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Abstract

Modern developments in single cell sequencing technologies enable broad insights into cellu-
lar state. Single cell RNA sequencing (scRNA-seq) can be used to explore cell types, states,
and developmental trajectories to broaden understanding of cell heterogeneity in tissues and
organs. Analysis of these sparse, high-dimensional experimental results requires dimension
reduction. Several methods have been developed to estimate low-dimensional embeddings
for filtered and normalized single cell data. However, methods have yet to be developed
for unfiltered and unnormalized count data. We present a nonlinear latent variable model
with robust, heavy-tailed error and adaptive kernel learning to estimate low-dimensional
nonlinear structure in scRNA-seq data. Gene expression in a single cell is modeled as a
noisy draw from a Gaussian process in high dimensions from low-dimensional latent posi-
tions. This model is called the Gaussian process latent variable model (GPLVM). We model
residual errors with a heavy-tailed Student’s t-distribution to estimate a manifold that is
robust to technical and biological noise. We compare our approach to common dimension
reduction tools to highlight our model’s ability to enable important downstream tasks, in-
cluding clustering and inferring cell developmental trajectories, on available experimental
data. We show that our robust nonlinear manifold is well suited for raw, unfiltered gene
counts from high throughput sequencing technologies for visualization and exploration of
cell states.

Keywords: Manifold Learning, Gaussian Process Latent Variable Model, cell types,
Single Cell RNA-Sequencing (scRNA-seq), Robust Statistics

1. Background

High-throughput single cell RNA sequencing (scRNA-seq) is a powerful tool for cataloguing
cell types and cell states, and investigating changes in expression over cell developmen-
tal trajectories. Droplet-based methods encapsulate individual cells with unique barcode
tags that are ligated to cellular RNA fragments (Zheng et al., 2017). Sequenced reads are
mapped to both a gene and a cell, creating a high-dimensional cell by gene count matrix–
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with hundreds to millions of cells and twenty thousand genes per human cell. These cell
by gene count matrices contain a substantial proportion of zeros because of low coverage
sequencing per cell (i.e., dropout), and also contain substantial variance from both tech-
nical and biological sources of noise (Buettner et al.). Computational tools for analyzing
scRNA-seq results thus require initial dimension reduction to a lower dimensional manifold
capturing gene expression patterns for regularization and computational efficiency. Dimen-
sion reduction techniques are conducive to noise reduction (Buettner et al.; Eraslan et al.,
2018), sub-population identification (Pierson and Yau; Haghverdi et al., 2016), visualiza-
tion (Amodio et al.; Van Der Maaten and Hinton), pseudotemporal ordering of development
stages (Ahmed et al., 2018; Trapnell et al.; Lönnberg et al., 2017), and imputation (Li and
Li, 2018). Lower-dimensional mappings also provide convenient visualizations that inform
analytic methods and future experiments.

Linear dimension reduction techniques are commonly used as a first step to downstream
analyses. Principal component analysis (Hotelling, 1933) (PCA) – the projection of a high
dimensional space onto orthogonal bases that capture the directions of greatest variance –
is the first step of several scRNA-seq analysis packages such as PAGODA (Fan et al., 2016)
and Waterfall (Shin et al.). Zero-Inflated Factor Analysis (Pierson and Yau) (ZIFA) extends
the factor analysis (Harman, 1960) paradigm of a linear mapping onto low dimensional la-
tent dimensions to allow dropouts modeled by Bernoulli random variables to account for
the excess of zero counts in scRNA-seq data. Independent component analysis (Comon,
1994) (ICA), which assumes non-Gaussian observations, and canonical correlation analy-
sis (Hotelling, 1936) (CCA), which allows for multiple observations, have also been used as
dimension reduction techniques for studying cell developmental trajectories (Trapnell et al.)
and for experimental batch correction (Butler et al.).

