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Abstract 

Epidemiological and clinical evidence points to cancer as a comorbidity in people with 

autism spectrum disorders (ASD). A significant overlap of genes and biological processes 

between both diseases has also been reported. Here, for the first time, we compared the 

gene expression profiles of ASD frontal cortex tissues and 22 cancer types obtained by 

differential expression meta-analysis. Four cancer types (brain, thyroid, kidney, and 

pancreatic cancers) presented a significant overlap in gene expression deregulations in the 

same direction as ASD whereas two cancer types (lung and prostate cancers) showed 

differential expression profiles significantly deregulated in the opposite direction from 

ASD. Functional enrichment and LINCS L1000 based drug set enrichment analyses 

revealed the implication of several biological processes and pathways that were affected 

jointly in both diseases, including impairments of the immune system, and impairments in 

oxidative phosphorylation and ATP synthesis among others. Our data also suggest that 

brain and kidney cancer have patterns of transcriptomic dysregulation in the 

PI3K/AKT/MTOR axis that are similar to those found in ASD. These shared transcriptomic 

alterations could help explain epidemiological observations suggesting direct and inverse 

comorbid associations between ASD and particular cancer types. 
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Introduction 

 As Jane Austin once wrote, It is a truth universally acknowledged that(1) autism 

spectrum disorder (ASD) is a chronic childhood-onset neurodevelopmental condition 

characterized by persistent deficits in social communication and social interactions, as well 

as, by restricted, repetitive patterns of behavior, interests, or activities(2,3). However, 

other serious clinical aspects of ASD are less well known. For instance, an increase in 

premature mortality has been recently reported(4-7). ASD is among the top ten causes of 

disability worldwide in children between 5 and 9 years old(8), these findings could be 

partially explained by the link between ASD and other lifetime health problems, including 

epilepsy, diabetes, cardiovascular and gastrointestinal diseases, cancer, depression, and 

suicide(8-12). A better understanding of these lifetime co-occurring conditions is 

important for people with ASD, their families and caregivers, clinicians and other 

healthcare professionals, scientists, and policy makers(13,14). Recognizing this 

multimorbidity scenario, we focus our attention on the relationships between ASD and 

cancer for two reasons. First, evidence pointing towards different cancer rates in patients 

with central nervous system disorders has started to been gathered(15). Although several 

studies have failed to find specific associations between ASD and cancer(16-18), others, 

including a large population cohort study in Taiwan(11) suggested a higher-than-expected 

occurrence of overall cancer in ASD patients. These authors found a standardized 

incidence ratio of 1.94 (95% CI 1.18-2.99), with further increased incidence for brain and 

genitourinary cancers. Similarly, a large population-based case-control study in Sweden 

noted a significant increase in cancer mortality for all cancers combined (OR = 1.80, 95% CI 
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1.46-2.23) among individuals with ASD as compared with the general population(6).In 

addition, mothers of children with ASD have been shown to be approximately 50% more 

likely to die from cancer than those of non-autistic offspring(17). Conversely, two studies 

found a lower-than-expected risk of neoplasm in ASD patients, a situation that could be 

described as “inverse cancer comorbidity”(12,19). Second, given the prevalence and social 

impact of both diseases, further characterization of the genetic, molecular and cellular 

factors involved in ASD and cancer, which represent their underlying mechanisms and are 

used in their identification, are important and incompletely resolved issues. Recent 

genome-wide exome-sequencing studies of de novo variants and recurrent copy number 

variations (CNVs) in ASD and cancer have revealed extensive overlap in risk genes for 

autism and cancer(20-24). Moreover, several studies have found a striking implication of 

the classically cancer related PTEN pathway in ASD(22,25-27). These findings provide 

persuasive evidence of a molecular link between ASD and cancer, possibly opening the 

door to new treatments for both conditions. For example, chemotherapeutic agents that 

inhibit PTEN signaling or related pathways, such as PI3K-AKT, mTOR and NF-1 (e.g., 

rapamycin and everolimus), are potential candidates for treating several manifestations of 

autism(28). 

. The main goal of this study is to identify molecular mechanistic connections 

between the two groups of complex disorders. With this aim, we conducted meta-

analyses of differential RNA expression of ASD brain tissues, and compared the 

dysregulated RNAs and related pathways with those involved in a collection of 22 tumor 

types and two non-cancer control diseases. Additionally, we employed the LINCS L1000 
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database(29,30) to detect drugs with similar or opposite gene expression signatures to 

those of ASD and cancer(31). Finally, we specifically examined which elements of the PI3K-

Akt-mTOR signaling axis (involving PTEN, FMR1, NF1, TSC1, and TSC2) were dysregulated 

jointly in ASD and cancer(32,33).  
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Materials and methods 

Data acquisition 

Using the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) and Array 

Express (AE, https://www.ebi.ac.uk/arrayexpress/) we retrieved RNA expression studies 

from ASD brain tissues and cancer. To apply uniform normalization methods to microarray 

raw data, we selected case-control datasets belonging to the most popular single channel 

array platforms from Agilent, Affymetrix, and Illumina. In the case of ASD, given the small 

number of studies available, an RNA-Seq dataset was also incorporated.  

