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Abstract

Recent studies have highlighted the role of gene networks in disease biology. To formally

assess this, we constructed a broad set of pathway, network, and pathway+network annotations

and applied stratified LD score regression to 42 independent diseases and complex traits (average

N=323K) to identify enriched annotations. First, we constructed annotations from 18,119 bio-

logical pathways, including 100kb windows around each gene. We identified 156 pathway-trait

pairs whose disease enrichment was statistically significant (FDR < 5%) after conditioning on

all genes and on annotations from the baseline-LD model, a stringent step that greatly reduced

the number of pathways detected; most of the significant pathway-trait pairs were previously

unreported. Next, for each of four published gene networks, we constructed probabilistic anno-

tations based on network connectivity using closeness centrality, a measure of how close a gene

is to other genes in the network. For each gene network, the network connectivity annotation

was strongly significantly enriched. Surprisingly, the enrichments were fully explained by excess

overlap between network annotations and regulatory annotations from the baseline-LD model,

validating the informativeness of the baseline-LD model and emphasizing the importance of

accounting for regulatory annotations in gene network analyses. Finally, for each of the 156 en-

riched pathway-trait pairs, for each of the four gene networks, we constructed pathway+network

annotations by annotating genes with high network connectivity to the input pathway. For each

gene network, these pathway+network annotations were strongly significantly enriched for the

corresponding traits. Once again, the enrichments were largely explained by the baseline-LD

model. In conclusion, gene network connectivity is highly informative for disease architectures,

but the information in gene networks may be subsumed by regulatory annotations, such that

accounting for known annotations is critical to robust inference of biological mechanisms.
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Introduction

Human diseases and complex traits are heritable and highly polygenic, potentially involving a large

number of disease genes connected by dense cellular networks (Chen et al., 2008; Barabási et al.,

2011; Menche et al., 2015; Visscher et al., 2017; Boyle et al., 2017). Recent work has employed

several approaches to infer gene interaction networks, including protein-protein interaction networks

(Szklarczyk et al., 2014; Chatr-Aryamontri et al., 2017; Li et al., 2017), tissue-specific co-expression

networks (Greene et al., 2015; Saha et al., 2017), and tissue-specific regulatory networks (Marbach

et al., 2016; Sonawane et al., 2017). An appealing extension of traditional genome-wide association

studies (GWAS) is to identify genes and gene pathways associated with disease by leveraging gene

networks and network connectivity between disease genes (Köhler et al., 2008; Vanunu et al., 2010;

Lee et al., 2011; Califano et al., 2012; Taşan et al., 2015; Greene et al., 2015; Marbach et al.,

2016; Peters et al., 2017; Cowen et al., 2017; Yoon et al., 2018). However, despite considerable

progress on inferring gene interaction networks and applying newly developed methods for network

connectivity-informed GWAS to identify specific genes and gene pathways associated to disease, an

overall assessment and interpretation of the contribution of gene networks to the genetic architecture

of disease has remained elusive. In particular, the extent to which this contribution can be explained

by disease enrichments of known functional annotations (Consortium et al., 2012; Maurano et al.,

2012; Trynka et al., 2013; Kundaje et al., 2015; Finucane et al., 2015; Gazal et al., 2017) is unknown.

Here, we sought to answer three questions. First, what is the contribution of disease-associated

gene pathways (Segrè et al., 2010; Pers et al., 2015; de Leeuw et al., 2015, 2016; Boyle et al., 2017;

Pardiñas et al., 2018; Yoon et al., 2018; Wray et al., 2018; Savage et al., 2018; Zhu and Stephens,

2018; Nagel et al., 2018) to disease heritability, irrespective of network connectivity. Second, what

is the contribution of genes with high network connectivity in known gene networks (Greene et al.,

2015; Saha et al., 2017; Li et al., 2017; Sonawane et al., 2017) to disease heritability. Third, what

is the contribution of genes with high network connectivity to disease-associated gene pathways

to disease heritability. We hypothesized that genes with high network connectivity to disease-

associated gene pathways would be more informative than gene pathways or gene networks alone,

as information in gene networks is orthogonal to information in gene pathways.

To answer these questions, we constructed a broad set of pathway, network, and pathway+network
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annotations. The pathway annotations were constructed from known gene pathways by including

100kb windows around each gene; the network annotations were constructed by quantifying network

connectivity using closeness centrality, a measure of how close a gene is to other genes in the net-

work (Boyle et al., 2018; Li et al., 2018); and the pathway+network annotations were constructed

by annotating genes with high network connectivity to the input pathway, again quantified using

closeness centrality. We applied stratified LD score regression (Finucane et al., 2015; Gazal et al.,

2017) to quantify the contribution of the pathway, network, and pathway+network annotations

to disease heritability. We conditioned our analyses on all genes and on the baseline-LD model,

which includes a broad set of coding, conserved, regulatory and LD-related annotations (Gazal

et al., 2017). In each case, we compared results before and after conditioning on the baseline-LD

model, to assess the extent to which the disease enrichments that we identified could be explained

by known functional annotations.
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Results

Overview of methods

We provide an overview of the methods and data used in our three main analyses, in which we

assessed the enrichment of disease/trait heritability in pathway, network, and pathway+network

based genomic annotations, respectively. First, in our pathway analyses, we considered 18,119

sets of protein-coding genes from five sources: 2,118 biological pathways from the BioSystem (BS)

database (Geer et al., 2010), 1,927 biological pathways from the Pathway Commons (PC) database

(Cerami et al., 2011), 7,209 protein-protein interaction gene sets from the InWeb database (Li et al.,

2017), 3,903 mouse phenotype gene sets from the Mouse Genome Informatics (MGI) database (Ep-

pig et al., 2014) (i.e. sets of genes whose orthologs are associated to mouse phenotypes), and 2,961

gene ontology gene sets from the Genome Ontology (GO) database (Ashburner et al., 2000) (see

Methods). We refer to these 18,119 gene sets as “pathways.” We restricted to pathways with 10-

500 genes, as in previous pathway enrichment studies (Pers et al., 2015; Zhu and Stephens, 2018).

The complete list of pathways is provided in Table S1, and a histogram of the number of genes in

pathways from each of the five sources is provided in Figure S1. We applied stratified LD score

regression (S-LDSC) (Finucane et al., 2015; Gazal et al., 2017) to binary pathway annotations con-

structed using ±100kb windows around each gene, as in previous work (Finucane et al., 2018; Zhu

and Stephens, 2018). We analyzed publicly available GWAS summary statistics from 42 indepen-

dent diseases and complex traits, including 30 UK Biobank traits (see URLs and Table S2; average

N = 323K) to evaluate the contribution of each pathway annotation to disease/trait heritability.

We conditioned on the 75 functional annotations from the baseline-LD model (Gazal et al., 2017)

(which includes a broad set of coding, conserved, regulatory and LD-related annotations), as well

as an all-genes annotation representing the set of all 23,987 protein-coding genes (±100kb). For

each of 760,869 pathway-trait pairs (roughly 18,119 pathways x 42 traits; see Methods), we assessed

the statistical significance of the pathway annotations standardized effect size τ∗ (defined as the

proportionate change in per-SNP heritability associated to a one standard deviation increase in

the value of the annotation, conditioned on other annotations included in the model (Gazal et al.,

2017)) based on global false discovery rate (FDR) < 5%; we also computed the enrichment, de-

fined as the proportion of heritability divided by the proportion of SNPs. Unlike enrichment, τ∗
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quantifies effects that are unique to the focal annotation (see Methods).