More sophisticated models eschew the linearity assumption to find richer nonlinear
structure in the data. The t-distributed Stochastic Neighbors Embedding (t-SNE) (Van
Der Maaten and Hinton) is a popular visualization tool. t-SNE computes the similarity
between two points in high dimensional space with respect to a Gaussian kernel distance
metric, and estimates a lower dimensional mapping with similarity with respect to a Stu-
dent’s t-distribution metric that minimizes the Kullback-Leibler divergence between the
similarity distributions in high and low dimensions. The Gaussian kernel in t-SNE includes
a perplexity parameter that controls the decay rate of similarity across the distance between
cells. Diffusion maps, used in packages such as Destiny (Angerer et al., 2016), are another
tool for nonlinear low dimensional mapping that perform linear decomposition on a kernel
similarity matrix of high dimensional observations. SAUCIE (Amodio et al.) implements
a variational autoencoder, or a deep neural network that compresses data with the goal of
creating an optimal reconstruction from the compressed representation, to execute several
single cell tasks. Similarly, scVI (Lopez et al.) uses deep neural networks to create a prob-
abilistic representation in latent space for batch correction, visualization, clustering, and
differential expression. One Bayesian probabilistic technique is the Gaussian process latent
variable model (Titsias and Lawrence; Lawrence) (GPLVM), which used by scLVM (Buet-
tner et al.) for noise reduction, and GPfates (Lönnberg et al., 2017) and GrandPrix (Ahmed
et al., 2018) for pseudotemporal ordering. The GPLVM models observations (i.e., cells) as
draws from Gaussian processes representations of lower dimensional latent variables.
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While current methods for dimension reduction have been successful with early se-
quencing experiments and filtered expression data, they are limited in their capacity to
accurately represent and inform analyses of raw, high throughput sequencing experiments.
Linear methods such as PCA and ZIFA are ill-suited for capturing highly nonlinear bio-
logical processes across developmental phase, and many implementations scale poorly with
increased sample size. Current non-linear methods are highly sensitive parameter choices,
including perplexity for t-SNE, kernel variables for diffusion maps, and network architecture
for VAEs. Latent dimensions of t-SNE have no global structure, making embedded posi-
tions difficult to interpret and leading to uninformative mappings beyond two dimensions.
Downstream analyses of t-SNE results are hindered by an inability to map back to obser-
vation space. VAEs, like most neural networks, require tens to hundreds of thousands of
cells for accurate estimation, which may not be available in smaller experiments. Current
methods, particularly those using the GPLVM, work only with filtered, normalized data
and incorporate prior information to facilitate the latent mapping.

Robust statistical methods are a natural solution to modeling noisy, sparse count data.
We introduce the t-Distributed Gaussian Process Latent Variable Model (tGPLVM) for
learning a low dimensional embedding of unfiltered count data. We introduce three features
to the basic GPLVM: 1) a robust Student’s t-Distribution noise model; 2) a weighted sum
of non-smooth covariance kernel functions with parameters estimate from the data; 3)
sparse kernel structure. The heavy tailed Student’s t-Distribution improves robustness to
outliers, previously demonstrated in Gaussian process regression (Tang et al.; Vanhatalo
et al.). Matérn kernels have been successfully used in time series modeling to capture
non-smooth trajectories (Ahmed et al., 2018). The sparse kernel structure allows us to
effectively reduce the number latent dimensions based on the actual complexity of the data.
Our implementation of tGPLVM accepts sparse inputs produced from high-throughput
experimental cell by gene count matrices.

We demonstrate tGPLVM’s ability to estimate informative manifolds from noisy, raw
single cell count matrices and highlight its applicability to multiple downstream tasks. We
show improved cell type identification via clustering on the estimated latent space using a
data set of cerebral cortex cells labeled with estimated cell type (Pollen et al.). We find
that the tGPLVM manifold can learn pseudotemporal ordering from a batch of Plasmodium-
infected mouse cells sequenced across time post exposure (Lönnberg et al., 2017). Finally,
we demonstrate that tGPLVM can be used on unprocessed, unnormalized count data from
recent high-throughput sequencing methods (Zheng et al., 2017) and used to explore gene
expression across cell states. We implement a scalable inference algorithm that can fit
hundreds of thousands to millions of cells.