Three studies, which included ASD and control frontal cortex samples, were found and 

retrieved from public repositories or were obtained directly from the authors. The 

datasets of Chow(34) and Voineagu(35) (GSE28475 and GSE28521) were generated using 

the Illumina array platform HumanRef-8 v3.0, whereas Gupta’s dataset(36) was generated 

using Illumina’s HiSeq 2000 sequencing-technology (Figure 1 A). Cerebellar, temporal, and 

occipital cortex samples derived from the same set of patients were also available in 

GSE28521 and Gupta’s datasets. However, we focused on frontal cortex data to avoid 

introducing heterogeneity into the analysis due to tissue variability and because frontal 

cortex data was the represented by the highest number of samples. In the case of cancer 

datasets, we only used primary tumors and their healthy matched control tissues, and 

excluded other datasets and samples (i.e., metastasis and cell lines). 
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Expression data preprocessing and normalization 

Datasets generated using Affymetrix platforms were preprocessed as follows: CEL files 

were retrieved from GEO or AE, and the R packages oligo(37) and affy(38) were used to 

read the files and perform RMA normalization and summarization, which was followed by 

quantile between-sample normalization and log2 transformation. For Illumina platforms, 

non-normalized data were loaded to the R environment, and the Lumi(39) package was 

used to perform background correction using a normal exponential model fitting followed 

by quantile normalization and log2 transformation. Agilent data were preprocessed using 

the limma(40) package following the same preprocessing steps. In the case of RNA-Seq 

data, raw counts were loaded in the R environment. The Rlog function from the 

DESeq2(41) package was utilized to transform the RNA-Seq count distribution to a 

continuous distribution suitable for integration with the array data. In short, the Rlog 

function transforms count data into a continuous log2 scale distribution, minimizing the 

differences between samples for rows with small counts and normalizing the data with 

respect to library size. Supplementary Figure 1 shows a comparison between two state of 

the art RNA-Seq specific differential expression methods and traditional limma analysis 

using Rlog transformed data suggesting that Rlog transformation renders the dataset 

suitable for inclusion with micro-array datasets. 

To harmonize probe annotations between different dataset platforms, dataset-specific IDs 

were transformed into ENTREZ IDs using annotation packages. Probes targeting the same 

gene were collapsed using the collapseRows function from the WGCNA(42,43) package 

selecting the MaxRowVariance method. 
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Outlier exclusion  

Potential outlier samples, defined using the following criteria, were removed from each 

dataset. We computed mean inter-array correlations prior to normalization for cases and 

controls independently. If the mean inter-array correlation within each group was lower 

than 0.9, we removed the sample showing the lowest mean inter-array correlations 

iteratively until a global correlation value of 0.9 was reached for both case and control 

groups. This method ensures that samples are not eliminated as outliers due to 

unbalanced case control designs while guaranteeing the elimination of samples with 

significant deviance from the group distributions. Supplementary Table 1 shows the initial 

number of samples included in each study and the final number of samples after exclusion 

criteria were applied and outlier samples removed. 

Addition of control samples 

The small number of samples found in the ASD brain transcriptomic studies limits the 

statistical power of differential expression meta-analysis. To enhance the power, searches 

were performed for additional datasets including frontal cortex control samples profiled 

with a compatible array platform. One study with such characteristics (GSE36192(44,45)) 

was found and retrieved. It included samples from the frontal lobe of the cerebral cortex 

profiled with Illumina HumanHT-12 V3.0. Then, we randomly included 80 frontal cortex 

control samples from GSE36192 to GSE28475 and GSE28475 (40 samples to each dataset) 

while maintaining balanced sex and age distributions between the cases and controls. No 

significant changes in sex, age of post mortem interval (PMI) distributions were present 
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between cases and controls after control sample addition (Supplementary Table 2). For 

each dataset (GSE36192 and GSE28475) data from the original study and the 40 extra 

control samples were merged at the raw level. Then, a normal exponential background 

correction method was applied to the combined data followed by quantile normalization 

and log2 transformation using the lumi package(39). The combat function from the sva 

package(43) was finally applied to each preprocessed combination of one of the original 

datasets plus the control sample set in order to remove batch effects derived from 

different study origins (Figure 1 B). 

Removal of redundant patient samples 

Currently published ASD brain transcriptomic datasets rely on a set of samples derived 

from a partially overlapping group of patients. Eleven ASD and one control sample derived 

from the same patients were included in both GSE28521 and Gupta’s dataset. Fourteen 

ASD and five control redundant samples were included in both GSE28475 and Gupta’s 

datasets. Ten ASD and four control redundant samples respectively were shared between 

GSE28475 and GSE28521. Nine ASD samples derived from the same patients were present 

in all three datasets. No common control samples were included in the three datasets 

(Supplementary Figure 2). 

Since patient redundancy could artificially inflate the number of differentially expressed 

genes yielded by differential gene expression meta-analysis, redundant samples were 

removed sequentially using the following criteria. 
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First, the R MetaQC package(46) was used to generate an index for the quality of each 

study. MetaQC integrates six quantitative quality control measures, appraising internal 

homogeneity of co-expression structure among studies, external consistency of co-

expression patterns with a pathway database, and accuracy and consistency of 

differentially expressed gene detection or enriched pathway identification. For each 

dataset, the algorithm produces an index called standardized mean rank value (SMR) that 

can be interpreted as a relative measure of the quality of the study. SMR values were 1.17, 

2.33 and 2.5 for GSE28521, Gupta, and GSE28475 respectively (Supplementary 

Figures 3 A and 3 B). 