Second, in our network analyses, we considered four gene networks: two co-expression networks

(Saha (Saha et al., 2017) and Greene (Greene et al., 2015)), one protein-protein interaction network

(InWeb (Li et al., 2017)), and one regulatory network (Sonawane (Sonawane et al., 2017)). A gene

network is defined by an edge weight (which we normalized to lie between 0 and 1) for each pair

of genes, representing their connectivity in the network; we note that the Sonawane regulatory

network contains nonzero edge weights only for pairs of genes in which at least one of the genes is a

known transcription factor. We further note that the Greene, Saha and Sonawane networks include

tissue-specific networks for 144, 18 and 38 tissues, respectively; the choice of which tissue-specific

network to use for each disease/trait is described below (see Enrichment of disease heritability in

network annotations). For each network analyzed, we computed the closeness centrality (Özgür

et al., 2008) for each protein-coding gene (a measure of network connectivity, i.e. how connected

the gene is to other protein-coding genes in the network) and constructed a probabilistic annotation

by linearly transforming connectivity values to lie between 0 to 1 and including ±100kb windows as

above; we also considered other connectivity metrics (see Methods). For each of 168 network-trait

pairs (4 networks x 42 traits), we applied S-LDSC and assessed the statistical significance of the

network annotations τ∗ conditioned on other annotations; we also computed the enrichment, which

naturally extends to probabilistic annotations (Hormozdiari et al., 2018).

Third, in our pathway+network analyses, we considered 156 significant pathway-trait pairs

(from our pathway analyses) and four gene networks. For each input pathway and each input

network, we defined a set of candidate genes based on the genes in the input pathway and their

one-degree neighbors in the input network; defined a subnetwork by restricting the input network

to this set of candidate genes; computed the closeness centrality (Özgür et al., 2008) for each

candidate gene in that subnetwork; and constructed a probabilistic annotation by linearly trans-

forming connectivity values to lie between 0 to 1 and including ±100kb windows as above. For

each of 590 (pathway-trait,network) pairs (122 pathway-trait pairs for Saha + 156 pathway-trait

pairs x 3 other networks; see Methods), we applied S-LDSC and assessed the statistical significance

of the pathway+network annotations τ∗ conditioned on other annotations; we also computed the

enrichment.

We have publicly released all pathway, network and pathway+network annotations, LD scores,
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and S-LDSC results (see URLs).

Enrichment of disease heritability in pathway annotations

We sought to identify pathways that are enriched for disease heritability. We applied S-LDSC to

760,869 pathway-trait pairs, spanning 18,119 pathways from five sources (Table S1 and Figure S1)

and 42 independent diseases and complex traits, including 30 UK Biobank traits (average N =

323K; Table S2). We identified 156 pathway-trait pairs (spanning 141 pathways and 34 traits)

that were significantly enriched after conditioning on the baseline-LD model and the all-genes

annotation (FDR<5% for positive τ∗). Complete results for three representative traits (Crohns

disease, rheumatoid arthritis, and schizophrenia (Boyle et al., 2017)) are reported in Figure 1, and

complete results for all traits are reported in Table S3. The top pathway (most significant τ∗) for

each of the 34 traits is reported in Table 1, and the complete set of 156 significant pathway-trait

pairs is reported in Table S4. Genes in the 141 enriched pathways had a larger gene size (92kb on

average) compared to all protein-coding genes (58kb) and genes in all pathways (76kb) (see Table

S5). We meta-analyzed the 156 pathway-trait pairs using random-effect meta-analysis (analogous

to previous work (Finucane et al., 2015; Gazal et al., 2017; Hormozdiari et al., 2018)). Both the

enrichment (4.13, s.e. = 0.12; P = 4.74e-158) and τ∗ (0.15, s.e. = 0.0061; P=3.41e-131) were large

and highly statistically significant (Table S6); we caution that these p-values are slightly inflated

because we meta-analyzed across significant pathway-trait pairs only.
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Figure 1. Enriched pathways for three representative traits For (a) Crohns disease, (b) rheumatoid
arthritis and (c) schizophrenia, we report the proportion of heritability explained and proportion of SNPs
for each of 18,119 pathways analyzed. Red points indicate significantly enriched pathways (FDR < 5%), and
grey points indicate non-significant pathways. Numerical results for all 42 diseases and complex traits are
reported in Table S3.

Our results include 8 pathway-trait pairs reported in previous genetic studies (see Table 1 and

Table S4). These include “immune response” for both Crohn’s disease and ulcerative colitis (Jostins

et al., 2012); “T-cell receptor”, “cytokine-mediated signaling pathway”, and “abnormal T-cell phys-

iology” for rheumatoid arthritis (Okada et al., 2014); and “Absent corpus callosum” for years of

education (Okbay et al., 2016). In addition, “melanin biosynthetic process” was overwhelmingly

enriched for skin color (Table 1), consistent with the fact that genetic variants in constituent genes

are strongly associated with skin pigmentation (e.g. MC1R) and other pigmentation traits (e.g.

TYR, OCA2, SLC45A2 ) (Low and Chen, 2011; Simeonov et al., 2013).
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Trait Top enriched pathway Database #Genes Enr. (s.e.) τ∗ (s.e.)

Age at menarche SIX homeobox 6 InWeb 11 3.06 (0.45) 0.06 (0.02)
Auto immune traits Mismatch repair directed by MSH2:MSH6 BS 14 8.53 (2.05) 0.28 (0.07)
BMI Positive regulation of synapse maturation GO 11 3.34 (0.25) 0.07 (0.01)
Dermatologic diseases Aldo-keto reductase family 1 member E2 InWeb 12 7.51 (1.80) 0.19 (0.05)
Eczema Th17 cell differentiation BS 102 9.01 (1.56) 0.64 (0.15)
Eosinophil count Jak-STAT signaling pathway BS 152 7.67 (1.11) 0.46 (0.11)
Forced vital capacity Absent acrosome MGI 11 2.21 (0.31) 0.04 (0.01)
Heel T Score Skeletal system development GO 142 4.43 (0.60) 0.31 (0.07)
Height Abnormal trabecular bone morphology MGI 172 2.93 (0.39) 0.20 (0.05)
Hypothyroidism Cytokine-mediated signaling pathway GO 235 4.88 (0.78) 0.42 (0.11)
Morning person N-acetylglucosamine metabolic process GO 13 2.07 (0.26) 0.03 (0.01)
Neuroticism HSF1 activation BS 11 2.54 (0.27) 0.04 (0.01)
Platelet count Platelet activation GO 208 4.32 (0.62) 0.30 (0.09)
Red blood cell count Exogenous drug catabolic process GO 10 3.62 (0.63) 0.08 (0.02)
Red blood cell distribution width Decreased erythrocyte cell number MGI 206 4.61 (0.74) 0.39 (0.11)
Respiratory/ear-nose-throat diseases Abnormal T cell activation MGI 108 4.28 (0.75) 0.26 (0.07)
Skin color Melanin biosynthetic process GO 11 192.14 (55.37) 5.90 (1.73)
Smoking status Fibromodulin InWeb 17 2.53 (0.48) 0.06 (0.02)
Systolic blood pressure cGMP-PKG signaling pathway BS 164 3.41 (0.49) 0.25 (0.07)
Type 2 diabetes Glucuronidation BS 30 2.74 (0.32) 0.06 (0.01)
Waist-hip ratio Negative regulation of transcription GO 496 2.60 (0.22) 0.19 (0.05)
White blood cell count ERK cascade PC 15 4.65 (0.69) 0.11 (0.03)
Years of education Absent corpus callosum MGI 45 2.50 (0.33) 0.08 (0.02)

