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Figure 1 Individual modules of MMSplice and their combination to predict the effect of genetic variants on various splicing
quantities. (A) MMSplice consists of six modules scoring sequences from donor, acceptor, exon and intron sites. Modules were
trained with rich genomics dataset probing the corresponding regulatory regions. (B) Modules from (A) are combined with a linear
model to score variant effect on exon skipping (∆Ψ), alternative donor (∆Ψ3) or alternative acceptor site (∆Ψ5), splicing efficiency,
and they are combined with a logistic regression model to predict variant pathogenicity. La and Ld stands for the length of intron
sequence taken from the acceptor and donor side.

and introns (20 nt upstream, 50 nt downstream). The
data for the HepG2 cell line was accessed through the
Critical Assessment of Genome Interpretation (CAGI)
competition [28]. The 957 variants from chromosome
1 to chromosome 8 were provided as training data.
The remaining 1,054 variants from chromosome 9 to
22 and chromosome X were held out for testing by the
CAGI competition organizers and were not available
throughout the development of the model. The test
data consisted of 572 exonic and 526 intronic variants,
and included 44 indels.

The Vex-seq experiment is an exon skipping assay,
whereas our exon modules were trained for A5SS (Ψ3)
and A3SS (Ψ5). Because of high redundancy between
these two modules, we used the 5′module exon module
as it was better at predicting exon skipping exonic vari-
ants on Vex-seq training data than the exon 3′module
(R = 0.5 v.s R = 0.24, P = 0.001, bootstrap, Supple-
mentary Fig. S2).

We built an MMSplice predictor for ∆Ψ by training a
linear model to combine the modular predictions and
interaction terms between modules with overlapping
scored regions from the Vex-seq training data (Meth-
ods, Eq. 2). We compared MMSplice with three state-
of-the-art splicing variant scoring models: SPANR [17],
HAL [18] and MaxEntScan [7] on the held-out Vex-

seq test data. The methods HAL [18] and SPANR [17]
have been reported to be the two best performed ex-
isting methods on a recent large-scale perturbation
assay probing 27,733 rare variants [29], while Max-
EntScan [7] was considered as a baseline reference
model. SPANR scores exonic and intronic SNVs up
to 300 nt around splice junctions. HAL scores exonic
and donor (6 nt to the intron) variants. MaxEntScan
scores [-3, +6] nt around the donor and [-20, +3] nt
around the acceptor sites. The Vex-seq data was pro-
cessed the same way for these models (Methods). Un-
like the other methods SPANR does not take custom
input sequences and could therefore score single nu-
cleotide variants but not for indels.

On the Vex-seq data, MMSplice showed a large im-
provement over HAL and SPANR. First, MMSplice
could score all 1,098 variants of the test set whereas
HAL could only score 572 (52.1%) and SPANR 966
(88%) of them. Second, the difference in Ψ predicted
by MMSplice correlated better globally but also when
restricted to the respective variants scored by the other
methods (R = 0.68 for MMSplice v.s. R = 0.41, 0.24
for HAL and SPANR respectively, both comparison
P = 0.001, bootstrap, Fig. 2). A higher performance
than other models was also obtained even when we
bluntly summed the prediction scores from the 5 mod-
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ules without fitting any parameter to the Vex-seq
training data (R = 0.67, and R = 0.66 when using
the exon 3′module in place of the exon 5′module, Sup-
plement Fig. S3). This shows that the superior perfor-
mance of our model is primarily due to the modules not
the combination linear model that was trained from
Vex-seq training data.

We further compared our prediction for donor and
acceptor site variants with the popular model Max-
EntScan [7]. MMSplice performed better both in
donor sequence (R = 0.87 for MMSplice v.s. 0.66 for
MaxEntSan5, P = 0.001, bootstrap, Supplementary
Fig. S4) and acceptor sequence (R = 0.81 for MM-
Splice v.s. 0.69 for MaxEntSan3, P = 0.001, bootstrap,
Supplementary Fig. S5), when restricted to the subset
of variants that MaxEntScan3 could score (42 donor
variants and 149 acceptor variants). HAL performed
better (R = 0.71) than MaxEntScan5 (R = 0.66) but
worse than MMSplice (R = 0.87) on donor variants
(P = 0.001 for both comparisons, bootstrap, Supple-
mentary Fig. S4).