Additionally, as an alternative quality metric, mean inter-sample correlations were 

computed for each dataset. GSE28521, Gupta, and GSE28475 showed mean inter-sample 

correlation values of 0.96, 0.95, and 0.91, respectively, which was in agreement with the 

quality ordering established by MetaQC. Using both criteria, we defined GSE28521 as the 

highest quality study, followed by Gupta, and GSE28475. To preserve the maximum 

number of samples in the highest quality studies, we kept all samples in the study that 

showed the lowest SMR value and the highest mean inter-sample correlation value 

(highest quality). Next, the samples derived from the same patients present in both the 

highest quality study and the study showing the next lowest SMR and the next highest 

mean inter-sample correlation (the second highest quality study) were removed from the 

second study. Finally, from the study showing the highest SMR value and the lowest mean 

inter-sample correlation (lowest quality), we removed the samples derived from 

individuals present either in the first or in the second highest quality studies (Figure 1 B). 
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After control sample addition and removal of duplicated individual samples, 34 non 

redundant ASD cases and 130 control samples distributed in the three datasets were 

available to perform differential gene expression meta-analysis. No significant differences 

in age, sex or PMI interval composition were found either between the cases and controls 

(p-value > 0.05) (Figure 1 B). Supplementary Table 3 shows the samples included in the 

final ASD analysis and their associated covariates. 

Cancer and control diseases datasets 

A total of 198 datasets from 22 different cancer types comprising 18736 samples, 13687 

tumors and 5009 tissue-matched control samples were included in our cancer differential 

gene expression meta-analyses (Figure 1 C, Supplementary Table 1). The number of 

included datasets for each cancer type ranged from 3, in the case of diffuse large b-cell 

lymphoma, to 19 in the case of liver cancer. The sample sizes ranged from 180 in the case 

of cholangiocarcinoma to 2133 in the case of colorectal cancer. Malaria and ulcerative 

colitis were included as control diseases in order to evaluate the specificity of the 

associations between ASD and cancer. Ten ulcerative colitis datasets including 442 cases 

and 189 controls and three malaria datasets including 174 cases and 95 controls were 

used to perform differential gene expression meta-analyses.  

Differential gene expression meta-analyses 

Differential gene expression meta-analyses are known to increase the statistical power 

and reduce the noise of gene expression measurements(47). For each disease, microarray 

meta-analyses were carried out independently using the approach developed by Choi et 
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al(48) implemented in the MetaDE package(49). All meta-analyses were performed using 

random effect models, since moderate to high heterogeneity was expected given the 

biological and technical variability present in our data. The threshold of significance was 

set to a conventional level of 0.05. Thus, genes with a false discovery rate (FDR)-corrected 

p-value lower than 0.05 were considered differentially expressed. 

Comparison of differentially expressed gene profiles in ASD and cancer 

The expression profiles of ASD and all studied cancer types were compared to evaluate 

the significance of the overlaps between differentially expressed genes, as previously 

described (50,51). For each ASD-cancer pair, the significance of the four possible 

intersections formed by upregulated and downregulated genes was evaluated by means 

of one-tailed Fisher’s exact tests. The intersections were: 

1. Genes upregulated in both autism and the selected cancer type (Intersection A), 

2. Genes downregulated in both ASD and the selected cancer type (Intersection B), 

3. Genes upregulated in ASD and downregulated in the selected cancer type 

(Intersection C), and 

4. Genes downregulated in ASD and upregulated in the selected cancer type 

(Intersection D).  

P-values were corrected by multiple testing using the FDR. Overlaps showing corrected p-

values lower than 0.05 were considered significant. The background number of genes was 

set as the number of genes jointly studied in the two meta-analyses under consideration, 

which in turn depended on the platforms included in each meta-analysis. A cancer type 
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was considered to be deregulated in the same direction as ASD when Intersections A and 

B were significant and Intersections C and D were not. These cancer types are referred to 

as same direction deregulated cancers (SDDCs) and could be candidates for direct 

comorbidity with ASD. Conversely, a cancer type was considered to be deregulated in the 

opposite direction from ASD when intersections C and D were significant but intersections 

A and B were not. These cancer types are referred to as opposite direction deregulated 

cancers (ODDCs) and could be candidates for inverse comorbidity with ASD. 

An additional association analysis was performed on the differential expression profiles 

between all possible ASD and cancer pairs. Pearson’s correlation coefficients of the �̂ 

values obtained from each differential expression meta-analysis were computed. Positive 

correlations suggest similar patterns of differential expression while negative correlations 

would indicate opposite patterns. 

 

Gene set enrichment analysis 

Gene set enrichment analysis was performed using Gene Set Enrichment Analysis (GSEA) 

(http://software.broadinstitute.org/gsea/msigdb) in order to detect functional categories 

enriched in upregulated or downregulated genes. Z-values produced as output in each 

differential expression meta-analysis were employed as an ordering factor. For each 

disease, enrichment calculations were carried out using different molecular signature 

databases, namely, Hallmarks (H), Canonical pathways (C2), and Gene Ontology (GO). A 
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significance threshold of 0.05 was defined for the corrected p-value generated by the 

GSEA algorithm when selecting enriched functional categories. 