Age first birth Receptor signaling protein tyrosine kinase GO 10 3.62 (0.58) 0.10 (0.02)
Anorexia Activation of the AP-1 family of TF BS 10 5.64 (1.04) 0.15 (0.03)
Autism spectrum GABA-A receptor activity GO 15 4.01 (0.73) 0.12 (0.02)
Coronary artery disease Sodium-independent organic anion transport GO 12 7.05 (1.49) 0.22 (0.04)
Crohn’s disease Cytokine-cytokine receptor interaction BS 266 7.59 (1.50) 0.65 (0.18)
Depressive symptoms Glycoprotein metabolic process GO 12 5.22 (1.10) 0.15 (0.04)
LDL Increased erythroblast number MGI 21 5.63 (1.15) 0.18 (0.05)
Number children even born Lipoxygenase pathway GO 12 9.81 (1.59) 0.27 (0.04)
Rheumatoid arthritis Par-6 family cell polarity regulator beta InWeb 16 4.31 (1.01) 0.17 (0.04)
Schizophrenia Trigeminal neuroma MGI 10 2.39 (0.31) 0.03 (0.01)
Ulcerative colitis FGFR2b ligand binding and activation BS 10 8.00 (1.97) 0.18 (0.05)

Table 1. Top enriched pathway for each trait. We report the top enriched pathway (most significant
τ∗) for each of 34 traits with at least one significantly enriched pathway. The first 23 traits (above the line)
are UK Biobank traits. Enrichment of the melanin biosynthetic process pathway for skin color is consistent
with previous studies (Low and Chen, 2011; Simeonov et al., 2013), and enrichment of the Absent corpus
callosum pathway for years of education was reported in a previous genetic study (Okbay et al., 2016). The
complete set of 156 significant pathway-trait pairs is reported in Table S4.

Surprisingly, most pathway-trait pairs reported in recent studies (Boyle et al., 2017; Pardiñas

et al., 2018; Wray et al., 2018; Savage et al., 2018; Zhu and Stephens, 2018; Nagel et al., 2018) using

genome-wide polygenic methods (de Leeuw et al., 2015; Finucane et al., 2015; Zhu and Stephens,

2018) were not significant in our analysis. Specifically, we considered 95 significant pathway-trait

pairs for the 6 traits (schizophrenia, Crohn’s disease, rheumatoid arthritis, neuroticism, intelligence,

depressive symptoms), analyzed in five previous studies (Boyle et al., 2017; Pardiñas et al., 2018;

Wray et al., 2018; Savage et al., 2018; Nagel et al., 2018), restricting to at most the top 20 pathways

per trait per study. Only 15/95 pathway-trait pairs were significant in our primary analysis, after

conditioning on the baseline-LD model and all-genes annotation (Table S7A). However, 67/95 were

significant when we repeated the S-LDSC analysis conditioning on just the all-genes annotation
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and not the baseline-LD model (Table S7B). We obtained similar results for a recent unpublished

study (Zhu and Stephens, 2018) (Table S7A-B). Enriched pathways that were fully explained by the

baseline-LD model are likely due to factors that do not play a direct role in trait biology (de Leeuw

et al., 2018). Thus, it is critical to account for known functional annotations in pathway analyses

to correct for such factors.

Our results also highlight pathway-trait pairs that have not previously been reported but are

consistent with known biology. These include ”GABA-A receptor activity” with autism (Table 1),

consistent with the finding that the brains of subjects with autism have altered expression of GABA

receptors (Fatemi et al., 2009; Cellot and Cherubini, 2014); ”Oncostatin M (OSM)” for ulcerative

colitis (Table S4), consistent with the finding that inflamed intestinal tissues from patients with

inflammatory bowel diseases contained higher expression of OSM, and OSM-deficient mice displayed

significantly attenuated colitis (West et al., 2017); and ”zinc influx into cells by the SLC39 gene

family” with schizophrenia (Table S4), consistent with the finding that SLC39A12A expression in

dorsolateral prefrontal cortex is associated with schizophrenia (Scarr et al., 2016; Takagishi et al.,

2017).

We also analyzed three additional gene sets (distinct from the 18,119 pathways) reflecting genes

under strong selection: ExAC (Lek et al., 2016) (genes strongly depleted for protein-truncating

variants), Cassa (Cassa et al., 2017) (genes with strong selection against protein-truncating vari-

ants), and Samocha (Samocha et al., 2014) (genes strongly depleted for missense mutations), which

were previously shown to be enriched for heritability in a meta-analysis across traits (Hormozdi-

ari et al., 2018). We identified 13 significantly enriched gene set-trait pairs (7 for ExAC, 2 for

Cassa, and 4 for Samocha) spanning 9 traits, after conditioning on the baseline-LD model and the

all-genes annotation (FDR < 5% for positive τ∗; Table S8). In a meta-analysis of these 13 gene

set-trait pairs, both the enrichment (1.57, s.e. = 0.053; P = 7.52e-33) and τ∗ (0.13, s.e. = 0.0090;

P=3.30e-48) were highly statistically significant (Table S6).

Enrichment of disease heritability in network annotations

We sought to assess the hypothesis that genes with high network connectivity are enriched for

disease heritability. We constructed probabilistic annotations based on closeness centrality for each

of the Saha, Greene, InWeb, and Sonawane networks (Table S9; see Methods). We determined
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that closeness centrality was independent of gene size (r = −0.015-0.019) and exon proportion

(r = −0.18-0.008; Figure S2). For the three networks that include tissue-specific networks, we

selected the Saha-skin(sun exposed lower leg), Greene-thyroid and Sonawane-testis networks for

our primary analyses, as these tissue-specific networks maximized the correlation of the resulting

network annotations with H3K27ac (Table S10; see below). We note that different tissue-specific

networks from the same source were only weakly correlated (r = 0.027-0.076 for Saha, 0.17-0.21

for Greene, 0.062-0.24 for Sonawane; Table S10).