Results

The t-distributed Gaussian process latent variable model is a nonlinear latent variable model
that captures high dimensional observations in low dimensional nonlinear latent space.
Expression of each of P genes across all cells is modeled as a draw from a multivariate
normal distribution with the covariance a function of the low-dimensional, latent positions.
The observation error is modeled with a heavy tailed Student’s t-Distribution with four
degrees of freedom to robustly account for variance in the count data due to technical and
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Figure 1: Comparison of error models on the same observations (red) in a multidimensional
Gaussian process. Data are simulated from a smooth manifold with t-distributed
error (left). A normally distributed error model (center) overfits to the data and
fails to find the manifold structure due to the outliers as compared to the manifold
estimated by a GP with t-distributed error (right).

biological noise relative to a normally distributed error model (O’Hagan, 1979, 1988). Here,
we use a weighted sum of Matérn 1/2, Matérn 3/2, Matérn 5/2, and squared exponential
kernel functions to model non-smooth manifolds.

Nonparametric manifold learning improves cell type identification.

First, we evaluated the ability of tGPLVM and commonly used single cell dimension re-
duction methods to distinguish distinct cell types. tGPLVM, PCA, ZIFA, and t-SNE were
used to map cells labeled with their inferred cell type from the Pollen data (Pollen et al.) to
latent spaces varying from two to nine dimensions. With more than two latent dimensions,
tGPLVM produced clusters that best corresponded to the actual cell type labels of the
four methods (Figure 2). Including Matérn kernels in tGPLVM improves cell type separa-
tion in the latent space as measured by normalized mutual information and adjusted rand
score (Supplementary Figure 1). Inclusion of Matérn kernels also reduces the uncertainty
of posterior estimates of the latent embedding as measured by the average scale parame-
ter of the latent position (Supplementary Figure 2). These results suggest that a robust
Bayesian nonparametric manifold is superior to current dimension reduction algorithms for
identifying and visualizing distinct cell types captured by scRNA-seq experiments.

Nonparametric manifold learning can reconstruct development time scales
without prior information

Next we test the flexibility of tGPLVM to continuous cellular developmental trajectories by
fitting latent mappings for a batch of mouse Th1 and Tfh cells sequenced over seven days
after infection with Plasmodium (Lönnberg et al., 2017). Visually, we find that the latent
mapping from tGPLVM represents the temporal relationships accurately, with most cells
positioned among cells from the same or adjacent time points. We build a minimum span-
ning tree on the latent mappings to infer developmental trajectories. For a two dimensional
mapping, only tGPLVM accurately spans the first time point (day 0) to the final time point
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Figure 2: Comparison of manifold learning methods on 11 neural and blood cell popula-
tions (Pollen et al.). (a) Average ARS (left) and NMI (right) of ten K-means
cluster labels versus available cell type labels with respect to the number of la-
tent dimensions. (b) Three dimensional latent mappings from tGPLVM, PCA,
and ZIFA colored by inferred cell type label. t-SNE (not pictured) collapses in
three dimensions.
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Figure 3: Comparison of manifold learning Methods on Plasmodium-infected Th1 and Tfh
cells (Lönnberg et al., 2017): Plot of two dimensional latent mapping from tG-
PLVM, PCA, ZIFA, and t-SNE. Labels indicate days after infection prior to se-
quencing. Dotted lines represent connections along the minimum spanning tree.
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Figure 4: Manifold learning methods on unprocessed CD34+ PBMCs (Zheng et al., 2017)
counts. tGPLVM shows the best separation of expression patterns based on cell
state marker genes. Color bars indicate log2(1 + Y ), where Y represents total
counts per gene per cell.

(day 7). PCA, ZIFA, and alternate GPLVM models with different error or kernel choices
find endpoints of the tree in days 2 or 4. t-SNE is able to separate cells based on time
but does not accurately reconstruct the ordering and is clearly sensitive to outliers (Figure
3). This suggests that tGPLVM is a superior dimension reduction technique for identifying
developmental pathways in unlabeled settings.