For enrichment of gene sets placed on the intersections, a traditional overrepresentation 

analysis was performed using g:Profiler, an online tool for functional profiling of gene lists 

from large-scale experiments, through the interface R package gProfileR(52). 

LINCS-based analysis and drug set enrichment analysis 

LINCS L1000(27,29,53) (http://amp.pharm.mssm.edu/L1000CDS2/#/index) comprises a 

collection of 230,556 gene expression profiles of cancer cell lines perturbed by small 

molecules and genetic constructs. Here, a subset of 29,157 small molecule perturbations 

that was included in a custom drug classification partially based on the anatomical 

therapeutic chemical classification system (ATC) was selected and employed to perform 

drug set enrichment analyses for each studied condition as previously described in 

Sanchez et al(51). 

A list of genes ranked based on z-values derived from the differential gene expression 

analysis was generated for each disease. Then, each ranked gene list was used to compute 

cosine distances with each of the 29 157 perturbations included in our drug classification 

using the R ccmap package(54). This method produces a list of perturbations or drugs 

ordered by its cosine distance with the target disease. Positive cosine distances indicate 

that a particular small molecule or drug produces a differential expression profile that 

mimics or resembles the differential expression profile of the disease under consideration, 
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whereas negative cosine distances suggest that a particular small molecule or drug 

produces a differential expression profile that reverses the target disease profile. 

Finally, the list of small molecules or drugs ordered by their cosine distance with the 

differential expression profile of a particular disease, was used to detect enrichment in 

drug sets using a GSEA-based enrichment method implemented in the fgsea package(55). 

The algorithm reveals whether a particular drug set is preferentially located at one of the 

extremes of the ranked list of drugs associated with each disease. Significant placement of 

a particular drug set at the top of the distribution suggests that it produces an effect that 

mimics the transcriptomic changes found in the disease under consideration. Conversely, 

significant placement of a particular drug set at the bottom of the perturbation 

distribution suggests that it produces an effect that reverses the transcriptomic changes 

found in the disease under consideration. A conventional FDR value of 0.05 was selected 

as a threshold 

We carried out this analysis for all ASD and cancer differential expression profiles. Finally, 

the results were compared between ASD and each tumor type. 
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Results 

ASD differential gene-expression meta-analysis and gene set enrichment analysis (GSEA) 

A total of 13,699 genes were tested for differential expression, yielding 1,055 differentially 

expressed genes (DEGs) in ASD patients relative to controls below an FDR threshold of 

0.05. Of these DEGs, 450 were upregulated and 605 were downregulated (Supplementary 

File 1).  

Gene set enrichment analysis (GSEA) suggested that genes upregulated in ASD are mainly 

associated with immune system-related processes, including cytokine production, 

inflammatory response, leukocyte activation, NFKB signaling, interferon response and 

complement reaction. Cell death regulation, cell adhesion, P53 signaling, and extracellular 

matrix organization were also enriched in upregulated genes. Genes downregulated in 

ASD samples were mainly associated with oxidative phosphorylation, ATP metabolism and 

lactic acidosis. Neuronal system functions, such as GABA synthesis, reuptake, and 

degradation plus proteasome pathway related processes, were also enriched in genes 

downregulated in ASD samples compared to controls (Supplementary File 2). 

Cancer data analysis 

We found a very high proportion of differentially expressed genes in our cancer meta-

analysis results, with values ranging from 11% to 71% of the total number of tested genes 

in chronic myeloid leukemia (CML) and colorectal cancer, respectively (Figure 1 C, 

Supplementary File 4). These proportions are compatible with previous findings for 

differential gene expression analysis of TCGA RNA-Seq cancer data(56), where the 
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percentage of differentially expressed genes ranged from 32% in the case of bladder 

cancer to 72% in the case of breast cancer. The number of differentially expressed genes 

found in our analysis was correlated to the number of included studies (r = 0.76) and 

samples (r = 0.53), and the minimum weighted mean difference (�̂) for a gene detected as 

significantly differentially expressed in a particular meta-analysis negatively correlated 

with the number of included studies (r = -0.73) and samples (r = -0.67). This finding 

indicates that as more studies were introduced in the meta-analyses, genes with smaller 

but consistent differences in expression were detected as significantly deregulated.  

Enrichment analysis showed that pathways associated with cell cycle such as, mitotic 

phase transition, DNA synthesis and repair, and telomere extension, were commonly 

upregulated in most of the cancer types (68%). Interestingly, leukemias and lymphomas 

did not show changes in mitosis related pathways (Supplementary Figures 4 and 5). The 

most common downregulated pathways among cancers were related to calcium, G-

protein-coupled receptors (GPCR) signaling, and fatty acid metabolism which were 

downregulated in between 40 and 50% of the studied cancers. 
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Autism and cancer expression deregulation profile comparisons 

To investigate whether the transcriptomic deregulations observed in particular cancer 

types showed direct or inverse patterns of association with ASD, all possible ASD and 

cancer pairs were subjected to intersection and correlation analysis (See Methods). Four 

cancer types (brain, kidney, pancreatic, and thyroid cancer) presented differential gene 

expression profiles that were significantly deregulated in the same direction as ASD below 

an FDR corrected p-value threshold of 0.05. These tumor types are referred to as same 

direction deregulated cancers (SDDC). Two tumor types (lung and prostate cancer) 

showed differential expression profiles deregulated in the opposite direction from frontal 

cortex samples of ASD patients. These types are referred to as opposite direction 

deregulated cancers (ODDC). No association was present between ASD and the rest of the 

cancers. (Figure 2 A).  

