
combine different protocols. In single cells and RNA mixtures the clusters are already defined based on
either protocol (batch) information or cell line / RNA mixture information. Silhouette coefficients were
calculated on the first two principal components from PCA for each method that output a data matrix
(MNN, ZINB-WaVe, scMerge and Scanorama) or the first two resulting components for MINT. We
excluded diagonal CCA from this analysis as the Euclidean distance that is calculated in the silhouette
coefficient is not meaningful for t-SNE components. A high value for the batch clusters indicates that a
strong protocol effect remains, whilst a low value for the cell group information indicates that the
biological variation remains after the data integration process.

Performance summary

Figure 6 summarizes the performance across all the evaluated methods and their correlation to data
characteristics. For each method, a linear regression model is used to partition the variance of the
performance to the data characteristics, where the data characteristics, such as biological variation and
data quality, were used as covariates. Both the variance (sum of squares) and performance is Z-score
scaled for better visualization on a heatmap.

Data and code availability

These data are available under GEO SuperSeries GSE118767. A summary of the individual accession
numbers is given in Supplementary Table 1. The processed SingleCellExperiment R objects, including
all code used to perform the comparative analyses and generate the figures are available from
https://github.com/LuyiTian/CellBench data.
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A1.	Mixing	proportions A2.	Plate	layout
A.	mRNA	mixture	design

B.	9	cells	mixture	design
B1.	9	cell	combinations

H2228:H1973:HCC827	
7:1:1

H2228:H1973:HCC827	
1:0:8

X20	replicates	for	each	9-cell	combination+
X3	replicates	for	90-cell	combination

X5	replicates	for	each	9-cell	combination

• 10	replicates	of	3-cell	with	1:1:1	
combination	to	mimic	small	cells

• 9	replicates	of	sorted	poor	quality	9	
cells	with	3:3:3	combination

Trajectory	
design

Quality	control
design

B2.	experiment	design

Supplementary Figure 1. An overview of the RNA mixture and 9-cell mixture designs
from the benchmark study. (A) Mixing RNA extracted from bulk samples to get 8 mixtures with
different proportions of RNA from 3 cell lines (A1), with different amounts of RNA for each ranging
from 3.75pg to 30pg (A2). (B) Cell mixtures, with 9 cells in total for each well in various combinations
from the 3 cell lines (B1). The number of replicates for each combination varies, as does the number of
low quality control samples included (B2).
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Dataset	name Experimental	design Protocol GEO	number Protocol	parameters

sc_CEL-seq2
single cells from the mixture of 
three cell lines CEL-seq2 GSM3336845

1X384 plate X0.8 then X0.9 clean up for 
PCR products

sc_10x
single cells from the mixture of 
three cell lines 10X Chromium GSM3022245 standard 10X scRNA-seq protocol

sc_Drop-seq
single cells from the mixture of 
three cell lines Drop-seq Dolomite GSM3336849 standard Dolomite Drop-seq protocol

cellmix1
9 cell mixtures from three cell 
lines CEL-seq2 GSM3295024

subsampled 1/9 from the same 384 plate. 
2X0.7 clean up for PCR products

cellmix2
9 cell mixtures from three cell 
lines CEL-seq2 GSM3295025 

subsampled 1/9 from the same 384 plate. 
2X0.8 clean up for PCR products

cellmix3
9 cell mixtures from three cell 
lines CEL-seq2 GSM3295026

subsampled 1/9 from the same 384 plate. 
2X0.9 clean up for PCR products

cellmix4
9 cell mixtures from three cell 
lines CEL-seq2 GSM3295027

subsampled 1/3 from the same 384 plate. 
2X0.7 clean up for PCR products

cellmix5
90 cell mixture (population 
controls) CEL-seq2 GSM3295023

24 samples 2X0.7 clean up for PCR 
products

RNAmix_CEL-seq2
mixture of RNA extracted from 
bulk population CEL-seq2 GSM3305230

1X384 plate X0.8 then X0.9 clean up for 
PCR products

RNAmix_Sort-seq
mixture of RNA extracted from 
bulk population Sort-seq GSM3305231

1X384 plate X0.8 then X0.9 clean up for 
PCR products

Supplementary Table 1. Summary of the benchmarking datasets generated. Information on
the 3 experimental designs employed, the single cell protocols used, the GEO accession numbers and
parameters applied when generating cDNA libraries is listed.
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single	cell cell	mixtures RNA	mixtures

Number	of	datasets 3 5 2
Number	of	protocols 3 1 2
Number	of	cell	populations 3 34 7

Population	controls

Bulk	RNA-seq	
from	previous	
study

RNA-seq	from	90	
cell	controls	
(cellmix5)