We computed the excess overlap between each of the four network annotations and representa-

tive annotations from the baseline-LD model and determined that each of the network annotations

had substantial excess overlap with regulatory annotations (e.g. 1.23-1.36 with H3K27ac, 1.35-1.66

with H3K9ac; Figure 2a and Table S11), substantially stronger than the excess overlap between

the all-genes annotation and regulatory annotations (e.g. 1.11 with H3K27ac, 1.14 with H3K9ac;

Figure 2a); this implies that, for each network, genes with high connectivity to other genes in the

network are enriched for the presence of nearby regulatory marks, perhaps because they are regu-

lated by many other genes. Correlations between these annotations produced similar conclusions

(Table S12; larger correlation for H3K27ac than H3K9ac), although we consider excess overlap to

be a more robust metric because the size of the network annotations varies from 1%-34% of SNPs.

We also report excess overlap and correlations between baseline-LD model annotations in Table

S13.
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Figure 2. Heritability enrichment of network annotations. We report (a) excess (fold) overlap
between network annotations and baseline-LD functional categories; (b) heritability enrichment of network
annotations, meta-analyzed across 42 independent traits; and (c) τ∗ values of network annotations, con-
ditioned on either just the all-genes annotation, or the all-genes annotation and the baseline-LD model,
meta-analyzed across 42 independent traits. In (b) and (c), the percentage under each bar indicates the
proportion of SNPs in each annotation (defined for probabilistic annotations as the average value of the
annotation), and error bars represent 95% confidence intervals. Numerical results for (a) are reported in
Table S11, and numerical results for (b) and (c) are reported in Table S14.

For each of the four network annotations, we applied S-LDSC to the 42 independent diseases

and complex traits, conditioning on the baseline-LD model and the all-genes annotation, and meta-

analyzed the results across traits using random-effects meta-analysis. We identified strongly sig-

nificant enrichments for each network annotation: 1.19 (s.e. = 0.024; P = 2.5e-30) to 1.37 (s.e.

= 0.049; P = 1.6e-17) (Figure 2b and Table S14). However, estimates of τ∗, quantifying effects
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unique to the network annotations, were not significant (P = 0.21 to 0.77) (Figure 2c and Table

S14). This implies that the enrichment signal in the network annotations (Figure 2b) is entirely

explained by the excess overlap between the network and baseline-LD model annotations (Figure

2a); accordingly, when we repeated the S-LDSC analysis conditioning only on the all-genes annota-

tion and not on the baseline-LD model, τ∗ estimates were large and highly significant (Figure 2c).

We repeated the S-LDSC analysis conditional on one annotation from the baseline-LD model at a

time and confirmed that regulatory annotations (including histone marks and transcription factor

binding sites) substantially reduced estimates of τ∗ (Table S15). On the one hand, these findings

represent a negative result for efforts to improve upon the baseline-LD model. On the other hand,

these findings provide a strong validation of the baseline-LD model, in that the information about

diseases/traits in annotations from other sources that broadly reflect the action of gene regulation

are fully captured by the baseline-LD model.

We performed several secondary analyses. We repeated the S-LDSC analysis for the 3 tissue-

specific networks (Saha, Greene, Sonawane) using the most biologically relevant tissue (as inferred

from heritability enrichment of tissue-specific specifically expressed gene and chromatin annotations

(Finucane et al., 2018)) for 10 blood-related traits (see Table S2 for list of traits and tissues);

we obtained similar results, including significant enrichments for all three tissue-specific networks

(Greene et al., 2015; Saha et al., 2017; Sonawane et al., 2017) but non-significant τ∗ conditional on

the baseline-LD model (Table S16). We further repeated the S-LDSC analysis for two tissue-specific

networks (Greene et al., 2015; Sonawane et al., 2017) that include brain, for 8 brain-related traits; we

obtained non-significant enrichments and non-significant τ∗, conditional on the basline-LD model

(Table S16). We also obtained similar results when we repeated the S-LDSC analysis using six

connectivity metrics other than closeness centrality (see Methods; Table S17), using window sizes

other than 100kb (10kb and 1Mb; Table S18), and constructing network annotations using diffusion

state distance (DSD)-transformed networks (Cao et al., 2013) (Table S19).

Enrichment of disease heritability in integrated pathway+network annotations

We sought to assess the hypothesis that genes with high network connectivity to genes in enriched

pathways are also enriched for disease heritability; these enriched pathways serve as relevant, trait-

specific signals that network analysis often lacks. For each of four networks and 141 enriched
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pathways, we constructed probabilistic pathway+network annotations based on closeness centrality

within the subnetwork consisting of input genes and their one-degree neighbors. As before, for the

three networks that include tissue-specific networks, we selected the Saha-skin(sun exposed lower

leg), Greene-thyroid and Sonawane-testis networks for our primary analyses.

For each network, we computed the excess overlap between the 141 pathway+network annota-

tions and representative annotations from the baseline-LD model and averaged results across the

141 pathways. We observed higher excess overlap with regulatory annotations (e.g. 1.27-1.35 with

H3K27ac, 1.42-1.70 with H3K9ac; Figure 3a and Table S11) than the analogous excess overlaps

for network annotations (Figure 2a); this implies that, for each network, genes with high network

connectivity to genes in input pathways are enriched for the presence of nearby regulatory marks,

perhaps because they are regulated by many other genes. Correlations between network, path-

way+network and baseline-LD model annotations are reported in Table S12. We determined that

pathway+network annotations were often correlated with network annotations, particularly for the

corresponding network (from r = 0.12 for Saha to r = 0.93 for Greene). We further determined

that pathway+network annotations constructed using the Greene, InWeb and Sonawane networks

were moderately correlated (r = 0.27-0.42), whereas pathway+network annotations constructed

using the Saha network were more distinct (r = 0.05-0.06), primarily due to its small annotation

size (Table S12).
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Figure 3. Heritability enrichment fof pathway+network annotations. We report (a) excess (fold)
overlap between pathway+network annotations (averaged across up to 156 pathway-trait pairs); (b) heri-
tability enrichment of pathway+network annotations, meta-analyzed across up to 156 pathway-trait pairs;
and (c) τ∗ values of pathway+network annotations, conditioned on either just the all-genes annotation and
the corresponding pathway and network annotations, or the baseline-LD model as well, meta-analyzed across
up to 156 pathway-trait pairs. In (b) and (c), the percentage under each bar indicates the proportion of SNPs
in each annotation (defined for probabilistic annotations as the average value of the annotation), and error
bars represent 95% confidence intervals. Numerical results for (a) are reported in Table S11, and numerical
results for (b) and (c) are reported in Table S20.

For each of 590 (pathway-trait,network) pairs (122 pathway-trait pairs for Saha + 156 pathway-

trait pairs x 3 other networks; see Methods), we applied S-LDSC to the resulting pathway+network

annotation and the corresponding trait, conditioning on the baseline-LD model, the all-genes an-

notation, and the corresponding pathway and network annotations, and meta-analyzed the results
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for each network using random-effects meta-analysis. We identified strongly significant enrichments

for all of our pathway+network annotations: 1.19 (s.e. = 0.01; P = 1.5e-49) to 1.44 (s.e. = 0.06; P

= 3.8e-12) (Figure 3b and Table S20). However, estimates of τ∗, quantifying effects unique to the

network annotations, were not significant or only weakly significant (P = 0.62 to 4.5e-6) (Figure

3c and Table S20). Once again, this implies that the enrichment signal in the pathway+network

annotations is entirely explained by the excess overlap between the pathway+network and baseline-

LD model annotations; accordingly, when we repeated the S-LDSC analysis conditioning only on

the all-genes annotation and the corresponding pathway and network annotations, and not on the

baseline-LD model, τ∗ estimates were large and highly significant, except for the Saha network

(Figure 3c). We repeated the S-LDSC analysis conditional on one annotation from the baseline-LD

model at a time, and determined that inclusion of regulatory annotations (including histone marks

and transcription factor binding sites) substantially reduced estimates of τ∗ (Table S21).