Two hundred and fifty-four genes were found to be jointly upregulated in ASD and brain 

cancer and were enriched in immune system and cell death related processes. Two 

hundred and eighteen genes were found to be jointly downregulated in ASD and brain 

cancer. Enrichment in neuron and synapse related genes was found in this set of genes. 

Similar enrichment results were observed in the analysis of the 164 and 152 genes jointly 

up- and downregulated in ASD and pancreatic cancer. Kidney cancer and ASD presented 

211 and 204 genes jointly up- and downregulated respectively. Shared upregulated genes 

between ASD and kidney cancer were also heavily enriched in immune related processes 

and cell death. Jointly downregulated genes in ASD and kidney cancer were enriched in 

mitochondrial functions and ATP synthesis. Similar results were obtained in the analysis of 
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the 167 and 186 genes jointly up- and downregulated, respectively, in ASD and thyroid 

cancer, showing strong enrichment in immune system and mitochondrial function related 

genes in the joint upregulated and downregulated gene sets respectively. 

One hundred and seventy genes were found to be jointly upregulated in ASD and 

downregulated in lung cancer and were enriched in immune system processes and cell 

death among others, whereas 229 genes were found to be downregulated in ASD and 

upregulated in lung cancer showing enrichment in functions related to mitochondrial 

function. One hundred and nineteen were found to be upregulated in ASD and 

downregulated in prostate cancer which were also enriched in focal adhesion, cell death 

and immune system processes whereas 113 gees were found to be downregulated in ASD 

and upregulated in prostate cancer which were enriched in mitochondrial related 

functions. 

Supplementary Table 4 and Supplementary File 4 show the genes placed in the described 

intersections and the results of the overrepresentation-based functional analysis. 

To determine the degree of homogeneity within SDDC and ODDC groups, we compared 

the content of the previously described intersections in each group. A total of 55 (17%) 

and 24 (6%) genes were jointly up- and downregulated respectively in the four SDDCs and 

ASD. Seventy (31%) genes were upregulated in ASD and downregulated in both ODDCs, 

whereas 86 (35%) were downregulated in ASD and upregulated in both ODDCs 

(Supplementary Table 5, Figure 2 B).  
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To evaluate the level of specificity of the reported associations between ASD and cancer 

and determine if associations with previous epidemiological confirmation translate in 

same or opposite direction deregulation patters, ASD and cancer differential expression 

profiles were compared to two control diseases, ulcerative colitis (UC) and malaria. 

Ulcerative colitis has been shown to have direct comorbid associations with both ASD and 

colorectal cancer (CRC) (57,58). UC differential expression profile was found to be 

deregulated in the same direction as both, ASD and colorectal cancer (Supplementary 

Figure 7 A). Nine other cancer types were found to be deregulated in the same direction 

than UC including all SDDCs. Prostate cancer, ALL, and CLL were found to be deregulated 

in opposite directions as UC. No reports investigating associations between malaria and 

ASD or cancer have been published to the date. Our results showed no transcriptomic 

associations between malaria and ASD differential expression profiles. Thyroid cancer was 

found to be deregulated in the same direction as malaria whereas ALL and CLL were found 

to be deregulated in opposite directions (Supplementary Figure 7 B).  

Complementarily, we computed Pearson’s correlation between the differential expression 

profiles of each possible pair of ASD and cancer to quantify the degree of association 

between them. SDDCs showed positive correlations with ASD. Brain cancer was the cancer 

type that showed the highest correlation values (r = 0.37, p < 0.05), and it was followed by 

kidney, thyroid and pancreatic cancer (r = 0.17, r = 0.10, and r = 0.08, respectively, FDR < 

0.05). ODDCs differential gene expression profiles presented negative correlations with 

ASD. Lung and prostate cancer showed significant negative correlations (r = -0.14 and r = -

0.11, respectively, FDR < 0.05). All other cancer types presented correlation absolute 
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values lower than 0.1 (Figure 2 C). Associations showing the lowest FDR corrected p-

values in the intersection analysis tended to present the strongest Pearson’s correlations.  

Partition Around Medoids (PAM) cluster analysis was carried out on the differential 

expression profiles of ASD and the 22 tumor types. Silhouette analysis was first applied to 

determine the optimum number of clusters. The five groups partition showed the highest 

average silhouette value suggesting that 5 was the optimum number of clusters. However, 

the average silhouette value was low in all cases indicating the absence of substantial 

structure. Results for different number of partitions can be found in Supplementary 

Figure 5. Overall, ASD tends to cluster together with brain cancer. Cancers include in the 

ODDC and SDDC groups tended to group together in the same cluster, indicating that their 

differential expression profiles were more similar between them compared to other 

cancer types. 

A theoretical overall cancer gene expression profile was constructed by averaging the 

differential expression profiles of all studied cancer types. No association (r = 0.05) was 

observed between ASD and this theoretical overall cancer profiles.  