Technical	replicates No No Yes

Source	of	biological	variation different	cell	lines

Cell	combinations	
from	three	cell	
lines

RNA	mixing	
proportion	from	
three	cell	lines

Source	of	gene	count	noise

Gene	expression	
noise	+	technical	
noise

Gene	expression	
noise	+	sampling	
noise	+	technical	
noise Technical	noise

Annotations
Cell	identity	from	
Demuxlet Cell	combination

RNA	proportion	
and	amount

Protocol	comparison *** **
Quality	control * *** *
Normalization ** ** ***
Imputation * * ***
Differential	expression	
analysis ** ** ***
Clustering ** * ***
Trajectory	analysis *** **
Data	integration *** * ***

Tasks	to	be	
compared

Data	
characteristics

Experiment	design

Supplementary Table 2. Summary of the data characteristics and data analysis tasks that
can be compared by each experimental design. The suitability of each experimental design to
benchmark specific tasks is indicated by the scale * < ** < *** i.e. the RNA mixture datasets include a
dilution series which induces different dropout levels, making it an ideal dataset for comparing imputation
methods.

LMM	model	specifications AIC P-value
Model	I:	mixture	+	random	intercept 6.8
Model	II:	Model	I	+	fixed	ERCC -127.3 <10-16
Model	III:	Model	I	+	random	ERCC -127.4 0.13

Supplementary Table 3. Summary of the ANOVA model comparison. Table of results from
the model comparison of 3 linear mixed models, with the AIC and p-value which tests whether the
coefficients added explain additional variation relative to the simpler model. Model I assumes a random
intercept for different RNA amounts, while model II adds a fixed effect for the ERCC spike-ins (i.e.
constant effect for different RNA amounts) and model III assumes both the coefficient and the intercept
are random for different RNA amounts.

23/29

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2018. ; https://doi.org/10.1101/433102doi: bioRxiv preprint 

https://doi.org/10.1101/433102
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Table 4. Summary of integrative methods used to combine data from
different protocols and scNRA-seq studies. Methods can be classified into batch effect correction -
where a batch-corrected data matrix is output, adjustment where the batch effect is accounted for in the
model and dimension reduction methods where components or factors summarizing the batch-corrected
data are output. Their hyperparameters are listed (italic indicates default parameters). HVG stands for
Hyper-Variable Genes. SEG stands for Stably Expressed Genes.

Method Correct Adjust Dim.
reduc-
tion

# genes Main parameters Ref

MNN
X HVG - Number of nearest neigh-

bors
[12]

- Bandwidth of smoothing
kernel

MINT supervised
X all genes - Number of components [40]

- If gene selection: Number
of genes to select

ZINB-WaVe X X HVG - Number of factors [37]

diagonal CCA
X X HVG - Number of components [43]

- Reference dataset
- If multiCCA: number of
iterations

scMerge unsupervised

X all genes - Number of K-means clus-
ters

[28]

(+ SEG) - Number of factors
- Ratio of pseudo replicates
- Distance metric

Scanorama

X HVG - Number of HVG [14]
- Number of nearest neigh-
bors (NN)
- Choice of approximate
kNN
- Gaussian kernel function
parameter
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Supplementary Figure 2. Box plots of quality control metrics for the samples from each
benchmarking dataset. (A) The percentage of reads that map to exons. (B) The total number of
counts per cell after UMI deduplication. (C) The number of genes detected (genes with a count of a least
1) in each cell. (D) The amplification rate, which is defined by the ratio between the reads mapping to
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Supplementary Figure 4. Comparisons of clustering methods using clustering entropy and
ARI. The comparison of clustering methods in all datasets using the entropy of clustering accuracy and
purity as detailed in the Methods and ARI, with dashed lines indicating the actual number of clusters.
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Supplementary Figure 5. Visualization of results from all trajectory methods evaluated in
our study. Results for cellmix1, cellmix2 and the RNAmix Sort-seq analyses are shown. The dimension
reduction method chosen for each method was as follows: PCA for Slingshot and TSCAN, DDR tree for
Monocle2, diffusion map for DPT and LLE for SLICER.
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Supplementary Figure 6. Data integration results for single cell and RNA mixture datasets.
The top panels (A-C) present the analysis for the single cell datasets, while the bottom panels (D-F)
show results for the RNA mixtures. A, D PCA sample plots of each protocol individually where colours
indicate the known cell types / RNA mixture. B, E The number of cells per protocol and known
cell groups. C, F Outputs from the additional integrative methods are represented into a reduced
dimensional space either intrinsic from the method (MINT, ZINB-WaVe) or using t-SNE (diagonal CCA)
or PCA where colours indicate protocol information.
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