Altogether, this benchmark on large scale perturba-
tion experiment demonstrates that MMSplice outper-
forms SPANR, HAL and MaxEntScan on predicting
causal effects of genetic variants on exon skipping, by
covering more variants and also by providing more ac-
curate predictions. Our model also ranked the first in
the 2018 CAGI Vex-seq competition. A joint publi-
cation with the organizers and challengers is in the
planning.

MMSplice classifies rare splice disrupting variants with
higher precision and recall
To further compare models on predicting exon skip-
ping level with independent datasets that no model has
been trained on, we used the splicing functional assay
from Cheung et al [29]. Cheung et al found 1,050 splice-
disrupting variants (SDVs), the majority are extremely
rare, after examining 27,733 ExAC single-nucleotide
variants (SNV) with Multiplexed Functional Assay of
Splicing using Sort-seq (MFASS) (Fig. 2E). The author
benchmarked several variant effect prediction methods
including conservation based methods like CADD [30],
phastCons [31] and the state-of-the-art splicing vari-
ant scoring tools HAL and SPANR. Among all, the
two splicing variant scoring methods performed much
better than the others, thus MMSplice was compared
with those two. MMSplice model with the final com-
bination linear model trained from Vex-seq training
data was applied to classify SDVs based on predicted
∆Ψ solely from sequence. Our model achieved overall
higher auPR (MMSplice 0.41, HAL 0.27, SPANR 0.26,
P = 0.001 for both MMSplice v.s. HAL and MMSplice
v.s. SPANR, bootstrap) when all models considering

only their scored variants (Fig. 2F). In total, MMSplice
scored all variants, SPANR scored 99.7% of all vari-
ants, while HAL scored only 51.8% of them. When con-
sidering exonic variants only, MMSplice (auPR=0.29)
performed similar to HAL (auPR=0.27) (P = 0.326,
bootstrap, Supplementary Fig. S6). For intronic vari-
ants, MMSplice had an auPR of 0.55 in comparison to
0.43 for SPANR (P = 0.001, bootstrap, Supplemen-
tary Fig. S6).

Overall, MMSplice demonstrated a substantital im-
provement over SPANR for both intronic and exonic
variants and showed a similar performance than HAL
for classifying exonic SDVs. This result also demon-
strates the power of our model to score the effect of
rare variants, for which association studies often lack
power.

MMSplice predicts variant effect on competing splice
site selection with high accuracy
The MMSplice modular framework allows modeling al-
ternative splicing events other than exon skipping. To
demonstrate this and assess the performance of MM-
Splice on other alternative splicing events, we built
MMSplice models to predict effect of variants around
alternative donors on alternative 5’ splicing (A5SS,
Ψ3) and variants around alternative acceptors on al-
ternative 3’ splicing (A3SS) (Methods). Ψ5 and Ψ3

values for homozygous reference variants as well as
with heterozygous and homozygous alternative vari-
ants were calculated from RNA-seq data of the GTEx
consortium [32] (Methods). Here too, our MMSplice
models allowed handling indels. One example is the
insertion variant rs11382548 (chr11:61165731:C-CA).
It is a splice site variant that turns a CG acceptor to
an AG acceptor. It showed the largest ∆Ψ5 among all
assessed variants.

We benchmarked MMSplice against MaxEntScan,
HAL and COSSMO. Overall, MMSplice (R = 0.66)
significantly outperformed COSSMO (R = 0.5) (P =
0.016, bootstrap) and MaxEntScan (R = 0.46) (P =
0.001, bootstrap) and tie to HAL (R = 0.67, P =
0.558, bootstrap) on predicting ∆Ψ3 (Fig. 3A-D). On
predicting ∆Ψ5, MMSplice (R = 0.57) again signifi-
cantly outperformed both COSSMO (R = 0.37) and
MaxEntScan (R = 0.44) (all P = 0.001, Fig. 3E-G).
Even though HAL can predict A5SS donor variants
well, the model has been trained for predicting A5SS
and may not generalize well to other alternative splic-
ing types. It only showed moderate performance when
predicting donor variants from Vex-seq skipped exons
(Supplement Fig. S4). In contrast, MMSplice showed
consistent high performance across different types al-
ternative splicing events.