PI3K associated genes 

Given the pivotal role that PI3K/AKT/MTOR plays in both ASD and cancer, we studied the 

differential expression status of the genes included in KEGG’s hsa04151 pathway (PI3K-Akt 

signaling pathway). Twenty-five genes out of 272 genes belonging to hsa04151 (Fisher’s 

exact test p-value = 0.21) were found to be deregulated in ASD below an FDR threshold of 

0.05, including the core pathway gene MTOR, which was found to be downregulated in 
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ASD. Twenty-three out of 25 genes were present in the meta-analysis of ASD and the 22 

cancer types. 

To determine the degree of similarity among the deregulation patterns of the 23 PI3K-

associated genes observed in ASD and present in all meta-analysis cancer results, we 

performed hierarchical clustering using different distance measures using as an input a 

matrix containing discrete values for each gene representing upregulation, 

downregulation and normal expression status (Figure 2 D). Brain and kidney cancer 

clustered together with ASD with all distance measures employed suggesting common 

patterns of changes in this subset of genes belonging to the PI3K-Akt signaling pathway. 

(Supplementary Figure 6). In particular, F2R, MYC, NFKB1, VEGFA, DDIT4, CDKN1A, CDK2, 

ITGA5, COL4A1, COL4A2, and IL4R were upregulated in ASD and brain and kidney cancer, 

while MTOR, FLT3, and GNB5 were found to be downregulated in these three diseases.  

Pathway enrichment analysis comparisons and LINCs drug set analysis results 

To sketch the landscape of global common biological pathway dysregulation between ASD 

and cancer, we carried out functional analysis of the differential expression meta-analyses 

results for each included disease. To this end, GSEA and LINCS drug set enrichment 

analysis were performed as described in Methods. Immune system associated pathways, 

such as interferon alpha and gamma signaling, IL6 JAK STAT3 signaling, TNFA signaling 

through NFKB and MTORC1 signaling, were found to be upregulated in both ASD and 55%, 

55%, 41%, 41% and 63% of cancer types, respectively. Jointly downregulated pathways 

between ASD and cancer were mainly associated with neuronal system genes, oxidative 
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phosphorylation and ATP synthesis in 41% and 31% of cancers respectively. However, 

oxidative phosphorylation was also found to be upregulated in a subset off cancer types 

indicating differences in the energy metabolism abnormalities found in different tumor 

types. Processes downregulated in ASD and upregulated in cancer included MYC targets, 

DNA repair, HIV infection and proteasome activity in 77%, 68%, 55%, and 46% of the 

studied cancers, respectively, whereas GPCR signaling and myogenesis are examples of 

pathways that were upregulated in ASD and downregulated in 59% and 63% of cancers, 

respectively (Figure 3).  

Drug sets commonly linked to ASD and cancer were also examined. The results suggest 

that treatment with mTOR inhibitors, such as everolimus, sirolimus, and temsirolimus, 

produce differential expression profiles that mimic the differential expression profile 

found in ASD while reversing the differential expression profiles found in most cancer 

types, excluding brain, kidney, thyroid, and pancreatic cancer, the four SDDCs. 

STAT signaling inhibition by niclosamide produces differential expression profiles that 

mimic the ASD DEG signature while reversing the differential expression profiles of 40% of 

the studied cancers. Proteasome inhibitors and histone deacetylase inhibitors, such as 

bortozemib, entinostat and vorinostat, also mimicked ASD differential expression profile 

while reversing the differential expression profiles of 40% of the studied cancers (Figure 4). 

Restricting the analysis to cancers significantly associated with ASD, we observed that 

pathways jointly affected in ASD and SDDCs were mainly dysregulated in the same 

direction, i.e., they were upregulated or downregulated in both diseases. Their 
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proportions in brain, kidney, thyroid, and pancreatic cancer were 85%, 89%, 88% and 65%, 

respectively, while pathways jointly affected in ODDCs and ASD were mainly deregulated 

in opposite directions (96% and 95% for lung and prostate cancer, respectively) 

(Supplementary Figure 8). Upregulated pathways shared by SDDCs and ASD were 

fundamentally linked to immune system-related processes. Shared downregulated 

pathways were implicated in oxidative phosphorylation, GPCR signaling and neuronal 

system genes. ODDCs upregulated pathways included cell cycle and DNA repair pathways. 

Contrary to what we observed in SDDCs, oxidative phosphorylation-related pathways 

were also upregulated in both lung and prostate cancer, indicating heterogeneity in 

energy metabolism abnormalities in different cancer types. Apoptotic, focal adhesion, and 

MAPK pathways were downregulated in ODDCs and upregulated in ASD. Finally, the 

MTORC1 pathway was found to be deregulated in ASD, SDDCs and ODDCs (Figure 5). 

 

 

 

 

 

 

 

Discussion 
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This is the first study aiming to explore the molecular associations between ASD and 

cancer at a transcriptomic level. We found positive patterns of association between ASD 

and four cancer types (brain, kidney, thyroid, and pancreatic) and negative patterns of 

association between ASD and two cancer types (lung and prostate). Brain cancer and 

kidney cancer showed the strongest transcriptomic associations with ASD in both 

intersection and correlation analyses. This observation is in agreement with previous 

epidemiological data reporting an increased risk of both benign and malignant brain 

neoplasms in patients with ASD(10). Interestingly, the same work also noted an increased 

risk of congenital malformations of the urinary system in autistic individuals, including 

medullary sponge kidney and the presence of accessory kidneys. Epidemiological 

associations between urogenital system tumors and ASD have also been reported(11). 