Nonparametric manifold learning improves visualization of raw count data and
captures cell state

Next, we tested tGPLVM’s performance on unfiltered count data. Models were fit on
∼10,000 CD34+ peripheral blood mononuclear cells (PBMCs) sequenced on a high through-
put parallel 10x system (Zheng et al., 2017). Each model was able to find three distinct
regions based on expression patterns (Figure 4). PCA is dominated by total counts, with
cells with more reads moving further away in latent space, and more frequent cell types
dominate the space (Engelhardt and Stephens, 2010). CD34 is a marker for hematopoeitic
stem cells (Sidney et al., 2014), which differentiate into myeloid and lymphoid cells. From
tGPLVM, we can observe this separation from different expression patterns in progenitor
cells across dimensions. Dimension three correlates with myeloid cells, demonstrated visu-
ally by marker TYROBP (Tomasello and Vivier, 2005) (Pearson’s r = 0.647; Figure 4),
in addition to correlations with macrophage-associated genes (Donato et al.; Xia et al.,
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Figure 5: Time to fit a two dimensional embedding vs. sample size on a 16 VCPU, 224 GB
memory high performance computing system.

2018) S100A4 (Pearson’s r = 0.623) and S100A6 (Pearson’s r = 0.665). Dimension two
correlates to lymphoid cells, visualized by marker LTB (Browning et al., 1993) (Pearson’s
r = 0.306; Figure 4), and further supported by correlation with lymphocyte specific protein-
1 LSP1 (Pearsons’s r = 0.481). Dimension one corresponds to general cellular functions,
with strong correlation with mitochondrial activity genes COX5A (Pearson’s r = 0.587)
and STOML2 (Pearson’s r = 0.474), and shown with CLTA, an endocytosis-mediating
gene (Stelzer et al., 2016) (Pearson’s r = 0.461; Figure 4). These distinct expression pat-
terns reflect the broadly different immune cellular functions into which hematopoietic stem
cells may develop. Gradients of expression levels projected on tGPLVM embeddings can
be used to further interrogate changes in cell states from different experiments and across
these manifolds.

tGPLVM scales to a million cells

Finally, we evaluate the ability of tGPLVM and related methods to fit embeddings for unfil-
tered, unnormalized, high throughput scRNA-seq data. Models with two latent dimensions
were fit on subsamples from 100 to 1 million cells from the 10x 1 million mouse brain cell
data (Zheng et al., 2017). tGPLVM and PCA are the only methods that can fit one million
cells in a computationally tractable way (Figure 5). ZIFA is slower than tGPLVM by an
order of magnitude consistently across sample sizes. Since ZIFA requires a dense input, its
input cell count matrix is limited in our framework to approximately 100,000 cells. While
t-SNE’s implementation can input a sparse matrix format, it does not converge beyond 104

samples.
To check that the embedding has biological significance, we again used Pearson’s cor-

relation to identify genes whose expression is correlated with latent dimensions. We find
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Figure 6: Gene expression patterns across tGPLVM manifold in 1 million mouse brain
cells (Zheng et al., 2017). Latent dimension one separates circulatory and blood
genes. Latent dimension two is correlated with neural genes. Color bars indicate
log2(1 + Y ), where Y represents total counts per gene per cell.
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that latent dimension one corresponds to increased expression of genes associated with the
circulatory system and hemoglobin, such as HBB-BS (Pearson’s r = 0.320) and HBA-A1
(Pearson’s r = 0.316; Figure 6b). Dimension two correlates with genes such as TUBA1A
(Pearson’s r = 0.474) and FEZ1 (Pearson’s r = 0.427) that are associated with neural cells
(Figure 6a). The ability of tGPLVM to scale to high-throughput data and capture global
structure from unnormalized count matrices makes it a powerful method for analyzing future
single cell experiments.

Discussion

We present a Bayesian nonparametric model for robust nonlinear manifold estimation in
scRNA-seq settings. tGPLVM captures transcriptional signals in single cell data using a
robust Student’s t-distribution noise model and integrating adaptive kernel structure in
settings with no a priori information about clusters or sequencing order. Our results show
that tGPLVM is flexible to cell type, cell development, and cell perturbation experiments
and can learn informative mappings from filtered and processed data as well as unfiltered raw
count data. tGPLVM scales to the size of a million cells as produced by the latest single cell
sequencing systems. Despite the sparsity, these data are complex and require several factors
to capture variation; we did not use the ARD kernel parameters to remove dimensions for
any of our experiments. However, the embedding dimensions in our experiments were able
to capture informative representations of these complex data, and as the number of latent
dimensions increased some would eventually be removed for being redundant in capturing
these complex transcriptional profiles. We expect that the estimated latent mappings can
be used for more sophisticated, nonparametric approaches for a variety of single cell tasks
from normalization and imputation to cell type identification. We also hope that this
robust manifold estimation can be used for other types of data with noisy outliers and
sparse features.
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Methods1