MMSplice outperformed COSSMO for both donor
and acceptor variants even though COSSMO was
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Figure 2 MMSplice improves the prediction of variant effect on exon skipping. (A) Schema of the Vex-seq experiment [24]. The
effect of 2,059 ExAC variants (red star) from or adjacent to 110 alternative exons were tested with reporter genes by measuring
percent splice-in of the reference sequence (Ψref) and of the alternative (Ψalt) by RNAseq. (B-D) Measured (y-axis) versus predicted
(x-axis) Ψ differences between alternative and reference sequence for MMSplice (B), HAL[18] (C), and SPANR[17] (D) on Vex-seq
test data. Color scale represents counts in hexagonal bins. The black line marks the y=x diagonal. Pearson correlations (R) were
calculated i) for all variants and ii) only for the variants the considered model can score. (E) Schema of MFASS experiment [29].
Exon skipping effects of 27,733 ExAC SNVs (red star) spanning or adjacent to 2,339 exons were tested by genome integration of
designed construct. Splice-disrupting variant (SDV) is defined as a variant that change an exon with original exon inclusion index
> 0.5 by at least 0.5. (F) Precision-recall curve of MFASS SDVs classification based on model predicted ∆Ψ. Precision-recall curve
for all three models were calculated for the sets of variants they can score. MMSplice (black) scored all 27,733 variants, SPANR
(yellow) scored 27,663 variants (1,048 SDVs), and HAL (blue) scored 14,353 variants (489 SDVs).

trained from estimated Ψ5 and Ψ3 values from GTEx
data, while the training of MMSplice was independent
from GTEx. MaxEntScan had similar performance as
COSSMO for predicting ∆Ψ3 (R = 0.46) and ∆Ψ5

(R = 0.44)(Fig. 3).

Prediction of splicing efficiency
We next used our modular approach to derive a model
that predicts splicing efficiency, i.e. the proportion of
spliced RNAs among spliced and unspliced RNAs [22].
We have done so in the context of a second 2018 CAGI
challenge (Fig. 4A), whose training dataset is based on
a massively parallel splicing assay (MaPSy [22]) and
is described in Methods. This MaPSy dataset consists
of splicing efficiencies 5,761 pairs of matched wild-type
and mutated constructs, where each mutated construct
differed from its matched wild-type by one exonic non-
synonymous single-nucleotide variant (Methods). The
assay has been done both with an in vitro splicing
assay and in vivo by transfection into HEK293 cells
(Methods). A test set of 797 construct pairs was held-
out during the development of the model.

We trained a linear model on top of the modular
predictions with MaPSy training data to predict dif-
ferential splicing efficiency reported by the MaPSy

data (Methods). This linear model was trained the
same way as for Vex-seq except that the response
was the allelic log-ratio (Fig. 4A and Methods) in-
stead of ∆logit(Ψ). Our MMSplice model for differ-
ential splicing efficiencies predicted the effect of those
non-synonymous mutations on the held-out test set
reasonably well in vitro (R = 0.57, 4A) and well in
vivo (R = 0.37, 4C). Also, our MMSplice model for
differential splicing efficiencies outperformed the SMS
score algorithm [23] on in vitro data (P = 0.001, boot-
strap, 4D) and reached similar performance on the in
vivo data (P = 0.524, bootstrap, 4E). Because splicing
efficiency is defined as the ratio of spliced over precur-
sor RNA in vivo, it is actually influenced both by vari-
ations in splicing but also by variations in RNA sta-
bility. Hence, our model may show a higher accuracy
for the in vitro assay, because it involves only splicing-
related factors, whereas degradation factors are also
involved in vivo.

MMSplice improves the prediction of splice variant
pathogenicity
Predicting variant pathogenicity is a central task of
genetic diagnosis. However, large amount of vari-
ants are annotated as ”variant of uncertain signifi-
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Figure 3 Evaluation of models predicting ∆Ψ5 and ∆Ψ3 on the GTEx dataset. GTEx variants around alternative spliced donors (3
nt in the exon and 6 nt in the intron) and acceptors (3 nt in the exon and 20 nt in the intron) were considered. Ψ5 (or Ψ3) of
homozygous and heterozygous alternative variants as well as homozygous reference variants were calculated by taking the mean Ψ5