The ASD differential expression results included genes that have previously been linked to 

both ASD and cancer(12,24). For example, CUL3, a component of the multiple cullin ring 

ubiquitin-protein ligase complex(24), was downregulated in our ASD analysis. Furthermore, 

nine oncogenes present on the gene list compiled by Darbro(12) were found to be 

deregulated in ASD. Seven were found to be upregulated (ABL1, MYC, NFKB2, PIM1, 

PPARG, and BCL6) and 2 downregulated whereas two were found to be downregulated 

(FLT3 and MAP2K1). 

On the one hand, a number of pathways were found to be commonly deregulated in 

different directions in ASD and several cancer types. Histone deacetylase activity, GPCR 

signaling, proteasome function, MYC targets, and cell cycle processes are representative 

examples. Some of the enumerated biological functions have previously been related to 
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both ASD and cancer(59-64). These abnormalities could help explain putative inverse 

comorbid associations between ASD and cancer.  

On the other hand, some biological processes were found to be deregulated in the same 

direction in both ASD and SDDCs, providing theoretical support for hypothetical direct 

comorbid associations between ASD and cancer. For instance, in agreement with previous 

data(65-70), our analysis suggests the presence of brain inflammation in ASD patients. 

Inflammatory processes are well-established drivers of carcinogenesis(71,72) and are a 

factor that exerts direct influence on cancer-related features, such as proliferation, 

survival, and migration(72). In further support of this hypothesis, indicators of ongoing 

inflammation were observed in several cancers, including all tumors classified as SDDCs.  

Different degrees of mitochondrial activity impairment were also observed as a shared 

trait between ASD and SDDCs. These changes were more evident in kidney and thyroid 

cancers, where oxidative phosphorylation, mitochondrial electron transport chain and ATP 

synthesis-related genes, including ATP50, ATP5F1, OGDHL, ATP5J, CYC1, PFKM, UQCRFS1, 

NDUFB6, NDUFB2, NDUFAF1, NDUFV1, DLD, and COX7B, were found to be jointly 

downregulated with ASD. Oxidative phosphorylation impairment, mitochondrial 

dysfunction and increased oxidative stress are distinctive features of autistic brains(73,74). 

Some studies have suggested that genes regulating these processes are highly enriched in 

parvalbumin GABAergic interneurons of the forebrain, a cell type that has been implicated 

in multiple murine ASD models and in humans with ASD(75). Higher rates of glycolysis and 

suppression of mitochondrial function are traits commonly observed in cancer cells. 

Although advances in the understanding of cancer metabolism depict oxidative 
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phosphorylation impairment as a more complex phenomenon than previously thought(76), 

our data suggest that this function is commonly impaired in at least a subset of tumor 

types. However, some cancer types, such as lung cancer showed opposite patterns of 

deregulation of mitochondria and ATP synthesis related genes, highlighting the 

heterogeneity present in cancer energy metabolism. In addition, there is evidence 

indicating that inflammation and oxidative phosphorylation may have a synergic effect. 

Cytokines, and particularly, tumor necrosis factor alpha (TNFα), impair mitochondrial 

oxidative phosphorylation and ATP production and increase reactive oxygen species (ROS), 

which in turn can increase mitochondrial injury and trigger mitochondrial content release 

to the cytosol, amplifying the inflammatory process(77).This interplay between the two 

processes may increase the risk of tumor development.  

The PI3K/AKT/MTOR axis is an important target for molecular abnormalities in both ASD 

and cancer, which makes it a good candidate to modulate putative comorbid ASD and 

cancer associations. Our results showed that ASD patients presented patterns of 

dysregulation in this axis that are more similar to those observed in brain and kidney 

cancer than to any other tested studied cancer. Furthermore, GSEA and LINCS analyses 

suggested that the pathway is affected in ASD and a subset of cancers. However, given its 

complex nature(78,79), which includes crosstalk with other signaling pathways and the 

presence of feedback loops, it is difficult to state whether the observed results are 

indicators of pathway activation or inhibition. Interestingly, ASD idiopathic cases and 

monogenic diseases related to autism have been linked to both higher and lower activity 

of the PI3K/AKT/MTOR axis(80-82). The PI3K/AKT/MTOR axis is one the most frequently 
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altered pathways in human tumors and directly participates in the regulation of many 

cancer hallmarks(83). Moreover, it regulates several key events related to both 

inflammatory response, oxidative phosphorylation, and mitochondrial function(84-87). 

Our observations are in agreement with a recent review highlighting the importance of 

the PI3K/AKT/MTOR axis and mitochondrial abnormalities as potential modulators of ASD 

and cancer associations(23). 

The analysis regarding the two control diseases, UC and malaria, showed that previously 

reported direct epidemiological associations between diseases translate into similar 

patterns of transcriptomic deregulation between them. The increased risk of UC in ASD 

patients observed at a population level(57) was followed by significant same direction 

deregulation patterns between both diseases at a transcriptomic level. Similarly, 

significant same direction transcriptomic changes were observed between UC and 

colorectal cancer (CRC), two diseases with a known direct epidemiologic link. Furthermore, 

intersection analysis of UC and cancer revealed that UC was positively associated with 

multiple cancer types including all SDDCs and inversely associated with three cancer types 

including prostate cancer (ODDC). These observations indicate that the transcriptomic 

associations between ASD and cancer suggested by our analysis are not ASD-specific and 

could be shared by other diseases showing similar gene expression deregulation patterns.  