We assessed whether genes in enriched pathways have higher network connectivity than other

genes. For each of the four gene networks, for each of the 141 enriched pathways, we assessed both

the network connectivity within the pathway and the network connectivity between the pathway and

interacting genes (one-degree neighbors) outside the pathway, as compared to 10,000 null pathways

with the same number of genes, each randomly sampled from a randomly chosen pathway from the

full set of 18,119 pathways (see Methods). We assessed network connectivity using the sum of edge

weights between genes. For each network, we averaged results across pathways. We determined

that genes in enriched pathways have higher network connectivity within the pathway (1.43x-7.60x

more edges; Figure 4 and Table S22), but do not necessarily have higher network connectivity with

interacting genes outside the pathway (0.69x-1.56x; Table S22); we note that there is no significant

difference in the number of interacting genes between the 141 enriched pathways and the 10,000

null pathways (Table S22).
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Figure 4. Genes in enriched pathways have high network connectivity For each of four networks,
we report the sum of edge weights in the network between genes in the pathway, averaged across 141 enriched
pathways. For comparison purposes, we report the same quantity averaged across 10,000 null pathways with
the same number of genes. Error bars represent 95% confidence intervals (smaller than data points for
null pathways). Numerical results, and analogous results for network connectivity between a pathway and
interacting genes outside the pathway, are reported in Table S22.

We repeated the S-LDSC analysis (Figure 3b-c) using new pathway+network annotations con-

structed using a random-forest classifier, Quack (Li et al., 2018), that identifies new candidate genes

that have similar topological patterns and network centrality metrics as genes in the input pathway.

Because genes in enriched input pathways have high network connectivity (Figure 4), this is closely

related to our primary strategy of defining pathway+network annotations based on genes with high

network connectivity to genes in enriched input pathways. Indeed, Quack annotations were highly

correlated with our main pathway+network annotations (r =0.50-0.67; Table S12), and produced

S-LDSC results similar to our main analysis (Figure 3b-c), including significant enrichments for all

four networks but non-significant τ∗ conditional on the baseline-LD model (Table S23).
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Discussion

We analyzed 42 diseases and complex traits (average N=323K) to show that genes with high

network connectivity are enriched for disease heritability, but that it is critical for gene network and

pathway analyses to account for known functional annotations, such as those from our baseline-LD

model (Gazal et al., 2017). First, in analyses of pathway annotations, we identified 156 pathway-

trait pairs with significant heritability enrichment after conditioning on the baseline-LD model, a

stringent step that caused a majority of pathway-trait pairs reported in recent studies to become

non-significant in our analyses. Second, we determined that network annotations based on closeness

centrality, a measure of network connectivity, are strongly enriched for disease heritability, but

that these enrichments were fully explained by annotations from the baseline-LD model. Third, for

each of the 156 significant pathway-trait pairs, we determined that pathway+network annotations

constructed from genes with network connectivity to the input pathway were strongly enriched

for the corresponding traits, but that once again these enrichments were largely explained by

annotations from the baseline-LD model.

Our findings have important ramifications for studies connecting gene networks and pathways

to disease (Köhler et al., 2008; Vanunu et al., 2010; Segrè et al., 2010; Lee et al., 2011; Califano

et al., 2012; Pers et al., 2015; de Leeuw et al., 2015; Taşan et al., 2015; Greene et al., 2015; de Leeuw

et al., 2016; Marbach et al., 2016; Boyle et al., 2017; Peters et al., 2017; Cowen et al., 2017; Pardiñas

et al., 2018; Yoon et al., 2018; Wray et al., 2018; Savage et al., 2018; Zhu and Stephens, 2018; Nagel

et al., 2018). Specifically, it is important to account for known functional annotations when seeking

to elucidate biological mechanisms. For some methods, such as S-LDSC (Finucane et al., 2015;

Boyle et al., 2017; Pardiñas et al., 2018), it is straightforward to incorporate known functional

annotations such as those from the baseline-LD model (Gazal et al., 2017), and we emphasize the

importance of doing so. For other methods, it is of high interest to investigate how functional

annotations could be incorporated. More generally, it is of broad interest to re-assess previously

reported results while accounting for known functional annotations; for example, this could be

achieved by running S-LDSC both with and without incorporating functional annotations from the

baseline-LD model.

We note several limitations of our work. First, S-LDSC is not well-suited to analysis of annota-
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tions spanning a very small proportion of the genome (Finucane et al., 2015) and does not model

sparsity in trait effect sizes, potentially explaining why we did not identify enriched pathways for

8 traits that are less polygenic (O’Connor et al., 2018) (e.g. age at menopause, balding, hair color,

sunburn). Nonetheless, our main results attained high statistical significance. Second, we did not

explicitly compare S-LDSC to other methods. However, previous work suggests that S-LDSC com-

pares favorably to other gene set enrichment methods, both in simulations and in analyses of real

traits (Finucane et al., 2018). Third, interpretation of pathway-trait enrichments is complicated

by the possibility that enrichment signals may be driven by a small number of highly significant

genes (Zhu and Stephens, 2018). Indeed, when we repeated our analyses excluding from each en-

riched pathway all genes harboring genome-wide significant associations from the corresponding

trait (average of 2 genes removed per pathway-trait pair; see Methods), only 53 pathway-trait pairs

remained significant (Table S24). However, we verified that repeating our main pathway+network

analyses using these 53 pathway-trait pairs (excluding genes implicated by GWAS) produced sim-

ilar conclusions (Table S25). Fourth, gene networks may include false-positive interactions, even

after correcting for technical confounding (Parsana et al., 2017; Saha et al., 2017; Boyle et al.,

2018). However, our results are consistent across four published gene networks (Greene et al., 2015;

Saha et al., 2017; Li et al., 2017; Sonawane et al., 2017), suggesting that false-positive interactions

are unlikely to substantially impact our results. Fifth, inferences about components of heritability

can potentially be biased by failure to account for LD-dependent architectures (Speed et al., 2012;

Yang et al., 2015; Gazal et al., 2017; Speed et al., 2017). All of our main analyses used the baseline-

LD mode, which includes 6 LD-related annotations (Gazal et al., 2017). The baseline-LD model

is supported by formal model comparisons using likelihood and polygenic prediction methods, as

well as analyses using a combined model incorporating alternative approaches (Gazal et al., 2018);

however, there can be no guarantee that the baseline-LD model perfectly captures LD-dependent

architectures. Finally, although we identified many significantly enriched pathways, our results

for network and network+pathway annotations represent a negative result for efforts to improve

upon the baseline-LD model (Gazal et al., 2017). On the other hand, our results emphasize the

importance of accounting for known functional annotations in network and pathway analyses.
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Methods