(or Ψ3) across individuals with the same genotype (excluding individuals with multiple variants within 300 nt around splice sites) on
brain and skin (not sun exposed) samples. For donor variants, MMSplice (A) was benchmarked against COSSMO (B), HAL (C) and
MaxEntScan (D). For acceptor variants, MMSplice (E) was benchmarked against COSSMO (F) and MaxEntScan (G).

cance” (VUS). A good splice variant effect predic-
tion model can help interpreting VUSs. To evaluate
the performance of MMSplice on predicting variant
pathogenicity, we considered the ClinVar variants (ver-
sion 20180429, [25]) that lie between 40 nt 5’ and 10
nt 3’ of an acceptor site or 10 nt either side of a donor
site of a protein coding gene (Ensembl GRCh37 v75
annotation, Methods) as potentially affecting splicing.
Among these variants, we aimed at discriminating be-
tween the 6,310 variants classified as pathogenic and
the 4,405 variants classified as benign. To this end, we
built an MMSplice model that implements a logistic
regression on top of the MMSplice modules (Methods).
Variants can potentially be in the vicinity of multiple
exons. MMSplice handles this many-to-many relation-
ship (Fig. 5A). Conveniently, MMSplice can be applied
to a variant file in the standard format VCF [33] and
a genome annotation file in the standard GTF format.
Moreover, MMSplice is available as a Variant Effect
Predictor Plugin (VEP, [34]) plugin.

This MMSplice model was benchmarked against
SPANR [17] and the ensemble of three other models:
MaxEntScan [7], HAL [18] and the branch point pre-
dictor LaBranchoR [35]. We also compared our MM-
Splice model and competing models with conservation
scores as additional features (Supplementary Meth-
ods). Model performances were benchmarked under
10-fold cross-validation (Fig. 5B). MMSplice alone (au-
ROC=0.940) outperformed SPANR (auROC=0.821)

(P = 0.001, bootstrap) and the ensemble model
combining MaxEntScan, HAL and Labranchor (au-
ROC=0.928) (P = 0.001, bootstrap). Adding MM-
Splice to the ensemble model further improved the
auROC to 0.954 (P = 0.001, bootstrap). Moreover,
MMSplice with conservation features (auROC=0.973)
achieved a performance close to the best ensem-
ble model kipoiSplice5 that included MMSplice (au-
ROC=0.979) (P = 0.003, bootstrap, Fig. 5), indi-
cating that MMSplice alone captured most of the se-
quence information captured by all other models.

Recently, SPiCE [16] has been proposed as a method
to predict the probability of a splice site variant af-
fecting splicing. SPiCE is a logistic regression model
trained from 142 manually collected and experimen-
tally tested variants. We thus benchmarked against
SPiCE with 12,625 ClinVar variants (2,312 indels)
that SPiCE was able to score (it failed to score vari-
ants from sex chromosomes)(Methods). MMSplice (au-
ROC = 0.911) outperformed SPiCE (auROC = 0.756
P = 0.001, bootstrap). Moreover, this higher perfor-
mance of the MMPSlice model also held when we fine-
tuned the logistic regression model of SPiCE on the
ClinVar training dataset (auROC = 0.760 P = 0.001,
bootstrap, Supplement Fig. S7).

Altogether, these results show that MMSplice not
only improves the predictions of effects of variants on
biophysical splicing quantities, but also helps improv-
ing variant pathogenicity scores.
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Figure 4 Splicing efficiency prediction. (A) MaPSy experiment (Methods). Effect of 5,761 published disease-causing exonic
mutations on splicing efficiency are measured both in vivo and in vitro. Changes of splicing efficiency were quantified by allelic
log-ratio. (B-E) Measured (y-axis) versus predicted (x-axis) allelic ratio for 797 variants in the test set for MMSplice (B-C) and the
SMS score [23] (D-E). Dashed lines represent y=x line.

Discussion
We have introduced MMSplice, a modular framework
to predict the effects of genetic variants on splicing
quantities. We did so by training individual modules
scoring exon, intron, and splice sites. Models built
by integrating these modules showed improved per-
formance against state-of-the-art models on predicting
the effects of genetic variants on Ψ, Ψ3, Ψ5, splicing
efficiency, and pathogenicity. The MMSplice software
is open source and can be directly applied on VCF
files and handles single nucleotide variants and indels.
Like other recent models [17, 18, 19], MMSplice score
variants beyond the narrow region close to splice sites
that is for now suggested by clinical guidelines [36]. We
also implemented a VEP [34] plugin that wraps the
python implementation. These features should facili-
tate the integration of MMSplice into bioinformatics
pipelines at use in genetic diagnostic centers and may
help improving the discovery of pathogenic variants.