Finally, we recognize some important limitations. First, the number of available datasets 

with gene expression data derived from autistic patient brains is scarce as it is the number 

of included samples in each dataset. This fact has two main consequences. On one hand, it 

undermined the statistical power of differential expression meta-analysis. Furthermore, it 
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impedes patient stratification, which would be advisable given the intrinsic heterogeneity 

of ASD. It is reasonable to expect that different subgroups of ASD individuals present 

different patterns of association with cancer. We are aware that several studies, including 

blood-derived transcriptomic profiles of autistic patients, have been published to date; 

however, it still is an open question as to whether differential expression profiles derived 

from peripheral tissues can be used as a proxy to detect molecular abnormalities directly 

linked to disease physiopathology. Second, the analysis of transcriptomes is often not 

enough to detect whether particular biological processes were activated or inactivated, 

this imposes a limit to the conclusions that can be drawn from our results. Finally, 

although scientific evidence is starting to accumulate in favor of the presence of comorbid 

associations between ASD and cancer, more population and molecular studies are needed 

to confirm or refute competing hypotheses.  

In summary, immune-related processes, mitochondrial dysfunction, and PI3K/AKT/MTOR 

signaling are biological processes that have been independently associated with both ASD 

and cancer. We have described the presence of a variable degree of changes in these 

pathways in SDDC, including brain and kidney cancer, the two cancer types showing the 

strongest associations with ASD in our intersection analysis. This observation makes these 

pathways good candidates to intervene to modulate putative direct comorbid associations 

between them. In addition, we report opposite direction associations between ASD and 

particular cancer types and pathways that may represent underlying molecular substrates 

of theoretical inverse association between ASD and cancer. These findings show a 

complex interplay between potential comorbid associations of ASD and cancer, and 
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highlight the importance of further research at epidemiological, genetic, and molecular 

level. 
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Figure captions 

Figure 1: A) Table showing the datasets included in the ASD differential gene expression 

meta-analysis. B) Diagram depicting the workflow used to perform the ASD differential 

gene expression meta-analysis. C) Summary of the cancer types, number of datasets and 

samples included in each cancer-specific differential gene expression meta-analysis. 
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Figure 2: A) Table showing the significance of the intersections of upregulated and 

downregulated genes between ASD and the 22 cancer types included in our study, 

comprising, acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), bladder 

cancer (BLAD), brain cancer (BRAIN), breast cancer (BREAST), cervical cancer (CERVI), 

cholangiocarcinoma (CHOL), chronic lymphocytic leukemia (CLL), chronic myeloid 

leukemia (CML), colorectal cancer (CRC), diffuse large b cell lymphoma (DLBCL), follicular 

lymphoma (FLYMPH), gastric cancer (GSTCA), head and neck carcinoma (HNC), kidney 

cancer (KIDN), liver cancer (LIV), lung cancer (LUNG), melanoma (MEL), ovarian cancer 

(OV), pancreatic cancer (PANC), prostate cancer (PROST), and thyroid cancer (THYR). 

Columns A, B, C, and D include the number of genes upregulated in both, downregulated 

in both, upregulated in ASD and downregulated in cancer, and downregulated in ASD 

and upregulated in cancer, respectively. Green cell colors indicate significant 

intersections (FDR corrected p-values from Fisher’s exact test lower than 0.05) with 

darker green tones indicating lower FDR corrected p-values. B) Venn diagrams showing 

the number of genes commonly deregulated in SDDCs and ODDCs. C) Scatter plots and 

correlation values, depicting the associations between ASD and all SDDC and ODDCs for 

cancer differential expression profiles. D) Heatmap showing the differential expression 

status of genes included in the KEGG hsa04151 pathways (PI3K-Akt signaling pathway), 

that were found to be differentially expressed in the ASD differential expression meta-

analyses. White, gray and black cells indicate unaltered, downregulated and 

upregulated differential expression status, respectively.  
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Figure 3: Top 10 ASD- and cancer-associated pathways extracted from 3 different 

molecular signature databases (Hallmarks, KEGG and Reactome). Yellow and purple 

segments indicate pathways downregulated and upregulated in cancer, respectively, 

whereas red and green segments denote pathways downregulated and upregulated in 

ASD, respectively. The length of the yellow and purple bars indicates the number of 

studied cancers that represent the reported direction of deregulation for this particular 

pathway. 

 

Figure 4) LINCS L1000-derived top related drug sets. Gold cells represent drug sets that 

produce differential expression profiles that mimic the differential expression profiles 

found in the disease of interest, light blue cells indicate drug sets that generate 

differential expression profiles opposite to those found in our disease of interest. Green, 

blue and red bars located on top of the heat map indicate ODDCs, SDDCs and ASD 

membership, respectively. 

 

Figure 5) Heatmap showing the pathways altered in ASD, SDDCs and ODDCs. Yellow and 

purple cells indicate pathways downregulated and upregulated in cancer, respectively, 

red and green cells denote pathways downregulated and upregulated in ASD, 

respectively. 
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