Pathway annotations

We considered 18,119 gene sets (pathways) from five sources: 2,118 biological pathways from the

BioSystem (BS) database (Geer et al., 2010) (which includes pathways from BioCyc (Caspi et al.,

2018), Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2017), Pathway Inter-

action Database (PID) (Schaefer et al., 2009), REACTOME (Fabregat et al., 2018), WikiPathways

(Pico et al., 2008)), 1,927 biological pathways from the Pathway Commons (PC) database (Cerami

et al., 2011) (which includes pathways from HumanCyc (Romero et al., 2004), Integrating Network

Objects with Hierarchies (INOH) (Yamamoto et al., 2011), KEGG (Kanehisa et al., 2017), PAN-

THER (Mi and Thomas, 2009), PID (Schaefer et al., 2009), REACTOME (Fabregat et al., 2018),

SMPDB (Jewison et al., 2014), NetPath (Kandasamy et al., 2010)), 7,209 protein-protein interac-

tion gene sets from the InWeb database (Li et al., 2017), 3,903 mouse phenotype gene sets from the

Mouse Genome Informatics (MGI) database (Eppig et al., 2014)(i.e. sets of genes whose orthologs

are associated to mouse phenotypes), and 2,961 gene ontology gene sets from the Genome Ontology

(GO) database (Ashburner et al., 2000). This set of pathways, which contain at least 10 genes and

at most 500 genes (consistent with previous studies (Pers et al., 2015; Zhu and Stephens, 2018),

significantly overlap with mSigDB (Liberzon et al., 2011) and pathways analyzed in a previous

study (Pers et al., 2015).

For each of 18,119 pathways, we constructed a pathway annotation by annotating a value of 1 for

variants around the protein-coding genes in a given pathway (+/- 100kb) and 0 for all other variants.

We applied S-LDSC on 18,119 pathway annotations across 42 independent diseases and complex

traits, conditional on the baseline-LD model (v1.1) (Gazal et al., 2017) and all-genes annotations (a

value of 1 for variants around 23,987 protein-coding genes with a 100kb window). We removed 129

pathway-trait pairs whose annotated SNPs are less than 0.02% of the reference genome (European

samples from the 1000 Genomes Project; see URLs) as S-LDSC is not well-equipped for annotations

that span very small proportion of the genome.

For each of 760,869 pathway-trait pairs, we assessed the statistical significance of the pathway

annotations based on global FDR < 5% on the pathway annotation’s standardized effect size (τ∗)

p-value. We note controlling FDR for each trait and for all traits did not make a major difference in
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the number of identified enriched pathway-trait pairs. We further note that our choice of two-tailed

test on the significance is conservative, partially attributing to the reduced number of significantly

associated pathway-trait pairs. Among significantly enriched pathway-trait pairs. we calculated

a pairwise correlation for every pair of annotations and retained the more significant pathway for

correlated pathways with r ≥ 0.5 (as in a previous study (Li et al., 2018)). If correlated pathways

were enriched for different traits, we retained both pathways.

For each of 156 significantly enriched pathway-trait pairs, we also constructed pathway annota-

tions excluding genes implicated by GWAS. First, we downloaded all GWAS associations from the

GWAS Catalog (see URLs); we restricted to significant associations (p-value ≤ 5e-8). For each of

the 34 traits, we defined genes implicated by GWAS by including genes mapped to the lead SNP;

if the SNP was intergenic, we included the nearest upstream and downstream genes. (We note

that the nearest gene might not be the correct target gene (Gusev et al., 2016).) Then, for each

of the 156 enriched pathway-trait pairs, we removed trait-specific GWAS significant genes (5% of

the genes, on average across 156 pathway-trait pairs) and rebuilt our pathway annotations with a

100kb window. For pathways significant for multiple traits, we built unique pathway annotations

excluding genes implicated by GWAS for the corresponding traits. For each of 156 pathway-trait

pairs, genes after excluding GWAS significant genes are provided in Table S4.

Network annotations

We downloaded each of four gene networks (Greene et al., 2015; Saha et al., 2017; Li et al., 2017;

Sonawane et al., 2017) and formatted as a two-dimensional matrix with three columns: gene1,

gene2, and interaction score (see URLs). We used ENTREZ ID for the gene identifier, so converted

other gene identifiers provided by the authors as needed. For each network, we constructed seven

different probabilistic annotations based on the following network connectivities (centralities), which

we computed using Graph-tool (see URLs):

Let G be a weighted, undirected graph with a set of vertices (V) and a set of edges (E).

Closeness centrality (v): how close gene v is to all other genes in the network. It is defined as

1/
∑

v,v 6=w dvw where dvw is the weighted distance from v to w. If there is no path between two

genes, the distance of zero is used.

Degree (v): the number of vertices connected to v; that is the number of neighboring genes for each
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gene in the graph.

Maximum edge weight (v): the maximum of the weights of all edges connected to v.

Sum edge weight (v): the sum of the weights of all edges connected to v.

Betweenneses centrality (v): The number of shortest paths that pass through gene v. It is defined

as
∑
σuw(v)/σuw where σuw(v) is the number of shortest paths from node u to w that pass through

v, and σuw is the total number of shortest paths from u to w.

Eigenvector centrality (v): Intuitively, the eigencentrality of v is proportional to the sum of the

centralities of its neighbors (Özgür et al., 2008). It is defined as the solution of of Ax = λx, where

x is the eigenvector of the weighted adjacency matrix A with the largest eigenvalue λ.

Pagerank (v): Pagerank is similar to eigenvector centrality, except it contains a damping factor,

the probability that the person who randomly visit genes will continue, under the assumption

that more important genes are more likely to receive more visits. It is defined as (1 − d)/N +

d
∑

u∈N(v) Pagerank(u)/d+(u) where d is a damping factor, N(v) are the in-neighbors of v, d+(u)

is the out-degree of u. Because G is an undirected graph, pagerank treats it as a directed graph by

making edges bidirectional.

After computing network connectivities for all protein-coding genes that exist in a network, we

linearly transformed scores to lie between 0 to 1 and annotated variants around genes (+/- 100kb).

When a variant is spanned by multiple genes with the 100kb window, we assigned the maximum

connectivity score.

Pathway + Network annotations

We constructed pathway+network annotations, specific to an input pathway and a gene network.

For each of 141 enriched pathways, we first constructed an adjacency matrix by mapping genes in a

pathway (”core genes”) to a gene network and identifying the set of neighboring genes (”peripheral

genes”), using Graph-tool (see URLs). In the adjacency matrix, a vector represents an ENTREZ

ID of a gene in a pathway, an ENTREZ ID of a neighboring gene, and the interaction score (e.g.

posterior probability of these two genes). Using this adjacency matrix representing a subnetwork

of core and perihpheral genes that appear in the network, we score both core and peripheral genes

based on closeness centrality. We use the inverse of the interaction score as the cost when computing

closeness centrality. Using the set of core and peripheral genes along with the linearly transformed
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connectivity scores that lie from 0 to 1, we annotated variants around genes (+/- 100kb). When a

variant is spanned by multiple genes with the 100kb window, we assigned the maximum connectivity

score.