The t-Distribution Gaussian process latent variable model.2

The tGPLVM assumes that samples in high dimensional space are noisy observations of3

a Gaussian process of lower dimensional latent features. Let Y ∈ RN×P represent N4

observations in a high dimensional space of dimension P , and let X ∈ RN×Q represent the5

same observations in a lower dimensional space Q� P . Each sample xn in {n ∈ 1, 2, ..., N}6

is assumed to be drawn from a Q dimensional multivariate normal distribution with identity7

variance:8

xi ∼ NQ(0, IQ).

Noiseless observations of each of the P high dimensional features across N samples, fp(X),9

are draws from a zero-mean Gaussian process of x across a weighted sum of M kernels:10

fp(X) ∼ Nn(0,KNN )

k(x, x′) =

M∑
m=1

km(x, x′),

where KNN represents the N ×N covariance matrix defined by k(x, x′). In the traditional11

GPLVM, observations yn,p are noisy realization of a Normal distribution with mean fn,p12

and variance τ2:13

yn,p|fn,p(X), τ2 ∼ N (fn,p, τ
2)

For tGPLVM, each observation yn,p is drawn from a heavy-tailed Student’s t-distribution14

with a set degrees of freedom ν and feature-specific variance τ2p (Tang et al.):15

yn,p|fn,p(X), τ2p , ν ∼ StudentT(fn,p, ν, τ
2
p )

=
Γ((ν + 1)/2)

Γ(ν/2)
√
νπτp

(
1 +

(yn,p − fn,p)2

ντ2p

)−(ν+1)/2

,

where we use fn,p to represent the nth component of the N dimensional vector fp(X). We16

set ν = 4 based on previous work with the supervised Gaussian process with t-distributed17

error (Tang et al.; Vanhatalo et al.).18

The kernel we use is a flexible sum of an automatic relevance determination (ARD)19

squared exponential kernel and three different Matérn ARD kernels each with hyperparam-20

eters scale σk and length scales `k,q. Each ARD dimension-specific length scale, lk,q indicates21

the distance of that latent dimension over which points are similar. Letting r represent the22

length scale-weighted distance in latent space, the kernels are defined as:23

r =

Q∑
q=1

(xq − x′q)
`m,q

k1(x, x
′) = kSE(x, x′) = σ21 exp

{
−1

2
r2
}
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k2(x, x
′) = kMat1/2(x, x

′) = σ22 exp {−r}

k3(x, x
′) = kMat3/2(x, x

′) = σ23(1 +
√

3r) exp
{
−
√

3r
}

k4(x, x
′) = kMat5/2(x, x

′) = σ24(1 +
√

3r +
5

3
r2) exp

{
−
√

5r
}
.

We use Black Box Variational Inference (Ranganath et al.) to estimate the posterior dis-24

tribution for tGPLVM. We adapt the variational distributions from prior work (Damianou25

et al., 2016). Inference is implemented in Python using Edward (Tran et al., 2016, 2017).26

To scale to large data sets, minibatches of both cells and genes are used to approximate27

gradients at each update. Genes (i.e., features) are sampled in proportion to the percent-28

age of cells in which they are expressed to efficiently approximate the covariance matrix29

calculated during inference, inspired by previous random matrix algorithms to approximate30

high dimensional matrix multiplication (Drineas et al.). Cells (i.e., samples) are sampled31

uniformly in every batch. Inference was performed on Microsoft Azure High Performance32

Computing cores.33

Single cell RNA-seq data34

We chose four data sets to evaluate tGPLVM’s applicability to identifying cell type, state,35

and developmental trajectory and scalability to experiments with large numbers of cells.36