MMSplice leverages the modularity of neural net-
works and deep learning frameworks. MMSplice is
implemented using the deep learning python library

Keras [37]. All MMSplice modules and models are
shared in the model repository Kipoi [26], which should
allow other computational biologists to improve indi-
vidual modules or to flexibly include modules into their
own models. We hope this modular approach will help
the community to coordinate efforts and continuously
and effectively built better variant effect prediction
models for splicing.

We have leveraged a massively parallel reporter assay
[18] to build individual modules. Also, models predict-
ing Ψ and splicing efficiencies were trained on large-
scale perturbation datasets (Vex-seq[24] and MaPSy).
Sequence-based model trained from perturbation as-
says can learn causal features. In contrast, predic-
tive models trained on variations across the reference
genome or across natural genetic variations in the pop-
ulation may be limited by evolutionary confounding
factors, limiting the model’s ability to make causal
predictions about genetic variants. Consistently, our
models outperformed models based on the reference
genome and natural variations and was only matched
by models based on perturbation assays (HAL for
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∆Ψ3 and the SMS score for in vivo splicing efficiency

changes).

Our models have some limitations. First, splicing is

known to be tissue-specific [38, 39], while our mod-

els are not. Nevertheless, our models can serve as a

good foundation to train tissue-specific models. Sec-

ond, RNA stability also plays a role in determining

the ratio of different isoforms [24]. Models predicting

RNA stability from sequence, as we recently developed

for the S. cerevisae genome [40] could be integrated as

further modules. Third, our exon and intron modules

are developed from minigene studies, and the perfor-

mance evaluation on predicting ∆Ψ and splicing effi-

ciency changes are also done with minigene experiment

data. However, chromatin states is known to has a sig-

nificant role in splicing regulation [41]. Hence, variant

effect prediction for endogenous genes might be benefit

from models taking chromatin states into account.

Methods
Donor and acceptor modules
The donor and the acceptor modules were trained us-
ing the same approach. A classifier was trained to clas-
sify positive donor sites (annotated) against negative
ones (random, see below) and the same for the accep-
tor sites. The classifiers predicted scores can be inter-
preted as predicted strength of the splice sites.

Donor and acceptor module training data
For the positive set, we took all annotated splice junc-
tions based on the GENCODE annotation version 24
(GRCh38.p5). For the donor module, a sequence win-
dow with 5 nt in the exon and 13 nt in the intron
around the donor sites was selected. For the acceptor
module, the region around the acceptor sites spanning
from 50 nt in the intron to 3 nt in the exon was selected
in order to cover most branch points. In total, there
were 273,661 unique annotated donor sites and 271,405
unique annotated acceptor sites. This set of splice sites
was considered as the positive set. In particular, not
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only sites with the canonical splicing dinucleotides GT
and AG for donor and acceptor sites, respectively, were
selected, but also sites with non-canonical splicing din-
ucleotides were included as positive splice sites.

The negative set consisted of genomic sequences se-
lected within the genes that contributed to positive
splice sites, in order to approximately match the se-
quence context of the positive set. Negative splice sites
were selected randomly around but not overlapping the
positive splice sites. To increase the robustness of the
classifiers, around 50% of the negative splice sites were
selected to have the canonical splicing dinucleotides. In
total, 410,111 negative donor sites and 406,841 nega-
tive acceptor sites were selected. During model train-
ing, we split 80% of the data for training and 20% of
the data for validation. The best performing model on
the validation set was used for variant effect predic-
tion.

Donor and acceptor module architecture
Neural network models were trained to score splice
sites from one-hot-encoded input sequence. The donor
model was a multilayer perceptron with two hidden
layers with Rectified Linear Unit (ReLU) activations
and a sigmoid output (Supplement Fig.S8A). The hid-
den layers were trained with a dropout rate [42] of 0.2
and batch normalization [43]. The acceptor model was
a convolutional neural network with two consecutive
convolution layers (Supplement Fig.S8B). The second
convolutional layer was trained with a dropout rate
of 0.2 and batch normalization. For these models, we
found the number of layers and the number of neurons
in each layer by hyperparamater optimization.