Excess overlap between annotations

We calculated excess fold overlap between two annotations (annot 1 and annot 2) as the fraction of

overlap between the annotations divided by the expected amount of overlap by chance, computed

as the following: excess overlap(annot1, annot2) =

∑M
j=1 annot1j ∗ annot2j∑M

j=1 annot1j ∗
∑M

j=1 annot2j

where M is the total number of SNPs (5,961,159). Annotations with no excess overlap are assigned

a value of 1; when there is excess overlap, the excess fold overlap is > 1.

Network connectivity of a pathway

Given a pathway and a network, we quantified how tightly connected the pathway is in the network,

compared to a null pathway. Let P be a set of genes in the pathway that exist in the network. Let

Q be a set of neighboring genes; that is, genes in P are connected with genes in Q with at least one

edge, in the network. We calculated three metrics: (1) size of Q (number of neighboring genes),

(2) sum of edges among genes in P, and (3) sum of edges between genes in P and genes in Q. We

did not consider genes in the pathway that are not coding or do not appear in the network.

For each of 141 enriched pathways, we constructed a corresponding null pathway as follows: (1)

randomly choose a pathway from the full set of 18,119 pathways (Table S1), (2) randomly choose

a gene from the sampled pathway, and (3) repeat (1) and (2) N times, where N is the number of

genes in the pathway. For each of four gene networks analyzed, we repeated this procedure 10,000

times and reported three connectivity metrics of enriched and null pathways (for null, the mean of

10,000 permutations is reported).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 13, 2018. ; https://doi.org/10.1101/442582doi: bioRxiv preprint 

https://doi.org/10.1101/442582
http://creativecommons.org/licenses/by-nc-nd/4.0/


24

Set of 42 independent traits

Analogous to a previous study (Hormozdiari et al., 2018), we considered 89 GWAS summary

association statistics, including 34 traits from publicly available sources and 55 traits from the UK

Biobank (up to N = 459K); summary association statistics were computed using BOLT-LMM v2.3

(Loh et al., 2015, 2018). Among 47 summary statistics with z-scores of total SNP heritability of

at least 6 (computed using S-LDSC with the baseline-LD model), we further removed 5 summary

statistics that have genetic correlation of at least 0.9 (computed using cross-trait LDSC (Bulik-

Sullivan et al., 2015)). Whenever applicable, meta-analysis across 42 independent traits (Table

S2), whose GWAS summarystatistics are publicly available (see URLs), was performed using a

random-effect meta-analysis using the R package rmeta.

Set of 10 blood-related and 8 brain-related traits

We analyzed ten independent blood- and autoimmune-related traits: Crohn’s disease (Jostins et al.,

2012), rheumatoid arthritis (Okada et al., 2014), and ulcerative colitis (Jostins et al., 2012) from

publicly available datasets and eczema, autoimmune diseases. eosinophil count, platelet count,

red blood cell count, white blood cell count, and red blood cell distribution width from the UK

Biobank.

We analyzed eight independent brain-related traits: autism spectrum (of the Psychiatric Ge-

nomics Consortium et al., 2013), depressive symptoms (Okbay et al., 2016), and schizophrenia

(Ripke et al., 2014) from publicly available datasets, and age at menarche, body mass index, neu-

roticism, smoking status, and years of education from the UK Biobank. We selected these traits

from 42 independent traits we analyzed, as inferred from heritability enrichment of tissue-specific

gene expression and chromatin annotations (Finucane et al., 2015, 2018) and eQTL annotations

(Hormozdiari et al., 2018). We additionally considered autism spectrum based on previous studies

(Fatemi et al., 2009; Cellot and Cherubini, 2014) that the brains of subjects with autism have

altered expression.
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Data access

All pathway, network, and pathway+network annotations and LD scores are publicly available (see

URLs).

URLs

Pathway, network, and pathway+network annotations: https://data.broadinstitute.org/alkesgroup/

LDSCORE/Kim_pathwaynetwork

S-LDSC software: https://github.com/bulik/ldsc

baselineLD annotations: https://data.broadinstitute.org/alkesgroup/LDSCORE/

Saha transcriptome-wide networks: http://gtexportal.org

Greene tissue-specific co-expression networks: http://hb.flatironinstitute.org/

InWeb protein-protein interaction network: https://www.intomics.com/inbio/map

Sonawane gene regulatory networks: https://zenodo.org/record/838734

GTEx (Release v6, dbGaP Accession phs000424.v6.p1): http://www.gtexportal.org.

GWAS Catalog (Release v1.0): https://www.ebi.ac.uk/gwas.

1000 Genomes Project Phase 3 data: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/

20130502

PLINK software: https://www.cog-genomics.org/plink2

BOLT-LMM software: https://data.broadinstitute.org/alkesgroup/BOLT-LMM

BOLT-LMM summary statistics for UK Biobank traits: https://data.broadinstitute.org/

alkesgroup/UKBB

UK Biobank: http://www.ukbiobank.ac.uk/

UK Biobank Genotyping and QC Documentation: http://www.ukbiobank.ac.uk/wp-content/

uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf

Graph-tool: https://graph-tool.skewed.de
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Supplementary figures

Figure S1. Summary of pathways analyzed We analyzed 18,119 pathways, each consisting of at least
10 and at most 500 coding genes. Number in the boxplot represents the median number of genes for each
database. Number of pathways in each database is shown on the top of the figure. BS: NCBI BioSystems.
PC: PathwayCommons. MGI: Mouse Genome Informatics. GO: Genome Ontology. InWeb: InWeb protein-
protein interactions. See Table S1 for a description of 18,119 pathways analyzed.
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Figure S2. Closeness centrality is independent from the gene size and the proportion of exon.
For each of four network annotations, we computed a Pearson correlation between probabilistic annotation
values and (1) gene size and (2) proportion of exon. We calculated the proportion of exon as the size of
coding regions (bp) that lie inside the gene divided by the size of the gene, defined as (transcription stop -
transcription start).
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Supplementary tables

See Excel file for all supplementary tables. Titles and captions are provided below.

Table S1. List of 18,119 pathways analyzed. For each pathway, we report a pathway ID, pathway
description, database, ENTREZ IDs for genes, and the number of protein-coding genes.

Table S2. List of 42 independent diseases and traits analyzed. For each trait, we report a trait
identifier, trait description, reference, sample size, and heritability z-score. We selected these 42 traits
based on a heritability z-score > 6 (see Methods). We further indicated brain or blood-related traits.

Table S3. S-LDSC results of all pathway-trait pairs We applied S-LDSC to 760,869 pathway-trait
pairs, conditioning on all-genes annotation and the baseline-LD model. For each pathway-trait pair, we
report a proportion of SNPs, enrichment, and τ .