The Pollen data (Pollen et al.), which were used to evaluate clustering, consist of 11 distinct37

mouse neural and blood cell populations across 249 cells sequenced on a Fluidigm C1 sys-38

tems. Pollen is a dense matrix because of high read depth, with about 80% non-zero values.39

The counts are log normalized as log10(1 + Y ). Inference of development trajectories was40

evaluated on the data used to develop the method GPfates from Lonnberg (Lönnberg et al.,41

2017). Lonnberg (Lönnberg et al., 2017) sequenced 408 T helper cells cells over 7 days42

after Plasmodium infection on a Fluidigm C1 system. The Lonnberg data are provided43

as TPM measurements. The data are sparse and normalized by log2(1 + Y ). Cell state44

was explored on batch of CD34+ peripheral blood mononuclear cells (Zheng et al., 2017)45

(PBMCs). About 10,000 cells were captured with 10x Cell Ranger sequencing technologies.46

These sparse data were also normalized as log2(1 + Y ). Finally, to ensure scalability to the47

most recent experimental data sets, we fit the model to 1 million mice brain cells sequenced48

on a 10x Cell Ranger (Zheng et al., 2017). We normalized the mice brain cells as log2(1+Y )49

Identifying cell types with k-means clustering50

Clustering for cell type identification was evaluated on the Pollen (Pollen et al.) data.51

tGPLVM and comparison methods were used to fit latent mappings between 2 and 9 di-52

mensions. To perform clustering for each of the estimated latent manifolds, we used k-means53

clustering with the number of clusters equal to the number of different cell type or cell state54

labels in the existing data. Clustering with k-means was repeated 10 times on the mean55

of the posterior of the latent position and evaluated against true labels using normalized56

mutual information (NMI) and adjusted rand score (ARS). Mutual information measures57

the amount of information contained in one random variable, the true labels, by another58

random variable, the inferred labels. NMI normalizes mutual information by the geometric59

mean of the entropy of both labels to a scale of zero - no mutual information - to one - the60
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same distribution (Strehl and Ghosh, 2003). ARS is a measure of the proportion of shared61

members between pairs of true and estimated clusters (Hubert and Arabie). Zero inflated62

factor analysis (ZIFA) (Pierson and Yau), t-SNE (Van Der Maaten and Hinton) (perplex-63

ity set to default 30), and PCA (Hotelling, 1933) were tested as comparison methods. To64

evaluate the robust adaptations of the tGPLVM model, we fit tGPLVM with only an SE65

kernel or SE and Matérn 1/2 kernel as well as tGPLVM with normally distributed error.66

Trajectory building with minimum spanning trees67

tGPLVM was used to fit a two dimensional latent mappings for the Lonnberg (Lönnberg68

et al., 2017) developmental data. The minimum spanning tree was found on Euclidean69

distance matrix of the posterior means of the low dimensional embedding and compared70

to sequencing time to verify correct ordering. The same analysis was performed with71

ZIFA (Pierson and Yau), t-SNE (Van Der Maaten and Hinton) (perplexity set to default72

30), and PCA (Hotelling, 1933).73

Visualization of sparse, raw count matrices74

tGPLVM was used to fit a three-dimensional mapping for the two 10x data sets, CD34+75

cells and mice brain cells. Pearson correlation between latent position posterior mean and76

expression counts was used to identify genes associated with latent dimensions. ZIFA (Pier-77

son and Yau), t-SNE (Van Der Maaten and Hinton) (perplexity set to default 30), and78

PCA (truncated SVD (Halko et al.)) were also fit to the CD34+ cell data to compare79

computational time.80

Scaling inference to high-throughput experiments81

Computational times were recorded for samples of 100, 1,000, 10,000, 100,000 and 1,000,00082

cells from the 10x 1 million mouse brains cells (Zheng et al., 2017) to a latent embedding83

using tGPLVM and comparison methods. Experiments were run on a Standard H16m (1684

VCPUs, 224 GB memory) Azure high performance computing Unix system. tGPLVM was85

run for 100 passes through the data. Each minibatch contained the minimum of 2500 or86

the number of cells and 250 genes. ZIFA, t-SNE, and PCA (using truncated SVD) were fit87

until convergence or failure.88
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