Exon module
Exon module training data
The exonic random sequences from the MPRA experi-
ment by [18] were used to train the exon scoring mod-
ule. This MPRA experiment contains two libraries,
one for alternative 5′splicing and one for alternative 3′

splicing. The alternative 5′ splicing library has 265,137
random constructs while the alternative 3′ splicing li-
brary has 2,211,789. Each random construct has a 25-
nt random sequence in the alternative exon and a 25-nt
random sequence in the adjacent intron. Ψ5 and Ψ3 of
different isoforms were quantified by RNA-Seq for each
random construct [18]. Here, 80% of the data was used
for model training and the remaining were used for val-
idation. The best performing model on the validation
set was used for variant effect prediction.

Exon module architecture
Rosenberg et al [18] showed that the effects of splicing-
related features in alternative exons are strongly corre-
lated with each other across the two MPRA libraries,

reflecting that similar exonic regulatory elements are
involved for both donor and acceptor splicing. We thus
decided to train exon scoring module from the two
MPRA libraries by sharing low level convolution lay-
ers (Supplement Fig.S1). The inputs of the network
were one-hot-encoded 25-nt random sequences. The
output labels were Ψ5, respectively Ψ3, for the alter-
native exon. After training, the exon modules for each
library were separated by transferring the correspond-
ing weights to two separated modules with convolution
layer with ReLU non-linearity followed by a global av-
erage pooling and a fully connected layer. We have
used a global pooling after the convolution layer allow-
ing to take exons of any length as input. This ended
up with two exon scoring modules, one for alternative
5′end (exon 5′module) and one for alternative 3′end
(exon 3′module).

Intron module
Intron modules were trained in the same way as the
exon modules (Fig. S1) by using intronic random se-
quences from the MPRA experiment as inputs, except
that we used 256 convolution filters, because intronic
splicing regulatory elements from the donor side and
the acceptor side are less similar [18]. This ended up
with a module to score intron on the donor side (in-
tron 5′module) and a module to score intron on the
acceptor side (intron 3′module).

Training procedure for the modules
All neural network models for the six modules were
trained with binary cross-entropy loss (Eq.1) and
Adam optimizer [44]. We implemented and trained
these models with the deep learning python library
Keras [37]. Bayesian optimization implemented in hy-
peropt package [45] was used for hyper-parameter op-
timization together with the kopt package (github.
com/avsecz/kopt). Every trial, a different hyper-
parameter combination is proposed by the Bayesian
optimizer, with which a model is trained on the train-
ing set, its performance is monitored by the validation
loss. The model that had the smallest validation loss
was selected.

Lossi = −(ψi log ψ̂i + (1− ψi) log(1− ψ̂i)) (1)

Variant effect prediction models
Variant processing
Variants are considered to affect the splicing of an
exon if it is exonic or if it is intronic and at a dis-
tance less than La from an acceptor site or less than
Ld from a donor site. The distances La and Ld were
set to 100 nt in this study but can be flexibly set
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for MMSplice. MMSplice provides code to generate
reference and alternative sequences from a variant-
exon pair by substituting variants into the reference
genome. Variant-exon pairs can be directly provided
to MMSplice. This is the case for the perturbation as-
say data Vex-seq, MFASS and MaPSy. MMSplice can
also generate variant-exon pairs from given VCF files
(Fig. 5A). For insertions, and for deletions that are
not overlapping a splice site, the alternative sequence is
obtained by inserting or deleting sequence correspond-
ingly. For deletions overlapping a splice site, the alter-
native sequence is obtained by deleting the sequence
and the new splice site is defined as the boundaries of
the deletion. In all cases, the returned alternative se-
quence always have the same structure as the reference
sequence, with an exon of flexible length flanked by La

and Ld intronic nucleotides. Each variant is processed
independently from the other variants, i.e. each mu-
tated sequence contains only one variant (Fig. 5A). If
a variant can affect multiple target (i.e. sites or exons),
the MMSplice models return predictions for every pos-
sible target (Fig. 5A).

Variant effect prediction for Ψ
Strand information of all Vex-seq assayed exons were
first determined by overlapping them with Ensembl
GRCh37 annotation release 75. Reference sequences
were extracted by taking the whole exon, and 100 nt
flanking intronic sequence. Variant sequences were re-
trieved as described in the variant processing Methods
section, whereby variant-exon pairs were provided by
the experimental design.