Table S4. S-LDSC results for 156 significantly enriched pathway-trait pairs. For each
significantly enriched pathway-trait pair, we report a proportion of SNPs, enrichment, and a τ∗. The 8
significant pathway-trait pairs were reported in previous genetic studies: ”pathways in cancer” for height
(Wood et al., 2014); ”neuropeptide hormone activity” for BMI (Locke et al., 2015); ”immune response” for
both Crohn’s disease and ulcerative colitis (Jostins et al., 2012); ”T-cell receptor,” ”abnormal T-cell
physiology,” and ”cytokine-mediated signaling pathway” for rheumatoid arthritis (Okada et al., 2014);
”absent corpus callosum” for years of education. (Okbay et al., 2016)

Table S5. Average gene size of annotations. For all-genes annotation, all pathways, pathway,
network, and pathway+network, and Quack annotations, we report an average size of genes (and its
standard deviation) and an average number of genes.

Table S6. Heritability enrichment of enriched pathway-trait pairs. We meta-analyzed (a) 156
enriched pathway-trait pairs; (b) 13 enriched pathway-trait pairs for ExAC, Cassa, and Samocha gene sets;
(c) 169 enriched pathway-trait pairs (a and b combined). In each case, we report meta-analyzed
enrichments and τ∗.

Table S7. S-LDSC results of 195 pathway-trait pairs from previous pathway enrichment
studies. We applied S-LDSC to 95 pathway-trait pairs from five previous genetic studies (Boyle et al.,
2017; Pardiñas et al., 2018; Wray et al., 2018; Savage et al., 2018; Nagel et al., 2018) and 100 from an
unpublished study (Zhu and Stephens, 2018) (a) conditioning on the baseline-LD model and all-genes
annotation and (b) conditioning on all-genes annotation only. In each pathway-trait pairs for each case, we
report a proportion of SNPs, enrichment, and τ .
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Table S8. S-LDSC results of 13 enriched pathway-trait pairs for ExAC, Cassa, Samocha gene
sets. For each of 13 enriched pathway-trait pairs, we report a proportion of SNPs, enrichment, and τ .

Table S9. Summary of gene networks analyzed. We report the number of genes and the number of
edges for each of four networks (InWeb, Saha, Sonawane, Greene).

Table S10. Correlation of network annotations with baseline-LD model annotations. We
report the Pearson correlation between baseline-LD model annotations and (a) Saha network annotations
of different centralities, (b) Saha network annotations of different tissues, (c) Greene network annotations
of different centralities, (d) Greene network annotations of different tissue, (e) InWeb network annotations
of different centralities, (f) Sonawane network annotations of different centralities, and (g) Sonawane
network annotations of different tissue.

Table S11. Excess fold overlap of pathway and network based annotations with baseline-LD
model annotations. We report the excess fold overlap between baseline-LD model annotations and
pathway, network, pathway+network, Quack, and all-genes annotations.

Table S12. Correlation of pathway and network based annotations with baseline-LD model
annotations. We report the Pearson correlation between baseline-LD model annotations and pathway,
network, pathway+network, Quack, and all-genes annotations.

Table S13. Excess fold overlap / correlation among functional annotations from the
baseline-LD model. We report (a) excess fold overlap and (b) correlation among functional annotations
from the baseline-LD model.

Table S14. Heritability enrichment of network annotations. For each of 4 network annotations, we
report meta-analyzed enrichments and τ∗ across 42 independent traits.

Table S15. Heritability enrichment of network annotations conditioning on one annotation
from the baseline-LD at a time. For (a) Saha, (b) Greene, (c) InWeb, (d) Sonawane networks, we
meta-analyzed network annotations across 42 independent traits, conditioning on one annotation from the
baseline-LD model at a time. We report meta-analyzed enrichments and τ∗ across 42 independent traits.

Table S16. Heritability enrichment of network annotations using relevant tissues for
brain-related and blood-related traits. For (a) 8 brain-related traits and (b) 10 blood-related traits,
we report meta-analyzed enrichments and τ∗.
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Table S17. Heritability enrichment of network annotations using 6 other network centrality
metrics. For (a) Saha, (b) Greene, (c) InWeb, (d) Sonawane networks, we constructed network
annotations based on 6 other network centrality metrics (see Methods) and meta-analyzed results across 42
independent traits. We report meta-analyzed enrichments and τ∗.

Table S18. Heritability enrichment of network annotations with different window sizes.
Instead of 100kb windows around genes, we added (a) 10kb or (b) 1Mb windows around genes when
constructing network annotations. We report meta-analyzed enrichments and τ∗ across 42 independent
traits.

Table S19. Heritability enrichment of DSD-network annotations. We applied the diffusion state
distance (DSD) algorithm (Cao et al., 2013) to transform gene networks’ edge weights with a random walk
(k = 5). Then, we constructed network annotations by re-computing closeness on DSD-transformed
networks and meta-analyzed results across 42 independent traits. We report meta-analyzed enrichments
and τ∗.

Table S20. Heritability enrichment of pathway+network annotations. We meta-analyzed 156
pathway-trait pairs (122 for Saha, which has less pairs as all genes in some pathways do not exist in the
Saha network). We report meta-analyzed enrichments and τ∗ across 156 pathway-trait pairs (122 for Saha).

Table S21. Heritability enrichment of pathway+network annotations conditioning on one
annotation from the baseline-LD at a time. For (a) Saha, (b) Greene, (c) InWeb, (d) Sonawane
networks, we constructed an average annotation across 156 pathway+network annotations and
meta-analyzed averaged pathway+network annotations across 42 independent traits, conditioning on one
annotation from the baseline-LD model at a time. We report meta-analyzed enrichments and τ∗ across 42
independent traits.

Table S22. Network connectivity of enriched pathways and null pathways. Using (a) sum of
edge weights or (b) number of edges as network connectivity metrics, we report the number of interacting
genes and network connectivity between genes in a pathway (core edges) and genes outside the pathway
(peripheral edges). We constructed null pathways in two ways: (1) each gene sampled from a randomly
chosen pathway or (2) each gene randomly sampled from all protein-coding genes.

Table S23. Heritability enrichment of Quack annotations. We applied the Quack random-forest
classifier algorithm (Li et al., 2018). We used 18,119 pathways as a training data and applied Quack to four
gene networks. We used the output of Quack to construct Quack pathway+network annotations (with
100kb window), applied S-LDSC, and meta-analyzed across 156 pathway-trait pairs (122 for Saha). We
report meta-analyzed enrichments and τ∗.
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Table S24. S-LDSC results of 156 enriched pathway-trait pairs excluding genes implicated by
GWAS. We removed genes implicated by previous GWAS studies (see Methods; average of 5% of genes ( 2
genes) removed) and applied S-LDSC conditional on all-genes and baseline-LD model annotations. For
each pathway-trait pair, we report a proportion of SNPs, enrichment, τ∗, and the number of genes in a
pathway excluding GWAS significant genes.

Table S25. Heritability enrichment of 53 pathway+network annotation using pathways
excluding genes implicatd by GWAS. From 53 significant pathway-trait pairs after excluding GWAS
significant genes, we constructed pathway+network annotations and meta-analyzed results across 53
pathway-trait pairs (40 for Saha). We report meta-analyzed enrichments and τ∗.
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