We modeled the differential effect on Ψ in the logistic
scale with the following linear model:

∆ logit(Ψ) = logit(Ψalt)− logit(Ψref)

= β0 + β1∆S3′intron

+ β2∆Sacceptor + β3∆Sexon

+ β4∆Sdonor + β5∆S5′intron

+ β61(Exon overlap splice site modules)∆Sexon

+ β71(5′intron overlap donor module)∆S5′intron

+ β81(3′intron overlap acceptor module)∆S3′intron

+ ε (2)

where:

∆S = ∆Salt −∆Sref (3)

for all five modules, 1(·) is the indicator function, ε
is the error term, the suffix alt denotes the alternate

allele, and the suffix ref denotes the reference allele.
This model has 9 parameters: one intercept, one coef-
ficient for each of the five modules, and interaction
terms for regions that were scored by two modules
(Fig.1). The latter interaction terms were useful to not
double count the effect of variants scored by multiple
modules. These 9 parameters were the only param-
eters that were trained from the Vex-seq data. The
parameters of the modules stayed fixed. To fit this lin-
ear model, we used Huber loss [46] instead of ordinary
least squares loss to make the fitting more robust to
outliers.

The model predicts ∆ logit Ψ for the variant. We
transform this to ∆Ψ with a given reference Ψ as fol-
low:

Ψ̂alt = σ(∆ logit Ψ + logit(Ψref))

∆Ψ̂ = Ψ̂alt −Ψref

(4)

where:

σ(x) =
1

1 + e−x
(5)

logit(x) = log
x

1− x
(6)

To prevent infinite values in cases Ψref = 0 or Ψref = 1,
Ψref values were clipped to the interval [10−5, 1−10−5].

HAL model is provided by the authors. A scal-
ing factor required by HAL was trained on the Vex-
seq training data using code provided by the au-
thors [18]. The SPANR precomputed scores (which
are called SPIDEX), were obtained from http://www.

openbioinformatics.org/annovar/spidex_download_

form.php.

Performance on the MFASS dataset
MMSplice was applied the same way as for Vex-seq,
except that module combining weights were learned
from the Vex-seq training data, with MFASS data kept
entirely unseen. SDVs are classified based on the pre-
dicted ∆Ψ for a variant. Area under the precision-
recall curve (auPR) were calculated with trapz func-
tion from R package pracma.

Variant effect prediction for Ψ3 and Ψ5

The Genotype-Tissue Expression (GTEx) [32] RNAseq
data (V6) was used to extract variant effect on Ψ3 and
Ψ5. Variants [-3, +6] nt around alternative donors of
alternative 5’ splicing events and variants [-20, +3] nt
around alternative acceptors for alternative 5’ splicing
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events were considered. The skin (not sun exposed)
samples and the brain samples with matched whole
genome sequence data available were processed. Ψ5

and Ψ3 were calculated with MISO [20] for each sam-
ple. Altogether, 1,057 brain samples and 211 skin sam-
ples could be successfully processed with MISO. Ψ3

and Ψ5 for homozygous reference variant, heterozy-
gous variants, and homozygous alternative variants
were calculated by taking the average across samples
with the same genotype, excluding samples from in-
dividuals with more than one variants within 300 nt
around the competing splice sites.

We predicted differences in Ψ5 as follows. We con-
sidered only donor sites with two alternative acceptor
sites. We extracted the relevant sequences for the cor-
responding two alternative exons and apply the model
of Equation (2) which was fitted on Vex-seq training
data. This returned a ∆ logit(Ψ) for each alternative
exon, denoted ∆S1 and ∆S2, from which we calcu-
late the predicted alternative Ψ5 as follows (deriva-
tions provided in supplements):

Ψ5alt
=

1

1 + exp(log( 1
Ψ5ref

− 1) + ∆S1 −∆S2)
(7)

The above computation applies to individual alleles.
To handle heterozygous variants, we assumed expres-
sion from both alleles are equal. This led to the fol-
lowing predictions for homozygous and heterozygous
variants:

∆Ψ5homo
= Ψ5alt

−Ψ5ref

∆Ψ5hetero
= (Ψ5ref

+ Ψ5alt
)/2−Ψ5ref

(8)

Analagous calculations were made to predict differ-
ences in Ψ3.

Pre-trained COSSMO model [19] was obtained from
the author website (http://cossmo.genes.toronto.edu/).
The predicted ∆Ψ5 (or ∆Ψ3) values of COSSMO were
calculated by taking the difference between the pre-
dicted Ψ5 (or Ψ3) from alternative sequence processed
by MMSplice and reference sequence.

Splicing efficiency dataset (MaPSy data)
The splicing efficiency assay was performed for 5,761
disease causing exonic nonsynonymous variants both
in vivo in HEK293 cells and in vitro in HeLa-S3 nu-
clear extract as previously described [22]. Here, the
exons were derived from human exons and were re-
duced in size to be shorter than 100 nt long by small
deletions applied to both the reference and the alter-
native version of the sequence. This way, the wild-type

and the mutated alleles differed from each other by a
single point mutation and the wild-type allele differed
from a human exon by the small deletions. The dele-
tions were centered at the midpoint between the vari-
ant and the furthest exon boundary. The sequences of
each substrate are listed in Supplemental Table 1 and
also described further on the CAGI website (https:
//genomeinterpretation.org/content/MaPSy).

Overall, 4,964 of the variants were in the training set
and 797 were in the test set. The amount of spliced
transcripts and unspliced transcripts for each con-
struct with reference allele or alternative allele were
determined by RNA-Seq. The effect of mutation on
splicing efficiency for a specific reporter sequence was
quantified by the allelic log-ratio, which is defined as:

log2(
mo/mi

wo/wi
) (9)

where mo is the mutant spliced RNA read count, mi is
the mutant input (unspliced) RNA read count, wo is
the wild-type spliced RNA read count, wi is the wild-
type input RNA read count. Transcripts with exon-
skipped or misspliced are ignored.

Variant effect prediction for splicing efficiency
(MaPSy data)
We fitted a model to predict differential splicing effi-
ciency on the training set with a linear regression with
a Huber loss as defined by Equation 2, except that the
response variable is the allelic log-ratio (Equation 9)
instead of ∆ logit(Ψ). We used the exon 5′module for
the splicing efficiency model. Performance on MaPSy
data was reported on the held-out test set.

SMS scores was applied to wild-type and mutant se-
quence by summing up all 7-mer scores as described
by Ke et al. [23]. The predicted allelic log-ratio is the
SMS score difference between mutant and wil-type se-
quence.

Variant pathogenicity prediction
Processed ClinVar variants (version 20180429 for
GRCh37) around splcie sites were obtained from Avsec
et al. [26]. Specifically, single-nucleotide variants [-40,
10] nt around the splicing acceptor or [-10, 10] nt
around the splice donor of a protein coding gene (En-
sembl GRCh37 v75 annotation) were selected. Vari-
ants causing a premature stop codon were discarded.
After the filtering, the 6,310 pathogenic variants con-
stituted the positive set and the 4,405 benign variants
constituted the negative set. The CADD [30] scores
and the phyloP [47] scores were obtained through VEP
[34]. MMSplice ∆Score predictions of the 5 modules
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as well as indicator variables of the overlapping re-
gion were assembled with a logistic regression model
to classify pathogenicity. Performance was assessed by
10-fold cross-validation (Supplementary Methods).

To compare MMSplice with SPiCE [16], we re-
stricted to the regions that SPiCE scores, i.e. [-12, 2]
nt around the acceptor or [-3, 8] nt around the donor
of protein coding genes. Variants causing a prema-
ture stop codon were discarded. SPiCE was trained
to predict the probability of a variant to affect splic-
ing (manually defined by experimental observations).
To apply it for pathogenicity prediction, the logistic
regression model of SPiCE was refitted with ClinVar
pathogenicity as response variable. MMSplice model
was applied as described above without conservation
features. Models were compared under 10-fold cross-
validation.

P-values for model performance comparison
Significance levels when comparing the performance
of two models were estimated with the basic bootstrap
[48]. Denoting t1 the performance metric (Pearson cor-
relation, auPRC, or auROC) of MMSplice and t2 the
performance metric of a competing model, we consid-
ered the difference d = t1 − t2. We sampled with re-
placement the test data B = 999 times and each time i
computed the bootstrapped metric difference d∗i . The
one-sided P-value was approximated as [48].

P =
1 + #{d∗i ≤ 0; i = 1...B}

B + 1
(10)
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